LOAD FLOW ANALYSIS UNCERTAINTY TREATMENT VIA FUZZY ARITHMETIC

ZATUL AKMAR BINTI AYUB

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical-Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2009

Special dedication and thanks to my father, Ayub b. Hamat, my mother, Norizan binti Maesin, my sisters and brother, Zeti Norfidiyati, Zarith Afwa Suraya, Ahmad Syahmi, and my hubby, Abdul Hamid b. Ahmad. Thank you so much for your love , understanding and support, may Allah bless you all. Not forgotten to all my friends esspecially to k.yam, alin, and faizal. Thank you for all the friendship and understanding. Only Allah can repay this.

ACKNOWLEDGEMENT

First of all, i would like to thank my advisor, Associate Professor Mohd Wazir B. Mustafa for his advice, guidance and encouragement, kind and patience, throughout the making of first project till the submission of the final report.

I would also like to thank my father, my mother, my brother and sisters, and my husband for giving me full support and patience while i was doing all this thing, without their support and understanding, i wouldn't be able to complete this thesis.

To my classmates, thank you so much for your cooperation, understanding and friendship, it have made all the things much easier to be with you around.

Last but not least, hopefully that this thesis can be a platform for developing a better thesis in the future and also can be a reference to develop new ideas for better understanding regarding load flow analysis, especially for fuzzy load flow uncertainties treatment in power system analysis.

ABSTRACT

Load flow analysis uncertainty treatment via fuzzy arithmetic is a method which applying fuzzy arithmetic to model vagueness, ambiguity and uncertainties in power system analysis. In this study, trapezoidal method and transformation method have been employed to solve the uncertainties in load flow analysis where LR (left-right) fuzzy arithmetic have been applied to model the uncertainties and another method is by composing fuzzy numbers into intervals by using transformation method. The fuzzy load flow has been performed to get the ouput results. The simulation study is conducted for IEEE 5-bus test system and IEEE 9-bus test system using both methods. The output voltage of the fuzzy load flow has been plotted against their membership function to validate the result in terms of fuzzy distribution and to compare which method is more efficient as solution for load flow uncertainties treatment.

ABSTRAK

Penyelesaian ketidakpastian analisis aliran beban menggunakan arithmetik kabur adalah satu cara menggunakan arithmetik kabur untuk memodelkan keraguan, kesamaran dan ketidakpastian dalam analisis sistem kuasa. Dalam kajian ini, kaedah trapezoid dan transfomasi telah digunakan untuk menyelesaikan ketidakpastian dalam analisa aliran beban di mana kiri-kanan arithmetic kabur telah diaplikasi untuk memodelkan ketidakpastian dan salah satu cara lagi ialah melalui penggubahan nombor kabur kepada jeda-jeda menggunakan kaedah transformasi. Aliran beban kabur dijalankan untuk mendapatkan keputusan. Simulasi telah dijalankan terhadap IEEE 5- bus dan IEEE-9 bus menggunakan kedua-dua kaedah. Voltan keluaran daripada aliran beban kabur diplot melawan fungsi keahliannya untuk mengesahkan keputusan dalam bentuk agihan kabur dan untuk membandingkan kaedah yang lebih efisien sebagai penyelesaian ketidakpastian aliran beban.

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiii

1 INTRODUCTION

1.1 Project Background	1
1.2 Objective	3
1.3 Scope	3
1.4 Chapter Review	4

2 POWER FLOW ANALYSIS

2.1 Introduction	
2.1.1 Power Flow Analysis Data	6
2.1.2 Bus Classification	10
2.1.3 Basic Technique in Load Flow Studies	11
2.2 Power Flow Solution	12
2.2.1 Power Flow Equation	13

2.4 Iterative Method	
2.4 .1Newton-Raphson Solution Method	15
2.5 Decoupled Method	19
2.5.1Decoupled Newton Method	22
2.5.1.1Fast Decoupled Load Flow	23
2.6 Summary	26
UNCERTAINTY AND FUZZY ARITHMETIC	
3.1 Introduction	27
3.2 The Nature of Uncertainty	28
3.3 Modelling the Uncertainty	28
3.4 Fuzzy Sets Theory	29
3.4.1 Types of Membership Function	30
3.4.2 Concepts about Fuzzy Sets	32
3.5 Fuzzy Numbers	34
3.5.1 Implementation of Fuzzy Numbers	34
3.5.2 LR Numbers	34
3.5.2.1 LR Fuzzy Numbers Operation	35
3.5.3 Decomposed Fuzzy Numbers	36
3.6 Transformation Method	37
3.7 Fuzzy Load Flow	40
3.7.1 Fuzzy DC Load Flow	42
3.7.2 Fuzzy AC Load Flow	44
3.8 Summary	45

3

4 UNCERTAINTY OF LOAD AND GENERATION REPRESENTATION

4.1Introduction	46
4.1.1 Trapezoidal Fuzzy Membership Function	46
4.1.1.1 Fuzzy Numbers Modelling	47

4.1.1.2 Transformation Method	50
4.2Summary	53

RESULTS AND DISCUSSION

5.1 Introduction	54
5.1.1Output result of LR arithmetic and Transformation	54
method	
5.2 Output Data Analysis and Comparisons	56
5.3 Summary	60

CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction	61
6.2 Conclusions	61
6.3 Recommendations	62

REFERENCES	63-64
Appendices A-E	65-70

LIST OF TABLES

TITLE

4.1	Trapezoidal memberships for fuzzy modelling	
	of active loads	47
4.2	Trapezoidal memberships for fuzzy modeling of	
	active generations	48
4.3	Trapezoidal memberships for fuzzy modelling of	
	reactive loads	48
4.4	Trapezoidal memberships for fuzzy modelling of	
	reactive generations	49
4.5	Trapezoidal memberships for fuzzy modelling of	
	active loads	49
4.6	Trapezoidal memberships for fuzzy	
	modelling of active generations	49
4.7	Trapezoidal memberships for fuzzy	
	modelling of reactive generations	49
4.8	Trapezoidal memberships for fuzzy	
	modelling of reactive loads	50
4.9	Transformation method for fuzzy modelling	
	of active loads	50
4.10	Transformation method for fuzzy	
	modelling of active generations	51
4.11	Transformation method for fuzzy modelling	
	of reactive loads	51
4.12	Transformation method for fuzzy	
	modelling of reactive generations	51

TABLE NO.

PAGE

4.13	Transformation method for fuzzy modelling	
	of active loads	52
4.14	Transformation method for fuzzy modelling	
	of active generations	52
4.15	Transformation method for fuzzy modelling	
	of reactive loads	52
4.16	Transformation method for fuzzy	
	modelling of reactive generations	53
5.1	Fuzzy output result for LR arithmetic for	
	IEEE 5-bus test system	55
5.2	Fuzzy output result of transformation	
	method for IEEE 5 – bus test system	55
5.3	Fuzzy output voltage for LR arithmetic	
	for IEEE 9 - bus test system	55
5.4	Fuzzy output voltage of transformation	
	method for IEEE 9 bus test system	56

LIST OF FIGURES

FIGURE NO.	. TITLE	PAGE
2.1	A Network Represented in a hybrid fashion using	
	one-line diagram representation	7
3.1	Implementation of the ith uncertain parameter as a fuzzy	
	number Pi decomposed into intervals.	40
3.2	Trapezoidal L-R fuzzy membership function	41
5.1	Output voltage at bus 5 of trapezoidal fuzzy	
	numbers using LR arithmetic and transformation	57
	methods conducted on IEEE 5 bus test system	
5.2	Output voltage at bus 6 of trapezoidal fuzzy numbers	
	using LR arithmetic and transformation methods	
	conducted on IEEE 9 bus test system	59

LIST OF SYMBOLS

Y	-	Input variables vector of the load flow
U	-	Control vector of the load flow
Х	-	State variables vector of the load flow
Ζ	-	Output variables of the load flow
V, Vi	-	Voltage amplitude at bus <i>i</i>
δ, δi, δi	-	Voltage phase at bus <i>i</i> , <i>k</i>
f,g	-	Function vectors of the load flow
п	-	Number of buses in the power grid
μ	-	Membership function
$\tilde{a}, \tilde{b}, \tilde{p},$	-	Fuzzy numbers
<i>x</i> , <i>y</i> , <i>z</i>	-	Universes of discourse
xmax, xmin	-	Maximum and minimum value of universe of discourse x
X(j)	-	Interval of the alpha- cut j , [$a(t)$, $b(j)$]
A, B, P	-	Decomposed form of the fuzzy numbers <i>a</i> , <i>b</i> , <i>p</i>
т	-	Numbers of intervals or alpha cuts less one
μj	-	Membership level, $\mu j = j/m, j=0, \dots, m$.
(mi, αi,βi)LR	-	Parameters of LR fuzzy number ãi
μt (x,at,bt,ct)	-	Triangular membership function
μg (x,cg, σ)	-	Gaussian membership function
F	-	Fuzzy- parameterized model
Fr	-	Functions of the model F , $r=1,2,$ N
\widetilde{q}	-	Fuzzy – valued output parameters of the model F
\tilde{Z}	-	Decomposed form of the output parameters qr
Pij, Qij	-	Active and reactive power flow of the branch ij
Ρ', δ'	-	Active power injections and voltage phases at the operating
		time

P'ij	-	Power flow of the branch <i>ij</i> at the operating point
$\Delta P^{}, \Delta Q^{}, A$	Δδ^-	Fuzzy numbers of the deviations of active and reactive power
		injections, and of the deviations of voltage angles from
		operating point
В	-	Nodal admittance matrix considering only series and shunt
		resistances
Xij	-	Reactance of the line <i>ij</i>
Yij	-	Admittance of the branch ij , $Gij + jBij$
P^ ,Q^	-	Fuzzy numbers of the active and reactive power flows by the
		line <i>ij</i>
$\Delta \hat{P}, \Delta \hat{Q}$	-	Power flow deviations of the line <i>ij</i> from the operating point
Y', U'	-	Operating point of the input and control vectors of the load
		flows
X', Z'	-	State and output vectors obtained with the load flow on the
		operating point Y', U'
Y, X , Z	-	Input, state and output vector fuzzy numbers in the fuzzy AC
		load flow
<i>S</i> , <i>W</i>	-	Sensitivity

LIST OF APPENDICES

APPENDICES	TITLE	PAGE
А	M-File for Fuzzy Trapezoidal	65
	Memberships Function	
В	M-File for Figure	67
С	One-line diagram for IEEE 5 bus test	
	system and IEEE 9 bus test system	68
D	Line data and load flow result at base case	
	for IEEE 9 bus test system	69
E	Bus data and line data for IEEE 5 bus test	
	system and load flow result at base case	68

CHAPTER 1

INTRODUCTION

1.1 Project Background

Over the past few decades many power system problems (with state estimation, stability analysis contingency and security analysis, VAR management and optimization etc) have well recognized the usefulness of power flow analytical tools. The basic requirement of a power flow program is to organize a set of input data, which describe the system parameters, line parameters, bus injection and initial state variables.

Conventionally these inputs are assigned values that are crisp in nature. However, in many systems this may prove to be unrealistic as these parameters show some imprecision and uncertainty. In such cases, the information need be qualitatively soft and natural.

Fuzzy set theory offers a way to understand these problems and also allows incorporating ones own intuition, intelligence and knowledge acquired from past experiences in solving them. It is felt that these uncertainties can be properly modeled with the help of fuzzy set theory. Fuzzy arithmetic, a fuzzy load flow method arise based on fuzzy sets that finds accurate load flow solutions when uncertain nodal powers are given as fuzzy numbers. Imprecision and uncertainties in power flow analysis is modeled using fuzzy set theory.

Fuzziness on the power generation and loads used in a power flow analysis implies fuzziness on the outputs. Power flow calculations are one of the most important computational tools for planning and operating electric power systems. After the stabilization of the deterministic power flow calculation methods, the need to capture uncertainty in load definition lead first to the development of probabilistic models, and later to fuzzy approaches able to deal with qualitative declarations and other non-probabilistic information about the value of the loads.

These uncertainties present in every day and real life problem. The requirement to model the uncertainties where each uncertainties must be assigned a degree of membership that represent the degree of participation of the parameter under study so that the imprecise knowledge can be shown through meaningful probability distribution and in realistic way. The treatment of uncertainties can be shown through various approaches.

The uncertainties in load and generation of load flow has been modeled with the earliest method which is probabilistic load flow where the uncertainties in load and generations have been medelled through probability distribution or statistical moments. At the eighties, another method of uncertainty has been developed which is fuzzy load flow [1]. The uncertainties will be modeled with fuzzy numbers.

Fuzzy numbers can be implemented such as discretized fuzzy numbers, LR fuzzy numbers and decomposed fuzzy numbers, α -cuts[16].

1.2 Objective

The objectives of this project :

- i. To study the conventional load flow methods where the uncertainty type of vagueness, imprecision and ambiguity of loads and generation is modelled.
- ii. To identify methods of uncertainty treatment in power system analysis.
- iii. To develop fuzzy arithmetic to model the uncertainties in generation and load.
- iv. To validate the results for both method in terms of fuzzy distribution.

1.3 Scope

In order to achieve the objectives;

- A study have been done to learn about the concept of fuzzy sets, the concept of power flow analysis, the equations and also the Newton Raphson Algorithm and the other load flow analysis solution, such as Fast Decoupled Method and Gauss Seidel Method.
- ii. In this analysis, Left-Right fuzzy number's arithmetic and transformation method has been used as solution for fuzzy load flow solution where LR fuzzy numbers and arithmetic model the loads and generations and transformation method decomposed numbers in intervals.
- iii. A few algorithms have been develop to apply according to both method.

- iv. Fuzzy load flow has been applied and simulation on the IEEE 5-bus test system and IEEE 9-bus test system was conducted by using Matlab and Power World Simulator to obtain the output result.
- v. Finally each of the output result will be plotted against their membership function to how and validate the uncertainties distribution of the parameter injection in terms of fuzzy distribution.

1.4 Chapter Review

In this chapter, the introduction and background of the project have been defined and later on in the next chapter, a brief explaination about load flow studies, power flow analysis, problem, equations will be discussed. Chapter three focused more on uncertainty and fuzzy arithmetic concepts together with the implementation of fuzzy numbers and fuzzy load flow methods and also the types of the fuzzy load flow will be explained clearly for better understanding.

In chapter four, the uncertainty representation and modeling of active and reactive loads and generation will be shown. In chapter five, the output results from fuzzy load flow simulation are represented and analyzed. The comparisons between the output from fuzzy load flow using LR arithmetic and transformation method will be discussed. The conclusion of this study are summarized in the chapter six together lastly a few recommendations are proposed for improving the result and also the test methods.