
ii

GPU IMPLEMENTATION USING CUDA

TEIMOUR TAJDARI

A project report submitted in partial fulfilment of the requirement for the

award of the degree of Master of Engineering (Electrical-

Mechatronics and Automatic Control)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

NOVEMBER 2009

iv

iii

To my beloved mother, father, wife, sisters and brothers

v

iv

ACKNOWLEDGMENTS

I would like to take this opportunity to express my warmest gratitude to my

supervisor, Dr Mohd Fauzi Bin Othman, for giving me his confidence, undivided

attention and invaluable guidance throughout the completion of this project.

Also, an honorable mention goes to my family and friends for their

understandings and supports on me in completing this project. Without helps of the

particular that mentioned above, I would face many difficulties while doing this

project.

 My sincere gratitude and thanks also goes to those who have contributed to

the completion of this research directly or indirectly.

vi

v

ABSTRACT

This thesis considers the application of desktop computer video card as a

processor to solve two algorithms in medical imaging and sparse matrix operations.

The GPU (Graphic Processing Unit) hardware structure in the video card is designed

and dedicated to 3D graphic rendering that include matrix and vector operation. To

reconstruct the Magnetic Resonance Images, we apply IFFT that is a fast algorithm

for Fourier transforms and has a parallel structure that can be used in GPU processor.

Another experiment for GPU application is sparse matrix operations. Two case

studies to work with sparse matrix operations are 662_bus and 494_bus admittance

matrices. We apply these two matrices to obtain lines current. We Implement the

algorithms on GPU GeForce GTX 295 in CUDA platform at Visual C++ Host

compiler, the results show 7X speedup when the same kernels running on CPU

Phentom™ II X4 2.6GHz.

vii

vi

ABSTRAK

 Tesis ini menerangkan penggunaan kad video komputer peribadi sebagai

sebuah pemproses untuk menyelesaikan 2 algoritma didalam bidang pengimejan

perubatan dan operasi matrik tertabur (Sparse). struktur perkakasan unit pemproses

grafik (GPU) didalam kad video adalah direka dan didedikasikan untuk merender

grafik 3D yang turut merangkumi operasi matrik dan vector. untuk membina semula

imej resonasi magnetik, kita haruslah menggunakan IFFT iaitu sebuah algoritma

untuk transformasi fourier dan ia juga turut mengandungi struktur selari yang boleh

diaplikasikan bersama pemproses GPU. Sebuah lagi eksperimen untuk aplikasi GPU

adalah operasi matrik tertabur. Dua kes kajian yang boleh digunakan bersama operasi

matrik tertabur adalah matrik kemasukan 662_bus dan 494_bus. Kita menggunakan

dua matrik ini untuk mendapatkan arus talian. Kita telah menggunakan algoritma-

algoritma tersebut bersama GPU GeForce GTX 295 yang mengandungi platfom

CUDA bersama kompiler induk Visual C++, keputusan kajian menunjukan lapan

kali (8X) kenaikan laju apabila kernel yang sama berjalan didalam CPU Phenom™ II

X4 2.6GHz.

viii

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS xiii

 LIST OF SYMBOLS xiv

 LIST OF APPENDICES xvi

1 INTRODUCTION 1

 1.1 Introduction 1

 1.1.1 Medical imaging algorithms on GPU 4

 1.1.2 Sparse Matrix-Vector Multiplication on GPU 4

 1.2 Scope4

 1.3 Objectives 5

 1.4 Background 6

 1.5 The Structure of project report 7

 1.6 Summary 8

ix

viii

2 LITERATURE REVIEW 9

 2.1 Introduction 9

 2.2 Literature Review 10

 2.3 Summary 17

3 CONCEPTS 18

 3.1 Magnetic Resonance Image 18

 3.1.1 MRI Scanner 18

 3.1.2 Magnetic Resonance Imaging 20

 3.1.3 Pipeline to producing the magnetic

 resonance image (MRI) 23

 3.1.4 Kaiser-Bessel window gridding algorithm 24

 3.1.5 Filtering raw data 25

 3.1.6 Linear Filtering 26

 3.1.7 Frequency domain linear filtering 26

 3.1.8 Image Reconstruction 27

 3.2 Bus Admittance Matrix 27

 3.2.1 Introduction 27

 3.2.2 The Per-Unit System 28

 3.2.3 Bus Admittance Matrix 31

 3.3 CUDA 34

 3.3.1 Introduction 34

 3.3.2 CUDA programming structure 36

 3.3.3 Kernel memory access 38

 3.3.4 Host and Device 39

 3.3.5 GPU memory allocation and data copies 41

 3.4 Summary 42

4 METHODOLOGY 44

 4.1 Introduction 44

 4.2 Magnetic Resonance Image Reconstruction 45

 4.2.1 Introduction 45

 4.2.2 Kaiser-Bessel gridding window algorithm 45

 4.2.3 Frequency domain linear filtering 47

x

ix

 4.2.4 Image Reconstruction 48

 4.2.5 Fast Fourier Transform (FFT) Algorithm 48

 4.2.5.1 Introduction 48

 4.2.5.2 Discrete Fourier Transform (DFT) 48

 4.2..5.3 Fast Fourier Transform 51

 4.2.5.4 How much faster is the

 FFT in DFT operations? 53

 4.2.6 Applying CUFFT library 53

 4.3 Sparse Matrix 54

 4.3.1 Introduction 54

 4.3.2 Coordinate Format (COO) 55

 4.4 Summary 55

5 IMPLEMENTATION AND RESULT DISCUSSION 57

 5.1 Introduction 57

 5.2 Applied GPU and CPU Specifications 58

 5.3 Working with CUDA 59

 5.3.1 CUDA SDK 60

 5.3.1.1 Example one: N-Body Simulation 61

 5.3.1.2 Example two: Smoke Particles 62

 5.3.1.3 Example three: Particles 63

 5.4 Bus Admittance Matrices in Sparse Matrix (COO Format) 64

 5.5 Bus Admittance Matrix case studies 65

 5.6 GPU and CPU Implemented codes 68

 5.7 Lines Currents for 662 and 494 busses 69

 5.8 The GPU and CPU performance 71

 5.9 Summary 72

6 CONCLUSION AND FUTURE WORK 73

 6.1 Conclusion 73

 6.2 Future Work 75

REFRENCES 77

Appendices A-J 80-122

xi

x

LIST OF TABLES

TABLE NO TITLE PAGA

3.1 The Gridding algorithm 25

4.1 The component of Kaiser-Bessel window

 gridding formula 46

4.2 Number of DFT (FFT) operations and speed up from

 normal DFT 53

5.1 Applied Computer specifications 58

xii

xi

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 GEFORCE 6600 GT (April, 2004) 1

1.2 The GPU devotes more transistors to data processing 2

1.3 Floating-point operations per second in GPU and CPU 3

1.4 Memory Bandwidth in the CPU and

 GPU from 2003-2007 3

2.1 Dataflow for two DIT algorithms 13

3.1 Image (a) shows a front view and image

 (b) shows a side view of an MR scanner 19

3.2 3D representation of MRI Scanner 20

3.3 Pipeline to producing the magnetic resonance image 23

3.4 Image reconstruction by applying Fourier operation

 on raw data 27

3.5 The admittance diagram of a simple system 31

3.6 Grid of Thread Blocks 37

3.7 Global and share memory and memory hierarchy 39

3.8 Serial code executes on the host while parallel code

 executes on the device 40

4.1 Interpolation from Radial grid to Cartesian grid 46

4.2 Unity roots for N=8 in complex plan 49

4.3 Diagram of 8-point FFT 52

5.1 Dedicated computer in metrology lab 58

5.2 CUDA programming main page in Visual Studio 2008 60

5.3 N-body simulation 61

xiii

xii

5.4 Smoke particles 62

5.5 Particles simulation 64

5.6 GPU and CPU processing time comparison 72

xiv

xiii

LIST OF ABBREVIATIONS

GPU - Graphic Processing Unit

CPU - Central Processing Unit

MRI - Magnetic Resonance Image

CT - Computer Tomography

RF - Radio Frequency

DFT - Discrete Fourier Transform

FFT - Fast Fourier Transform

IFF - Inverse Fast Fourier Transform

COO - Coordinate Sparse Matrix Format

GFLOP - Giga Floating Point

xv

xiv

LIST OF SYMBOLS

 0ω - Larmor frequency

 - Gyro magnetic ratio 0B

 γ - Magnetic field

 - Received RF signal from tissue)(tSr

 - Amplitude of Received RF signal from tissue tje 0ω−

 - Linear variation of magnetic field xGx

)(xρ - Proton density

 - 2D Received RF signal from tissue),(yr ttS

),(yxρ - 2D Proton density

 - Input image ip

 - Output image op

 K - Filter kernel

 - Fourier transform F

 - Inverse Fourier transform 1−F

 I - Current matrix

 Y - Admittance matrix

 V - Voltage matrix

 Z - Impedance

 - Power S

 - Per-unit pu

 - Complex load power)3(φLS

xvi

xv

 - Covered cell coordinate in Cartesian grid),(yx kk

 - Position of nearest measurement sample in Cartesian grid),(yxi kkN

 - Position of nearest measurement sample),(yxi kkm i

 - Distance between and),(yxm kkd
i

),(yxi kkN),(yx kk

 - Contribution of measurement sample on Cartesian grid),(yxi kkc

 - Integer i

 j - Integer

 - Distance with K-Space origin),(yxN kkD
i

 - Density compensation factor)),((yxN kkD
i

ρ

 - Weighting coefficient
)),((yxm kkdw

i

 - Fast Fourier Transform FFT

 IFFT - Inverse of Fast Fourier Transform

 - Discrete signal na

 - DFT of kA na

 - Nth roots of unity K
NW

 - Non-zero values in sparse matrix data

 - Index of raw of non-zero values in sparse matrix raw

 - Index of raw of non-zero values in sparse matrix col

xvii

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A 662_bus Admittance matrix 80

B 662_bus Voltage matrix 93

C 662_bus Current matrix 95

D 494_bus Admittance matrix 98

E 494_bus Voltage matrix 107

F 662_bus Current matrix 109

G C program to get line current 112
H CUDA program to get line current 116

I Memory allocation and data transfer

 sample program 121

J Applying CUFFT library 122

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Central processing units or CPUs such as the Intel Pentium and AMD

Phentom families are advancing very fast in terms of increasing speed and cost

reduction. This progress, however, slowed down in 2003 due to constraints on power

consumption. Since then, accelerators such as graphics processing units (GPUs) have

led to the advancement in computation for science and engineering applications.

Before 2003 GPUs were applied only in the video card for 3D rendering. Their main

applications are in Mobile phones, Personal computers, Game consoles,

Workstations, Embedded systems such as Mp3 player and ADSL Modems.

Figure 1.1 GEFORCE 6600 GT (April, 2004)

2

Their capability in matrix and vector operation is use for scientific

calculations. For example, the GTX 295 supports the single-program, multiple-data

(SPMD) programming model, in which each thread is created from the same

program and operated on a distinct data element.

Since the SPMD programming model has been used on massively parallel

supercomputers in the past, it is naturally expected that many high-performance

applications will also perform well on the GPU. Furthermore, general-purpose

applications targeting the GPUs are developed using ANSI C with simple extensions.

That CUDA is one of most powerful programming tools that introduced by Nvidia in

2006. Before that programming platform such DirectX, OpenGL, HLSL, GLSL were

already introduced.

The reason behind the difference in floating-point or in matrix and vector

operation capability between the CPU and the GPU is that the GPU is specialized for

intensive, highly parallel computation involved in graphics rendering. Therefore

GPU design has more transistors devoted to data processing rather than data caching

and flow control, as schematically illustrated by Figure 1-2.

Figure 1.2 The GPU devotes more transistors to data processing

3

Some of GPU computation applications include computational geosciences,

chemistry, medicine, modeling, science, biology and finance and image processing.

The programmable Graphic Processor Unit or GPU has evolved after year 2003 into

a highly parallel, multithreaded, many-core processor with tremendous

computational horsepower and very high memory bandwidth, as illustrated in

Figures 1.3 and 1.4.

 GFLOP/sec

0
100
200
300
400
500
600
700
800
900
1000

Ja
n‐
03

Ju
l‐0

3

Ja
n‐
04

Ju
l‐0

4

Ja
n‐
05

Ju
l‐0

5

Ja
n‐
06

Ju
l‐0

6

Ja
n‐
07

Ju
l‐0

7

Ja
n‐
08

CPU

GPU

Figure 1.3 Floating-point operations per second in GPU and CPU

 GFlOP/sec

0
10
20
30
40
50
60
70
80
90
100

2003 2004 2005 2006 2007

CPU

GPU

Figure 1.4 Memory Bandwidth in the CPU and GPU from 2003-2007

4

1.1.1 Medical imaging algorithms on GPU

Medical image algorithms such as Kaiser–Bessel window gridding algorithm,

FFT algorithm and Least-Square technique are all parallel algorithms and have the

implementation capability of GPU since it is a good candidate for medical image

processing. In the case of Fast Fourier Transform or FFT, the FFT fragments the

problem into smaller sub-problems which are solved separately but simultaneously.

This algorithm is a parallel algorithm that has a good potential to get speed-up by

parallelization.

1.1.2 Sparse Matrix-Vector Multiplication in GPU

Sparse matrix structures arise in numerous computational disciplines, and as a

result, methods for efficiently manipulating them are often critical to the

performance of many applications. Sparse matrix-vector multiplication (SpMV)

operations have proven to be of particular importance in computational science. The

massive parallelism of graphics processing units (GPUs) offers tremendous

performance in many high-performance computing applications. While dense linear

algebra readily maps to such platforms, utilizing this potential for sparse matrix

computations presents additional challenges. Given its role in iterative methods for

solving sparse linear systems and eigenvalue problems, sparse matrix-vector

multiplication (SpMV) is of singular importance in sparse linear algebra.

1.2 Scope

As mentioned, GPUs are capable of manipulating and calculating parallel

structure operations such as matrix and vector operations in a higher speed than

5

CPUs. The medical imaging algorithms need very fast processor to implement their

bulky raw data in a short period of time to ensure that patients are safe from

radiation’s side effects while giving a high resolution to the output image. Kaiser–

Bessel window gridding and FFT algorithms will be used to filter and Reconstruct

the image. We implement the algorithms in CUDA platform and the GeForce

NVIDIA graphic card will be the processor in implementing the algorithms.

The iterative methods in linear algebra to solve linear algebra equations such

as Ax = b problems in huge sparse matrix form consume a lot of time in common

processors. Sparse matrices often appear in science and engineering when solving

partial differential equations. For example, simulation of large non-linear circuit is

one area that utilizes iterative method in linear algebra. This kind of problems

includes thousands of linear equation and the Krylov method is often used to solve

them.

In this project we want to utilize graphic processing unit (GPU) to implement

MR (magnetic resonance) medical image and sparse matrix-vector multiplication to

compare the performance of the GPU and CPU in terms of speed.

1.3 Objectives

The main objective of this project is to compare the advantages of GPU over

CPU using two separate algorithms. In the first part, we consider medical image

processing reconstruction with both CPU and GPU processors to achieve the highest

possible speedup in the reconstruction of a Magnetic Resonance image. To achieve

this, we must change the acquired raw data from the scanner in K-Space from spiral

trajectory form to Cartesian trajectory form by using Kaiser –Bessel window

6

algorithm. Then by applying inverse Fourier transform we can transform the raw data

to spatial domain as an image.

In the second part of this project, we consider the use of sparse matrix-vector

multiplication algorithm. Although there are various formats of sparse matrix, we

only consider one of them in this project. This format is coordinate format or COO

format that is a simple storage scheme and COO is a general sparse matrix

representation. Actually we consider sparse matrix operations in two Bus Admittance

matrices. In the sparse matrix-vector multiplication we applied CUDA matrix

multiplication library that is a dedicated library matrix multiplications.

We implement all algorithms in CUDA platform and the GeForce NVIDIA

graphic (GeForce GTX 295) card will be the processor to implement the algorithms

Actually the NVIDIA graphic cards are leading in using CUDA platform. For CPU

computations we utilize AMD Phentom 2.6 GHz.

1.4 Background

General purpose GPU (GPGPU) makes a good area for scientist to try their

qualified algorithm through GPU. This is especially so in medical image field and

linear algebra.

Kenneth Morland and Edward Angel in year 2003 [1] From Sandia national

laboratory in the USA utilized the first generation of programmable GPU to perform

Fast Fourier Transform directly on GPU. The performance was faster than CPU. By

looking at Figure (1.3) we can see that in 2003 there was not too much difference

between speed of GPU and CPU in terms of speed in GFLPO/sec. After 2007 and

7

especially in 2008, many researchers have tried their algorithms utilizing GPU. In

this year (2008) Xiao Hui Wang and Walter F. Good [2] from the University of

Pittsburgh in the USA utilized GPU for real- time rendering and displaying large 3D

medical data sets from CT scanner. The results indicate that GPU-based

programming was capable of rendering large 3D datasets at real-time interactive

rates with stereographic displays.

Sam S.Stone (2008) [SYHHSL] proposed an advanced algorithm that uses

Least-Square technique to reconstruct MR images directly from non-Cartesian scan

trajectories. His algorithm is implemented in both GPU and CPU processors and with

the results showing a significant difference: GPU was 120 times faster than CPU. In

linear algebra, Genna Cummis et al (2008) in their article presented a GPU process to

solve linear algebra computations in particular matrix operations. The author

concluded that all computation in the research community was significantly faster

than current CPUs.

1.5 The structure of this project report

This work is divided into six chapters. The first chapter discusses in general

the main objective of GPU implementation. The second chapter gives a literature

review of the various algorithms that utilize GPU as the main processor.

The third chapter gives a comprehensive model and definition of CUDA,

Magnetic Resonance imaging and Bus Admittance matrix. This general modeling

will be used as a basic formulation and analysis of Chapter Four where we discuss

the methodology and algorithms used in this project in comparing GPU and CPU

performance.

8

Chapter Five is for implementations and results of the algorithms. We have

discussion to code discussed algorithms in chapter Four. The codes are in CUDA

language and we implement them in the both video card and CPU. Then we compare

and discuss the obtained experiments results in terms of the processors speed.

In Chapter Six we have the conclusion and recommended future work that

future research can undertake. After these six chapters, there are references and

appendix that refer to the Figures and Tables mentioned in this work.

1.6 Summary

In this chapter, we had a brief introduction to the general concepts of Graphic

Processing Unit and its’ applications. The idea and Background of using GPU as

scientific computation processor are mentioned as well. Also we had an introduction

to how medical image reconstruction and sparse matrix operations algorithms are

capable to applying on GPU to achieve faster implementation. In the end of this

chapter we discussed the project objectives, scope and project report structure.

77

RE

FERENCES

CS conference on Graphics hardware,

Aire-la -Ville, Switzerland, Switzerland, Eurographics Association, 2003, pp.

112–119.

] Sam S. Stone, Haoran Yi, Justin P. Haldar, Wen-mei W. Hwu, Bradley P.

Sutton, Zhi-Pei Liang, “How GPUs Can Improve the Quality of Magnetic

Resonance Imaging”, University of Illinois at Urbana-Champaign, 2008,

] O.C. Eidheim,T J. Skjermo, L. Aurdal, “Real-time analysis of ultrasound

images using GPU”, International Congress Series 1281 (2005) 284–289,

0531-5131/ D 2005 CARS & Elsevier B.V

] Daniel Castano, Dominik Moser, Andreas Schoenegger, Sabine Pruggnaller,

Achilleas S. Frangakis ,”Performance evaluation of image processing

algorithms on the GPU”, Journal of Structural Biology,2008, 153–160

] D. Brandon Loyd, Chas Boyd, Naga Govindaraju,” Fast computation of

general Fourier Transforms on GPUs”, 2008 IEEE

[1] Kenneth Morel, Edward Angel, “The FFT on a GPU”, Proceedings of the

ACM SIGGRAPH/EUROGRAPHI

[2] Xiao Hui Wang, Walter F. Good, Real-time stereographic, “Rendering and

display of medical images with programmable GPUs”, University of

Pittsburgh, Computerized Medical Imaging and Graphics, 2008, 118–123

[3

[4

[5

[6

78

[7] Anthony Gregerson, “Implementing Fast MRI Gridding on GPUs via

CUDA”, University of Wisconsin-Madison, 2008

[8] Nathan Bell, Michael icient Sparse Matrix-Vector

Multiplication on CUDA”, NVIDIA Technical Report, NVIDIA Corporation,

Dec.2008.

] Genna Cummins, Dr. Rob Adams, Theodore Newell, “Scientific Computation

[10]

ences”, Elsevier Academic Press, Burlington, MA, USA, 2004.

[16] Hadi Saadat, “Power System Analysis”, McGraw-Hill,1999

 Garland, ”Eff

[9

through a GPU”, 2008 IEEE

Matt A. Bernstein, Kevin F. King, Xiaohong Joe Zhou, “Handbook of MRI

pulse sequ

[11] John I. Jackson, Craig H. Meyer, Dwight G. Nishimura, and Albert

Macovski, “Selection of a convolution function for Fourier inversion using

gridding”, IEEE Transaction on Medical Imaging, 1991, no. 3, 473– 478.

[12] J.D. O’Sullivan,” Fast sinc function gridding algorithm for Fourier inversion

in computer tomography”, IEEE Transaction on Medical Imaging, 1985, no.

4, 200–207.

[13] Hossein Sedarat, and Dwight G. Nishimura,“ On the optimality of the

gridding reconstruction algorithm”, IEEE Transaction on Medical

Imaging,2000, no. 4, 306–317.

[14] Brian Dale, Michael Wendt, and Jeffrey L. Duerk, “A rapid look-up table

method for reconstructing MR images from arbitrary k-space trajectories”,

IEEE Transaction on Medical Imaging, 2001, no. 3, 207–217.

[15] R.Westermann T. Schiwietz, J. Georgii, “Freeform image”, Proceedings of

Pacific Graphics 2007, 2007.

79

[17] NVIDIA Corporation, “NVIDIA CUDA Programming Guide”, Version 2.0,

June 2008

[18] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA

Tesla, “A united graphics and computing architecture”, IEEE Micro,Mar/Apr

2008.

[19] NVIDIA Corporation, ’’GPU Gems2’’, http:// http developer. nvidia. Com /

GPUGems2, Second printing, April 2005

[23] icholas Harvey, Robert Luke, James M.Keller, and Derek Anderson,

[20] Yousef Saad,” Iterative Methods for Sparse Linear Systems”, Society for

Industrial Mathematics, 2003.

[21] Iain Duff, Roger Grimes, and John Lewis, ”UF Sparse matrix collection”,

http://www.cis.ufl.edu/research/sparse/matrices, AT&T Labs, Visualization

Group,2004

[22] Freund, R., G.H. Golub, N.M. Nachtigal, ”Iterative solution of linear

systems”, Acta Numerica, pp. 57-100, 1991.

N

“Speedup of Fuzzy Logic through Stream Processing on Graphic Processing

Units”, university of Missouri-Columbia college of Engineering, 2008 IEEE

