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ABSTRACT 
 

 

 

 

This thesis considers the application of desktop computer video card as a 

processor to solve two algorithms in medical imaging and sparse matrix operations. 

The GPU (Graphic Processing Unit) hardware structure in the video card is designed 

and dedicated to 3D graphic rendering that include matrix and vector operation. To 

reconstruct the Magnetic Resonance Images, we apply IFFT that is a fast algorithm 

for Fourier transforms and has a parallel structure that can be used in GPU processor. 

Another experiment for GPU application is sparse matrix operations. Two case 

studies to work with sparse matrix operations are 662_bus and 494_bus admittance 

matrices. We apply these two matrices to obtain lines current. We Implement the 

algorithms on GPU GeForce GTX 295 in CUDA platform at Visual C++ Host 

compiler, the results show 7X speedup when the same kernels running on CPU 

Phentom™ II X4 2.6GHz.  
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ABSTRAK 

 

 

 

 

 Tesis ini menerangkan penggunaan kad video komputer peribadi sebagai 

sebuah pemproses untuk menyelesaikan 2 algoritma didalam bidang pengimejan 

perubatan dan operasi matrik tertabur (Sparse). struktur perkakasan unit pemproses 

grafik (GPU) didalam kad video adalah direka dan didedikasikan untuk merender 

grafik 3D yang turut merangkumi operasi matrik dan vector. untuk membina semula 

imej resonasi magnetik, kita haruslah menggunakan IFFT iaitu sebuah algoritma 

untuk transformasi fourier dan ia juga turut mengandungi struktur selari yang boleh 

diaplikasikan bersama pemproses GPU. Sebuah lagi eksperimen untuk aplikasi GPU 

adalah operasi matrik tertabur. Dua kes kajian yang boleh digunakan bersama operasi 

matrik tertabur adalah matrik kemasukan 662_bus dan 494_bus. Kita menggunakan 

dua matrik ini untuk mendapatkan arus talian. Kita telah menggunakan algoritma-

algoritma tersebut bersama GPU GeForce GTX 295 yang mengandungi platfom 

CUDA bersama kompiler induk Visual C++, keputusan kajian menunjukan lapan 

kali (8X) kenaikan laju apabila kernel yang sama berjalan didalam CPU Phenom™ II 

X4 2.6GHz. 
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CHAPTER 1 
 

 

 

 

INTRODUCTION 
 

 

 

 

1.1 Introduction 
 

 

Central processing units or CPUs such as the Intel Pentium and AMD 

Phentom families are advancing very fast in terms of increasing speed and cost 

reduction. This progress, however, slowed down in 2003 due to constraints on power 

consumption. Since then, accelerators such as graphics processing units (GPUs) have 

led to the advancement in computation for science and engineering applications. 

Before 2003 GPUs were applied only in the video card for 3D rendering. Their main 

applications are in Mobile phones, Personal computers, Game consoles, 

Workstations, Embedded systems such as Mp3 player and ADSL Modems. 

 

 

 

Figure 1.1 GEFORCE 6600 GT (April, 2004) 
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Their capability in matrix and vector operation is use for scientific 

calculations. For example, the GTX 295 supports the single-program, multiple-data 

(SPMD) programming model, in which each thread is created from the same 

program and operated on a distinct data element. 

 

 

Since the SPMD programming model has been used on massively parallel 

supercomputers in the past, it is naturally expected that many high-performance 

applications will also perform well on the GPU. Furthermore, general-purpose 

applications targeting the GPUs are developed using ANSI C with simple extensions. 

That CUDA is one of most powerful programming tools that introduced by Nvidia in 

2006. Before that programming platform such DirectX, OpenGL, HLSL, GLSL were 

already introduced. 

 

 

The reason behind the difference in floating-point or in matrix and vector 

operation capability between the CPU and the GPU is that the GPU is specialized for 

intensive, highly parallel computation involved in graphics rendering. Therefore 

GPU design has more transistors devoted to data processing rather than data caching 

and flow control, as schematically illustrated by Figure 1-2. 

 
 

 

Figure 1.2   The GPU devotes more transistors to data processing 
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Some of GPU computation applications include computational geosciences, 

chemistry, medicine, modeling, science, biology and finance and image processing. 

The programmable Graphic Processor Unit or GPU has evolved after year 2003 into 

a highly parallel, multithreaded, many-core processor with tremendous 

computational horsepower and very high memory bandwidth, as illustrated in 

Figures 1.3 and 1.4. 
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Figure 1.3   Floating-point operations per second in GPU and CPU 
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Figure 1.4   Memory Bandwidth in the CPU and GPU from 2003-2007 
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1.1.1 Medical imaging algorithms on GPU 

 

 

Medical image algorithms such as Kaiser–Bessel window gridding algorithm, 

FFT algorithm and Least-Square technique are all parallel algorithms and have the 

implementation capability of GPU since it is a good candidate for medical image 

processing. In the case of Fast Fourier Transform or FFT, the FFT fragments the 

problem into smaller sub-problems which are solved separately but simultaneously. 

This algorithm is a parallel algorithm that has a good potential to get speed-up by 

parallelization.  

 

 

1.1.2 Sparse Matrix-Vector Multiplication in GPU 

 

 

Sparse matrix structures arise in numerous computational disciplines, and as a 

result, methods for efficiently manipulating them are often critical to the 

performance of many applications. Sparse matrix-vector multiplication (SpMV) 

operations have proven to be of particular importance in computational science. The 

massive parallelism of graphics processing units (GPUs) offers tremendous 

performance in many high-performance computing applications. While dense linear 

algebra readily maps to such platforms, utilizing this potential for sparse matrix 

computations presents additional challenges. Given its role in iterative methods for 

solving sparse linear systems and eigenvalue problems, sparse matrix-vector 

multiplication (SpMV) is of singular importance in sparse linear algebra. 

 

 

 

 

1.2 Scope 

 

 

As mentioned, GPUs are capable of manipulating and calculating parallel 

structure operations such as matrix and vector operations in a higher speed than 
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CPUs. The medical imaging algorithms need very fast processor to implement their 

bulky raw data in a short period of time to ensure that patients are safe from 

radiation’s side effects while giving a high resolution to the output image. Kaiser–

Bessel window gridding and FFT algorithms will be used to filter and Reconstruct 

the image. We implement the algorithms in CUDA platform and the GeForce 

NVIDIA graphic card will be the processor in implementing the algorithms. 

 

 

The iterative methods in linear algebra to solve linear algebra equations such 

as Ax = b problems in huge sparse matrix form consume a lot of time in common 

processors. Sparse matrices often appear in science and engineering when solving 

partial differential equations. For example, simulation of large non-linear circuit is 

one area that utilizes iterative method in linear algebra. This kind of problems 

includes thousands of linear equation and the Krylov method is often used to solve 

them. 

 

 

In this project we want to utilize graphic processing unit (GPU) to implement 

MR (magnetic resonance) medical image and sparse matrix-vector multiplication to 

compare the performance of the GPU and CPU in terms of speed. 

 

 

 

 

1.3 Objectives 

 

 

The main objective of this project is to compare the advantages of GPU over 

CPU using two separate algorithms. In the first part, we consider medical image 

processing reconstruction with both CPU and GPU processors to achieve the highest 

possible speedup in the reconstruction of a Magnetic Resonance image. To achieve 

this, we must change the acquired raw data from the scanner in K-Space from spiral 

trajectory form to Cartesian trajectory form by using Kaiser –Bessel window 



6 
 

algorithm. Then by applying inverse Fourier transform we can transform the raw data 

to spatial domain as an image. 

 

 

In the second part of this project, we consider the use of sparse matrix-vector 

multiplication algorithm. Although there are various formats of sparse matrix, we 

only consider one of them in this project. This format is coordinate format or COO 

format that is a simple storage scheme and COO is a general sparse matrix 

representation. Actually we consider sparse matrix operations in two Bus Admittance 

matrices. In the sparse matrix-vector multiplication we applied CUDA matrix 

multiplication library that is a dedicated library matrix multiplications. 

 

 

We implement all algorithms in CUDA platform and the GeForce NVIDIA 

graphic (GeForce GTX 295) card will be the processor to implement the algorithms 

Actually the NVIDIA graphic cards are leading in using CUDA platform. For CPU 

computations we utilize AMD Phentom 2.6 GHz.  

 

 

 

 

1.4 Background 

 

 

General purpose GPU (GPGPU) makes a good area for scientist to try their 

qualified algorithm through GPU. This is especially so in medical image field and 

linear algebra. 

 

 

Kenneth Morland and Edward Angel in year 2003 [1] From Sandia national 

laboratory in the USA utilized the first generation of programmable GPU to perform 

Fast Fourier Transform directly on GPU. The performance was faster than CPU. By 

looking at Figure (1.3) we can see that in 2003 there was not too much difference 

between speed of GPU and CPU in terms of  speed in GFLPO/sec. After 2007 and 
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especially in 2008, many researchers have tried their algorithms utilizing GPU. In 

this year (2008) Xiao Hui Wang and Walter F. Good [2] from the University of 

Pittsburgh in the USA utilized GPU for real- time rendering and displaying large 3D 

medical data sets from CT scanner. The results indicate that GPU-based 

programming was capable of rendering large 3D datasets at real-time interactive 

rates with stereographic displays. 

 

 

Sam S.Stone (2008) [SYHHSL] proposed an advanced algorithm that uses 

Least-Square technique to reconstruct MR images directly from non-Cartesian scan 

trajectories. His algorithm is implemented in both GPU and CPU processors and with 

the results showing a significant difference: GPU was 120 times faster than CPU. In 

linear algebra, Genna Cummis et al (2008) in their article presented a GPU process to 

solve linear algebra computations in particular matrix operations. The author 

concluded that all computation in the research community was significantly faster 

than current CPUs. 

 

 

 

 

1.5 The structure of this project report 
 

 

This work is divided into six chapters. The first chapter discusses in general 

the main objective of GPU implementation. The second chapter gives a literature 

review of the various algorithms that utilize GPU as the main processor. 

 

 

The third chapter gives a comprehensive model and definition of CUDA, 

Magnetic Resonance imaging and Bus Admittance matrix. This general modeling 

will be used as a basic formulation and analysis of Chapter Four where we discuss 

the methodology and algorithms used in this project in comparing GPU and CPU 

performance. 
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Chapter Five is for implementations and results of the algorithms. We have 

discussion to code discussed algorithms in chapter Four. The codes are in CUDA 

language and we implement them in the both video card and CPU. Then we compare 

and discuss the obtained experiments results in terms of the processors speed. 

 

 

In Chapter Six we have the conclusion and recommended future work that 

future research can undertake. After these six chapters, there are references and 

appendix that refer to the Figures and Tables mentioned in this work. 

 

 

 

 

1.6 Summary 

 

 

In this chapter, we had a brief introduction to the general concepts of Graphic 

Processing Unit and its’ applications.  The idea and Background of using GPU as 

scientific computation processor are mentioned as well. Also we had an introduction 

to how medical image reconstruction and sparse matrix operations algorithms are 

capable to applying on GPU to achieve faster implementation. In the end of this 

chapter we discussed the project objectives, scope and project report structure.  
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