THUMBPRINT PREPROCESSING USING ALTERA CYCLONE DE2 BOARD

NAM KOK WAI

UNIVERSITI TEKNOLOGI MALAYSIA

THUMBPRINT PREPROCESSING USING ALTERA CYCLONE DE2 BOARD

NAM KOK WAI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical - Microelectronic and Computer System)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2009

To my dearest mother who never stops loving...

ACKNOWLEDGEMENT

It is 0445, I have been anticipating for the past 36 hours for this moment. Here I am, completing the last piece of puzzle to my project report. I have definitely saved the best for last. At this very moment here, I am all humbled and grateful, and I have clearly in my mind him, to whom I feel that I owe a big giant thank-you, not because the faith of my project pretty much lies in his hands, instead it is his kindness and understanding along the way that always shed a light. It has been a rocky road to me, I fell down, and I hit the rock bottom. There were numerous times that I have disappointed myself; there were countless times that reality has rendered me helpless, and then doubt creeps in. Whenever I looked to him to check if I am such a let-down, he always let his positivity shine and brighten up the whole boulevard. He gave me words of encouragement and trust when I have doubted myself. He understood me when I expected that no one would have understood. From the bottom of my heart, I would like to extend my heartfelt gratitude to you, my supervisor, Dr. Syed. You have touched a person, and made a big difference in somebody else's live with a small gesture that you may not even notice. Thank you!

I would also like to thank my project mate, Ee Lun for her never-seem-tofade spirit. She is ever on the go. She is such an inspiration and motivation! She also never hesitates to share her knowledge, thanks, you're superb!

ABSTRACT

Thumbprint has been by far the most reliable and acceptable form of biometric identification system. This project aims to implement the thumbprint preprocessing procedures from the software front with the utilization of Altera Cyclone DE2 board to improve raw thumbprint images up to a standard necessary to facilitate subsequent processing processes for thumbprint recognition. In order to realize this, the configurable FPGA hardware of the board has to be ready to enable the operation of the Nios II processor. The preprocessing procedures have to be defined in a description (ANSI-C++) that is understandable by the board. This project looks out for an implementation option that satisfies the requirements on flexibility and portability while trying to incorporate as much as possible the needs from multiple perspectives, namely computational cost, algorithm speed, and storage requirement. The pre-processing procedure generally comprises five main stages, namely filtering, contrast enhancement, adaptive segmentation, noise elimination and thinning. The project has proven that Altera Cyclone DE2 board is a feasible implementation option for thumbprint image preprocessing. Comparable image quality can be achieved with the thumbprint preprocessing procedures on the DE2 board which offers great flexibility and portability at the expense of slight penalty in processing time.

ABSTRAK

Cap ibu jari adalah bentuk identifikasi biometrik yang paling dipercayai sampai hari ini. Projek ini bertujuan untuk menerapkan prosedur pra-pemprosesan cap ibu jari dari segi perisian dengan menggunakan papan Cyclone DE2 dari Altera untuk memperbaiki imej cap ibu jari sehingga tahap yang bersesuaian untuk mempermudahkan proses pengiktirafan cap ibu jari yang seterusnya. Demi itu, peranti keras FPGA perlu dikonfigurasi untuk mengaktifkan penggunaan Nios II prosesor. Prosedur pra-pemprosesan juga perlu ditakrifkan dalam bentuk ANSI-C yang boleh difahami oleh papan itu. Projek ini berusaha untuk mencari kaedah pelaksanaan yang memenuhi keperluan dari segi fleksibiliti dan kemudahalihan sambil memenuhi sebanyak mungkin keperluan dari pelbagai perspektif, jaitu kos komputasi, kelajuan algoritma, dan keperluan simpanan. Prosedur pra-pemprosesan umumnya terdiri daripada lima tahap utama, iaitu penapisan, penambahan kontras, segmentasi adaptif, penghapusan hingar dan penipisan. Projek ini telah membuktikan bahawa papan Cyclone DE2 dari Altera adalah pilihan yang sesuai untuk prapemprosesan cap ibu jari. Prestasi yang sebanding dengan Matlab boleh dicapai melalui pelaksanaan prosedur pra-pemprosesan dengan menggunakan papan DE2 di samping menawarkan fleksibiliti dan portabilitas hanya dengan sedikit pengorbanan dari masa pemprosesan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE	
	DECLARATION	ii	
	DEDICATION	iii	
	ACKNOWLEDGEMENTS	iv	
	ABSTRACT	v	
	ABSTRAK	vi	
	TABLE OF CONTENTS	vii	
	LIST OF TABLES	Х	
	LIST OF FIGURES	xi	
	LIST OF ABBREVIATIONS	xiii	
	LIST OF APPENDICES	xiv	
1	INTRODUCTION	1	
	1.1 Background	1	
	1.2 Challenges and Motivations	2	
	1.3 Objectives	3	
	1.4 Scope of Work	3	
	1.5 Report Outline	5	
2	LITERATURE REVIEW	7	
	2.1 Definitions and Terminologies	7	
	2.2 Fingerprint Identification	8	
	2.3 Fingerprint Preprocessing	10	
	2.3.1 Filtering & Contrast Enhancement	11	

		14
	2.3.3 Noise Removal	18
	2.3.4 Thinning	19
2.4	Preprocessing Based on a Hexagonal Grid	22
2.5	Altera Cyclone DE2 Board	23
2.6	Nios II Processor	24
ME	THODOLOGY	27
3.1	Implementation Process	28
3.2	Implementation Option – Altera DE2 Board	30
3.3	Overview of the Thumbprint Preprocessing Flow	30
	3.3.1 Filtering	31
	3.3.2 Contrast Enhancement	32
	3.3.3 Adaptive Segmentation	32
	3.3.4 Noise Elimination	33
	3.3.5 Thinning	33
	οι πλατιγγά τισι	
IMP		35
IMP 4.1	System on Programmable Chip (SOPC)	35 35
IMP 4.1 4.2	System on Programmable Chip (SOPC) User Interface	35 35 38
IMP4.14.24.3	System on Programmable Chip (SOPC) User Interface Host-Based File System	35 35 38 41
IMP4.14.24.34.4	System on Programmable Chip (SOPC) User Interface Host-Based File System Code Compatibility	 35 35 38 41 42
IMF 4.1 4.2 4.3 4.4 4.5	System on Programmable Chip (SOPC) User Interface Host-Based File System Code Compatibility Extraction of Pixel Information from Image Format	 35 35 38 41 42 43
IMIP 4.1 4.2 4.3 4.4 4.5 4.6	System on Programmable Chip (SOPC) User Interface Host-Based File System Code Compatibility Extraction of Pixel Information from Image Format Running and Debugging Project on Board Hardware	 35 35 38 41 42 43 45
IMF 4.1 4.2 4.3 4.4 4.5 4.6	System on Programmable Chip (SOPC) User Interface Host-Based File System Code Compatibility Extraction of Pixel Information from Image Format Running and Debugging Project on Board Hardware	 35 35 38 41 42 43 45
IMF 4.1 4.2 4.3 4.4 4.5 4.6 RES	Sultrs & DISCUSSIONS	 35 35 38 41 42 43 45 47
 IMIF 4.1 4.2 4.3 4.4 4.5 4.6 RES 5.1 	System on Programmable Chip (SOPC) User Interface Host-Based File System Code Compatibility Extraction of Pixel Information from Image Format Running and Debugging Project on Board Hardware SULTS & DISCUSSIONS Input Image	 35 35 38 41 42 43 45 47 48
 IMIF 4.1 4.2 4.3 4.4 4.5 4.6 RES 5.1 5.2 	System on Programmable Chip (SOPC) User Interface Host-Based File System Code Compatibility Extraction of Pixel Information from Image Format Running and Debugging Project on Board Hardware SULTS & DISCUSSIONS Input Image Grayscale Image	 35 35 38 41 42 43 45 47 48 49
IMIP 4.1 4.2 4.3 4.4 4.5 4.6 RES 5.1 5.2 5.3	System on Programmable Chip (SOPC) User Interface Host-Based File System Code Compatibility Extraction of Pixel Information from Image Format Running and Debugging Project on Board Hardware SULTS & DISCUSSIONS Input Image Grayscale Image Binarised Image	 35 35 38 41 42 43 45 47 48 49 50
IMIP 4.1 4.2 4.3 4.4 4.5 4.6 RES 5.1 5.2 5.3 5.4	System on Programmable Chip (SOPC) User Interface Host-Based File System Code Compatibility Extraction of Pixel Information from Image Format Running and Debugging Project on Board Hardware SULTS & DISCUSSIONS Input Image Grayscale Image Binarised Image Smoothed Image	 35 35 38 41 42 43 45 47 48 49 50 52

3

4

5

5.5Segmented/ Extracted Image535.6Cleaned Image555.7This will55

5.7 Thinned Image55

5.8 Comparison between Performances of Algorithm		57
	Implementation using Altera DE2 Board and Matlab	
	on PC	
6 SUN	MMARY	60
6.1	Summary	60
6.2	Areas for Future Work	62
REFERENCES		64
APPENDICES		66-75

LIST OF TABLES

TABLE NO.	TITLE	PAGE
5.1	Comparison of Implementations through DE2 Board	
	and PC/ Matlab	

LIST OF FIGURES

FIGURE N	NO TITLE	PAGE
2.1	Illustration of Terms Used in Fingerprint Recognition	8
2.2	Fingerprint Identification System	9
2.3	Overview of Adaptive Fingerprint Filtering	12
2.4	Preprocessing According to Image Characteristics	13
2.5	Minutia classes and minutiae example (B represents ridge	18
	bifurcation; C represents parallel ridges)	
2.6	Thinning Templates with 'x' Representing Don't-care	19
	Condition	
2.7	Rule Set for Thinning of Fingerprints	21
2.8	Masks for Pre-Thinning Procedure	21
2.9	Altera DE2 Development Board Interface	24
3.1	Overview of the Thumbprint Pre-Processing Flow	31
4.1	Overview of the Thumbprint Pre-Processing Implementation	35
4.2	Altera SOPC Builder	36
4.3	Quartus II Programmer	37
4.4	Hardware Programmer Interface Setup	38
4.5	Indication of Operation in Progress	39
4.6	Indication of Completion of Operation	40
4.7	Indication of Operation Progress Status	40
5.1	Image Matrix from Matlab	48
5.2	Image Matrix from Algorithm Implementation on DE2 Board	48
5.3	Original Raw Thumbprint Image	49
5.4	Grayscale Image	50
5.5	Binarised Image	51

5.6	Smoothed Image	52
5.7	Morphological Open Image	53
5.8	Region of Interest (ROI)	53
5.9	ROI Overlapped with the Binary Image for Comparison	54
5.10	Extracted Image after Minutiae External to ROI is suppressed	54
5.11	Image After Further Cleanup	55
5.12	Thinned Image	56
5.13	Thinned Image from Matlab for Comparison	57
5.14	Comparison of Image Quality from implementation through	58
	(a) DE2 Board (b) Matlab	

LIST OF ABBREVIATIONS

ANSI-C	American National Standards Institute for C Language
BMP	Bitmap
C2H	C-to-Hardware Acceleration
CAD	Computer Aided Design
FPGA	Field Programmable Gate Array
HAL	Hardware Abstraction Layer
IDE	Integrated Development Environment
JTAG	Joint Test Action Group
ROI	Region of Interest
SOPC	System on Programmable Chip
SRAM	Static Random Access Memory
UART	Universal Asynchronous Receiver/ Transmitter

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
A	Matlab Code		67-70
В	Bitmap Format		71-75

CHAPTER 1

INTRODUCTION

This project aims to implement the thumbprint preprocessing procedures from the software front with the utilization of Altera DE2 board to improve raw thumbprint images up to a standard necessary to facilitate subsequent processing processes for thumbprint recognition. This chapter starts with a brief introduction to the background, and challenges which lead to the motivation of this project. Definition of scopes and organization of the report would be wrapped up in the later part of this chapter.

1.1 Background

"In the mid-19th century, it was established that no two fingerprints from different fingers have the same ridge pattern and that fingerprint ridge patterns remain the same throughout a person's life (Quit Gao *et al.*, 2001)." Since then, fingerprints have been widely used and remains until today a reliable means for personal identification. Until now, fingerprints were usually employed in forensic applications for identification of criminals. Thanks to the increasing power of

computers and to better scanners, research on fingerprint-based recognition systems for civilian applications, such as banking security and physical access control, is becoming more and more attractive.

Image Preprocessing is an important step in the area of image processing and pattern recognition to improve the interpretability and quality of information in the raw thumbprint images up to a satisfactory level to facilitate the subsequent processing steps.

1.2 Challenges and Motivations

Fingerprint has been by far the most reliable and acceptable form of biometric identification system. The image processing algorithms used in presentday fingerprint-based recognition systems are usually digital and operate pixel-wise and sequentially. Accordingly, they are rather time-consuming. Another major issue is how to improve the recognition rate to satisfy the practical requirements for a given application. "Furthermore, efforts still need to be made to further reduce the size and the power consumption of the systems in order to make them suitable for portable applications (Eun-Kyung Yun *et al.*, 2005)."

Most of fingerprint processing are done using PC-Based system or dedicated DSP boards. PC-Based system lacks portability and mobility since it would be inconvenient to transport to different places. DSP based system, on the other hand, would probably lack the flexibility as it is somewhat difficult to be customized later on. Hence, the goal of this project is to utilize the flexibility and portability of the FPGA in implementing thumbprint pre-processing.

In order to widen the use of fingerprints, especially for portable applications, such as weapon control or ownership verification of a credit card, newly designed systems have to take into consideration the following crucial factors: computational cost, algorithm speed, storage requirement, flexibility and portability.

1.3 Objectives

From the discussion from the sections, the project is set up to achieve these main objectives:-

- to implement the preprocessing procedures of raw thumbprint images from the software front with the utilization of Altera DE2 board to improve thumbprint images up to a standard necessary to facilitate subsequent processes in the thumbprint recognition stage later.
- to look for an implementation option to meet the requirement of flexibility and portability.

1.4 Scope of Work

Since this is an initial work, the project will concentrate on utilizing the Altera Cyclone DE2 board just for preprocessing the thumbprint image. Recognition and verification would not be part of this project and this will require some hardware attachment to the existing board for storing database of thumbprint images. In a similar manner this project would not indulge into optimization using the hardware design of the FPGA but rather on the software implementation of the processing.

Based on available resources, limited time frame and expertise, the project is narrowed down to focus on the following scopes of work:

- to improve the interpretability and perception of information in the raw thumbprint images to facilitate the subsequent processing steps
- to research on the existing algorithms and procedures that are currently in use in the field for the pros and cons of each technique
- to look out for an implementation option from multiple perspectives: computational cost, algorithm speed, storage requirement, flexibility and portability
- to familiarize with the board to enable the utilization of the board for software/ code implementation
- to implement all these procedures from the software front with optimized algorithms/techniques which meet the design requirements

The subject of interest is the thumbprint pre-processing procedures, and thus the following items would not be included as part of the scope of the project:-

- Fingerprint Acquisition/ Input Scanning
- Fingerprint Matching/ Recognition

1.5 Report Outline

The report opens with a brief introduction to the background of the thumbprint identification and thumbprint preprocessing in particular, and also challenges which lead to the motivation of this project. Definition of scopes and organization of the report is included in the later part of the same chapter. It then goes on to the literature review which is essential for the implementation of the project in Chapter 2.

Next, methodology for implementation of the project is explored in Chapter 3. Chapter 4 then dives into the actual implementation of the project. This is then expanded to the following chapter with detailed discussions about the results and outcome of the project. A general summary and recommendation for future work is put forward as a conclusion to the report.

This report is organized into six chapters:-

Chapter 1 includes an introduction to the background and motivation that leads to this project. Objective and scope of the project are also clearly defined in this introductory chapter.

Chapter 2 starts off with the basic terminology, and reports the literature review of the fingerprint identification pre-processing steps, namely filtering, contrast enhancement, segmentation, noise elimination and thinning processes.

Chapter 3 explains the methodology and implementation plan of the project, and also algorithms, approaches and techniques to achieve the project goal. Chapter 4 details the actual implementation of the project from both the hardware and software fronts.

Chapter 5 reports the results and the outcomes of the project and it is then accompanied by discussions on the corresponding results.

Chapter 6 summarizes the work that has been completed throughout the project, and proposes the future enhancement to the project.

REFERENCES

- A. Baig, A. Bouridane and F. Kurugollu *A Corner Strength Based Fingerprint* Segmentation Algorithm with Dynamic Thresholding, IEEE, 2008
- A.P. Fitz & R.J. Green, *Fingerprint Pre-Processing on a Hexagonal Grid*, IEEE, 1995
- Atipat Julasayvake & Somsak Choomchuay, AN ALGORITHM FOR FINGERPRINT CORE POINT DETECTION, IEEE, 2007
- Chulhan Lee, Sanghoon Lee, Jaihie Kim, and Sung-Jae Kim, *Preprocessing of a Fingerprint Image Captured with a Mobile Camera*, Springer-Verlag Berlin Heidelberg, 2005
- Eun-Kyung Yun, Sung-Bae Cho, *Adaptive fingerprint image enhancement with fingerprint image quality analysis*, Elsevier B.V., 2005.09.017
- Hendrik Lemelson, Thomas King, & Wolfgang Effelsberg, Pre-processing of Fingerprints to Improve the Positioning Accuracy of 802.11-based Positioning Systems, ACM 2008
- Ji Wang, Liang Wu, Yong Liu Nios II Processor-Based Fingerprint Identification System, College of Communication Engineering, Chongqing University, 2007

- Pradeep M. Patil, Shekar R. Suralkar, Faiyaz B. Sheikh, *Rotation Invariant Thinning Algorithm to Detect Ridge Bifurcations for Fingerprint Identification*, IEEE 2005
- Quit Gao, Plzilipp Forstei, Karl R. Mobus arid George S. Moschytc, *FINGERPRINT RECOGNITION USING CNNS: FINGERPRINT PREPROCESSING*, IEEE 2001
- Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing 2nd Edition, 2002
- Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, *Digital Image Processing* Using Matlab 1st Edition, 2004
- Raju Sonavane & Dr. B.S. Sawant, Noisy Fingerprint Image Enhancement Technique for Image Analysis: A Structure Similarity Measure Approach, IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007
- Wu YuanBao, A Fast Fingerprint Identification Pre-processing Algorithm, Wuhan University, 2005
- Zhao Lei, Yang Lu-Ming, Wu Jian-Hui, New preprocessing Method for Finerprint Images, Computer Applications, Apr. 2007
- Zvonko Merkas, Miroslav Baa & Kornelije Rabuzin, *FINGERPRINTS PREPROCESSING USING WALSH FUNCTIONS*, 2006