EMISSIONS OF GASEOUS AND PARTICULATE POLLUTANTS OF OCEAN-GOING VESSELS IN JOHOR PORT

MUHAMMAD HANIS BIN WAHAB

UNIVERSITI TEKNOLOGI MALAYSIA

EMISSIONS OF GASEOUS AND PARTICULATE POLLUTANTS OF OCEAN-GOING VESSELS IN JOHOR PORT

MUHAMMAD HANIS BIN WAHAB

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Environmental Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER, 2009

DEDICATION

Dedicated to my beloved family

Most generous Dad Wahab bin Suhaili

Beloved and Understanding Mum Badriah binti Ismail

Very much thanks and appreciation to mum and dad for all of your sacrifices, efforts, patience in raising me up to be a better person. Every happy and sad moment will not be forgotten forever

Also for Abang, Akak and Adik-Adik that will remain in my memory forever

The most Special Natasha binti Ishak For giving me the encouragement and valuable support

> Special for Dr. Shamila Azman Thank You for everything

Not to forget all Environmental Lab Staff especially to En. Azrin Thank you for your time, help and guidance

Also not to forget friends that has lend me much helped in completing my theses Wan, Midun, Fad and Rahmah Thank You for all your help

ACKNOWLEDGEMENT

"In the name of Allah, the most gracious, the most compassionate"

I wish to express my deep gratitude to my supervisor, Dr. Shamila binti Azman for her valuable time, guidance and encouragement throughout the course of this research. Also wish to extend my heartfelt thanks to all civil engineering, environmental laboratories technicians and staff, especially En. Azrin for his time and guidance during my research. Wanted to thank Captain Rahman and staffs of Marine Department in Johor Port Berhad for their help, time, effort and cooperation in order for me to carry out my research and this research would not have been possible without their assistance and support. Thank you to my family members for all their valuable support that they have given me through my entire life and academic career, especially my parents, Wahab Suhaili and Badriah Ismail. I would have not gone this far without their support, guidance, encouragement, patience and sacrifices. Very special thanks to my beloved bb, Natasha Ishak for her encouragement, support, understanding, help, patience and for always been there for me. Not to forget Wan, Midun, Fad and Rahmah for their help, support and advice in completing this project whether direct or indirectly. Lastly, Thank You once again for everything.

ABSTRACT

Increment of ship traffics and machineries could be a source of gaseous emissions and particulate pollutants. This study attempt to investigate the problems in Johor Port. Emission sources concentration of sulphur dioxide (SO₂), nitrogen dioxide (NO₂), carbon oxides (CO, CO₂) and particulate matter less than 10 µm (PM_{10}) in port were obtained. From the results obtained based on the comparison with Recommended Malaysian Air Quality Guidelines (RMAQG), NO₂ concentration surprisingly exceed the limit by 5.9 percent in sampling station 2 while highest SO₂ concentration were detected in sampling station 1 and 3 with a value of 0.2 ppm exceeding the RMAQG limits of 0.13 ppm by 53.8 percent for both stations. Other gaseous at station 1, 2 and 3 are still within the recommended guidelines. Based on the computation of Ocean-Going Vessels (OGVs) emissions estimate and later compiled as inventory, the results clearly shows that major pollutants contributor in Johor Port are oxides of nitrogen (NO_x) and sulphur dioxide (SO₂) with a percentage value of 60 and 27 percent for manoeuvring mode while 60 and 28 percent for hotelling mode. Other pollutants contribute below than 10 percent for both modes.

ABSTRAK

Pertambahan dalam lalu lintas kapal dan alat jentera boleh menjadi sumber bagi pembebasan gas dan partikel bahan cemar. Kajian ini cuba untuk mengkaji masalah di Pelabuhan Johor. Pengeluaran punca kepekatan bagi sulfur dioksida (SO₂), nitrogen dioksida (NO₂), karbon oksida (CO, CO₂) dan partikel jirim yang kurang daripada 10 µm (PM₁₀) di pelabuhan telah diperolehi. Daripada keputusan yang diperolehi berpandukan daripada perbandingan dengan Recommended Malaysian Air Quality Guidelines (RMAQG), kepekatan NO₂ melebihi had yang telah dicadangkan sebanyak 5.9 peratus di stesen persampelan 2 manakala kepekatan tertinggi bagi SO₂ telah dikesan di stesen persampelan 1 dan 3 dengan nilai 0.2 ppm melebihi had RMAQG iaitu 0.13 ppm sebanyak 53.8 peratus untuk kedua-dua stesen. Gas-gas lain di stesen 1, 2, dan 3 masih lagi dalam garis panduan yang dicadangkan. Berpandukan kepada pengiraan anggaran pengeluaran bagi Ocean-Going Vessels (OGVs) dan kemudiannya disusun sebagai inventory, hasil yang diperolehi jelas menunjukkan penyumbang terbesar bagi pencemaran di Pelabuhan Johor adalah nitrogen oksida (NO_x) dan sulfur dioksida (SO₂) dengan nilai peratusan sebanyak 60 dan 27 peratus bagi mod manoeuvring manakala 60 dan 28 peratus bagi mod hotelling. Lain-lain bahan cemar menyumbang kurang daripada 10 peratus bagi kedua-dua mod.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION OF THESIS	
	SUPERVISOR DECLARATION	
	STUDENT DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii - x
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF APPENDICES	xvi

INTRODUCTION

Ι

1.1	Introduction	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of Study	4

LITERATURE REVIEW

Π

2.1	Introduction		6
2.2	Air Pollution		7
	2.2.1	Primary and Secondary Pollutants	7
2.3	Source	es of Air Pollution	8
	2.3.1	Natural Sources	8
	2.3.2	Anthropogenic Sources	10
		2.3.2.1 Industrial Sources	10
		2.3.2.2 Utilities	10
	2.3.3	Combustion	11
	2.3.4	Mobile Sources	13
2.4	Factor	rs Affecting Air Pollution	14
	2.4.1	Wind	14
	2.4.2	Atmospheric Stability	15
	2.4.3	Precipitation	16
	2.4.4	Topography	16
2.5	The B	The Basics of Air	
2.6	Emiss	Emissions and Atmospheric Concentrations	
	of Sub	ostances with Global Effects	18
	2.6.1	The Greenhouse Effect	18
2.7	Stratospheric Ozone Depletion and Types		
	of Air	Pollutants	19
	2.7.1	Water Vapour	20
	2.7.2	Carbon Oxide (CO _x)	20
		2.7.2.1 Carbon Dioxide	21
		2.7.2.2 Carbon Monoxide	21
	2.7.3	Nitrogen Oxides (NO _x)	22
	2.7.4	Sulphur Oxides (SO _x)	22
	2.7.5	Particulates	23
	2.7.6	Ozone	23
2.8	Effect	s of Air Pollutants to the Environment	24
	2.8.1	Carbon Oxide (CO _x)	24
		2.8.1.1 Carbon Dioxide	24

		2.8.1.2 Carbon Monoxide	24
	2.8.2	Nitrogen Oxides (NO _x)	25
	2.8.3	Sulphur Oxides (SO _x)	25
	2.8.4	Particulates	25
	2.8.5	Ozone	26
2.9	Recon	nmended Malaysian Air Quality Guidelines	
	(RMA	AQG)	26
2.10	Emiss	ion Inventory	27
2.11	Port B	Boundaries	28
2.12	Ocean	-Going Vessels Characteristics	29
	2.12.1	Auto Carrier	30
	2.12.2	Bulk Carrier	31
	2.12.3	Containerships	32
	2.12.4	Passenger Cruise Vessels	33
	2.12.5	General Cargo Vessels	33
	2.12.6	Ocean-Going Tugboats	34
	2.12.7	Refrigerated Vessels	35
	2.12.8	RoRo Vessel	36
	2.12.9	Tanker Vessel	37

III METHODOLOGY

3.1	Introd	uction	39
3.2	Study	Location	39
3.3	Data (Collection	41
3.4	Equip	ment	43
	3.4.1	Total Suspended Particulate Equipment	43
	3.4.2	Gas Concentration Detector	45
	3.4.3	Carbon Dioxide (CO2) Concentration	
		Detector	46
3.5	Gas M	leasurement Procedure	47
	3.5.1	MiniVol Portable Air Sampler	48
	3.5.2	Graywolf Direct Sense Monitoring Kit	49

	3.5.3	TSI IAQ-Calc	49
3.6	Emiss	ion Estimation Methodology	50
	3.6.1	Propulsion Engine Maximum Continuous	
		Rated Power	52
	3.6.2	Propulsion Engine Load Factor	53
	3.6.3	Propulsion Engine Time in Mode	55
	3.6.4	Propulsion Engine Emissions Factors	56
	3.6.5	Auxiliary Engine Emission Factors	60
	3.6.6	Fuel Correction Factors	62

IV RESULTS AND ANALYSIS

4.1	Overview		64
4.2	Data Analysis		64
	4.2.1	Comparison between stations based on	
		Recommended Malaysian Air Quality	
		Guidelines (RMAQG) in Johor Port area	65
	4.2.2	Emission Inventory	71

V CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	78

5.2	Recommendations	80
-----	-----------------	----

REFERENCES	82

APPENDIX	8:

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Recommended Malaysian Air Quality Guidelines (RMAQ	G) 27
3.1	Emissions factors for 1999 and older OGVs main engines using RO	57
3.2	Emissions factors for 2000 and newer OGVs main engines using RO	57
3.3	Greenhouse gas emission factors for OGVs main engines using Residual Fuel	59
3.4	Auxiliary engine emission factors	60
3.5	Greenhouse gas emission factors for OGV auxiliary engine using residual oil fuel	s 61

3.6	Fuel Correction Factors	63
4.1	Recommended Malaysian Air Quality Guidelines (RMAQG)	65
4.2	Summary of result for NO ₂ , SO ₂ , PM ₁₀ , CO and CO ₂	70
4.3	2007 - OGVs emission inventory by mode in Johor Port	74
4.4	2008 - OGVs emission inventory by mode in Johor Port	75

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Total number and type of ships transversing the straits of Malacca	2
2.1	Combustion emissions as a function of peak combustion temperatures	13
2.2	Auto - Carrier	30
2.3	Bulk - Carrier	31
2.4	Container Ships	32
2.5	Passenger Cruise Vessel	33
2.6	General Cargo Vessel	34

2.7	Integrated Tug and Barge	35
2.8	Refrigerated Vessel	36
2.9	RoRo Vessel	37
2.10	Tanker	38
3.1	Locations of sampling stations	41
3.2	TSP measurement using MiniVol Portable Air Sampler at Dermaga 10, Johor Port	44
3.3	Graywolf Direct Sense Monitoring Kit used for measuring gas at Dermaga 10, Johor Port	46
3.4	TSI IAQ-Calc (Air Quality Meter) Model 7515	47
3.5	MiniVol Portable Air Sampler connection with batteries	48
3.6	Propulsion engine emission estimation flow diagram	52
3.7	Propeller law curve of power demand	54
3.8	Auxiliary engine emission estimation flow diagram	62
4.1	Nitrogen dioxide (NO ₂) concentration in Johor Port	66

xiv

4.2	Sulphur dioxide (SO ₂) concentration in Johor Port	67
4.3	Particulate matter less than 10 microns (PM ₁₀) concentration in Johor Port	68
4.4	Carbon dioxide (CO ₂) concentration in Johor Port	69
4.5	Vessel statistic in Johor Port for year 2007, 2008 and 2009	72
4.6	Vessel activities in Johor Port	73
4.7	Number and type of vessel in Johor Port for year 2007 and 2008	74
4.8	Contribution of pollutants in manoeuvring mode in Johor Port	76
4.9	Contribution of pollutants in hotelling mode in Johor Port	77

LIST OF APPENDICES

NO	TITLE	PAGE
APPENDIX A-1	Operation Time of Vessel in Month 2007	85
APPENDIX A-2	Operation Time of Vessel in Month 2008	86
APPENDIX A-3	Operation Time of Vessel in Month 2009	87
APPENDIX B-1a	Total TEU's in Johor Port from year 1985 till 2008	88
APPENDIX B-1b	Graph of Total TEU's in Johor Port	89
APPENDIX C-1	Types, Total Vessels and Vessels Specifications in Johor Port	90
APPENDIX D-1	The Emission Estimates	91

CHAPTER I

INTRODUCTION

1.1 Introduction

In a world of globalization and growth of global supply chains, thousands of ships travel between the world's large ports transporting the manufactured goods, agricultural commodities and petroleum products that supply the world's stores, markets and gas stations. Ocean-borne commerce has been steadily increasing through the last two decades and is expected to continue to play a significant role in the globalised world economy. A growing fleet of ships, trains, airplanes and trucks along with the ports, train yards, airports and roads that support them are the backbone of global commerce.

In the era of logistics and global supply chains, the fast and efficient movement of goods is an economic imperative. Investments are currently being deployed to modernize and expand ports and intermodal facilities to accommodate growing cargo volumes. Growing ship traffic and machineries in ports will add significantly to local air quality problems and global climate change risks unless ship and machineries emissions are further controlled (Friedrich *et al.*, 2007).

As one of the world's top twenty trading nations, the importance of the maritime sector to Malaysia cannot be underestimated. Besides housing some of the world's major ports, about 95% of the country's goods traded are also transported by sea. Malaysia is also strategically located along the Straits of Malacca, where more than 60,000 ships pass through annually, making it one of the busiest shipping lane in the world as shown in Figure 1.1 (DOE, 2006).

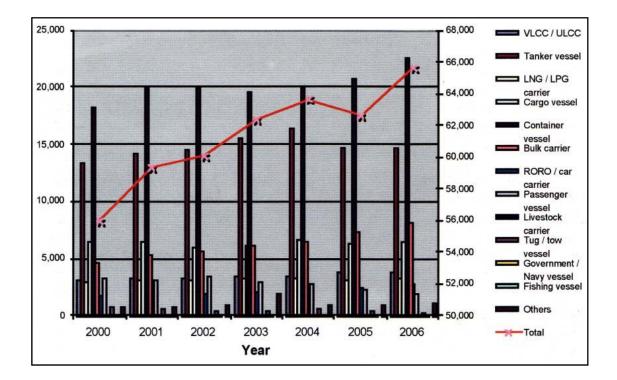


Figure 1.1: Total number and type of ships traversing the straits of Malacca (DOE, 2006)

Local and regional air quality problems associated with ship and machineries gaseous emissions are a concern because of their public health impacts. Several studies yield results that emissions from ships are affecting areas with dense shipping activities, including this region. For example, the study by Corbett *et* al. (2007), the global and regional mortalities were estimated by applying the ambient particulate matter increases due to ships, contributing to cardiopulmonary and lung cancer risks. The results indicate that shipping–related particulate matter emissions are responsible for approximately 60,000 cardiopulmonary and lung cancer deaths annually, with most deaths occurring near coastlines in Europe, East Asia and South Asia. Under current regulations and with the expected growth in shipping activity, it was estimated that annual mortalities could be increase by 40% by 2012.

It is apparent that air pollution from shipping activities is a growing problem that is drawing increased attention around the world. Furthermore, emissions from shipping activities are projected to continue to grow in tandem with the increasing shipping activities worldwide. In addition, global change in temperature and climate is currently one of the more complex and challenging issues facing the world at large. Emissions from ships have now been recognized as one of the important sources of air pollution.

1.2 Problem Statement

Johor Port Berhad (JPB) is one of the busiest ports in Asia. In Malaysia, emission inventories of air pollutants and systematic data for the use of scientific community is rather scarce. Usually emission inventories of air pollutants have been made on port mainly for general administrative and public information. Besides, data containing emissions gaseous in ports that can act as a baseline to improve and enhance the air quality are hardly found (Gupta *et al.*, 2002).

1.3 Objective

The objectives of this study are:

- To determine the emission sources concentration of SO₂, NO₂, CO, CO₂ and PM₁₀ in Johor Port Berhad.
- To determine the emission estimation from ocean-going vessels (OGVs) source categories;
- To compile an air emission inventory of OGVs mode for Johor Port area

1.4 Scope of study

The study will be focusing on the level of air quality in Johor Port itself which the parameters involved are NO₂, SO₂, CO, CO₂ and PM₁₀ where the study area will be concentrating at three sampling locations within the port area, mainly on the pier/wharf/dock, the nearest area to vessel emissions sources. The sampling stations are selected and studied in detail in order to obtain reasonable results from the real data sampling as well as to ease the comparison purposes for analysis. Apart from that, the sampling should only be conducted during shiny days.

As for the emission estimation and the inventory purposes, OGVs sources as described (section 2.11) are the one to be computed for its emissions estimate. The

inventory will be compiled based on the OGVs emission estimation. Methods and factors (section 3.6) that are described later on will be used. The computation of the emission will only be done for OGVs that are within the port area which is explained in detail (section 2.11). For this study, the emission estimation is computed only for OGVs that is maneuvering and hotelling within port boundaries. At sea emission estimation is beyond the scope of this study.

REFERENCES

- Aldrete, G., Anderson, B., Kristiansson, J., Ray, J. and Wells, S. (2007). Puget Sound Maritime Air Forum, Maritime Air Emissions Inventory. Starcrest Consulting Group, LLC, Poulsbo, Washington.
- Browning, L. (2006). *Current Methodologies and Best Practices in Preparing Port Emission Inventories*. Final Report. U.S. Environmental Protection Agency.
- Climate Change (1995). *The Science of Climate Change* IPCC, Cambridge University Press.

Colls, J. (2002). Air Pollution. 2nd Edition. London: New Fetter Lane.

Corbett, J. J., Wang, C., Winebrake, J. J. and Green, E. (2007). Allocation and Forecasting of Global Ship Emissions. Clean Air Task Force.

Dobson, G. (1968). Exploring the Atmosphere. Clarendon Press, Oxford.

- Department of Environment (2006). DOE Annual Report 2003 and Recommended Malaysian Air Quality Guidelines.
- Department of Environment (2006). *MALAYSIAN Environmental Quality Report*. Ministry of Natural Resources and Environment Malaysia. 73 pp.
- Entec UK Limited (2007). Ship Emissions Inventory-Mediterranean Sea. Final Report.
- Friedrich, Heinen, F., Kamakate, F. and Kodjak, D. (2007). Air Pollution and Greenhouse Gas Emissions from Ocean-Going Ships. The International Council on Clean Transportation.
- Godish, T. (1986). *Air Quality* Ball State University, Muncie, Indiana, Lewis Publishers, Inc.

Godish, T. (1991). Air Quality. 2nd Edition. Lewis Publishers, Inc., Michigan, USA.

- Gupta, A. K., Patil, R. S. and Gupta, S. K. (2002). Emissions of Gaseous and Particulate Pollutants in a Port and Harbour Region in India. Kluwer Academic Publishers, Environmental Monitoring and Assessment 80:187-205.
- Hodges, L. (1977). *Environmental Pollution*. 2nd Edition. USA: Iowa State University.

- Kim, T. K. (2004). Dynamic Analysis of Sulphur Dioxide Monthly Emissions in U.S. Power Plants. USA: The Ohio State University.
- Pandey, J.S., Kumar, R. And Devotta, S. (2005). *Health Risks of NO₂, SPM and SO₂ in Delhi (India)*. Atmospheric Environment. 50, 1-7.
- Rhode, H. (1990). A Comparisson of the Contributions of Various Gaseous to the Greenhouse Effect. Science, Vol. 248, Reports, pp. 1,217-1,219.
- Seinfeld, J. H. (1975). Air Pollution; Physical and Chemical Fundamentals. Mc Graw-Hill, Inc.
- Singer, J.G. (1981). Combustion, Fossil Power Systems. 3rd Edition, Combustion Engineering, Windsor, Conn.
- Stern, A. C., Boubel, R. W., Turner, D. B. and Fox, D. L. (1984). Fundamentals of Air Pollution. Academic Press, Inc. 2nd Edition.
- Sedda, A.F. and Rossi, G. (2006). Death Scene Evaluation in a Case of Fatal Accidental Carbon Monoxide Toxicity. Forensic Science International. 164, 164-167.
- Wark, K. and Warner, C. F. (1976). Air Pollution; Its Origin and Control. New York: Purdue University, A Dun – Donnelly Publisher.