PERFORMANCE OF MODIFIED COLD DENSE GRADED ASPHALT MIX USING OIL PALM FRUIT ASH (OPFAsh)

AZEANA BINTI ABDULLAH

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil - Transportation and Highway)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2009

Dedicated to:

" My beloved father, Abdullah Bin Abu Bakar and my lovely mother, Rosiah Binti Hussain,

my family, Aida n Iqbal, Ebab n Baby n Jojie

To all lectures especially Assoc. Prof Dr Mohd Rosli Bin Hainin,

for their love, support and patience"

Also not forgotten to all my friends,

for their helping and encouraging towards the success of this study"

ACKNOWLEDGEMENT

In the name of Allah S.W.T, I would like to express my gratefulness to Him for giving me strength to finish this project. I would like to express my sincere appreciation to my supervisor, Dr. Mohd Rosli bin Hainin, for encouragement, guidance and critics.

I also want to dedicated to all technicians of Highway and Transportation Laboratory of UTM, Mr. Abdul Rahman, Mr. Suhaimi, Mr. Azman and Mr. Ahmad Adin,Mr Sahak and Mr Azri for their assistance and helpfulness during my laboratory work.

Special thanks also to all my fellow postgraduate students for their support and for those who involve direct or indirectly in completing this project. I hope this project could contribute to the research development.

ABSTRACT

A lot of research has been conducted in order to investigate other alternative material as a modifier in asphalt mixtures whether for hot mix asphalt or cold mix asphalt. This thesis presents a study of laboratory evaluation on the performance of modified cold dense asphalt mix by incorporating the kerosene, diesel and fine oil palm fruit ash. The aggregates gradation considered in this investigation is dense graded (asphaltic concrete with 14 mm nominal maximum aggregate size- AC14). Laboratory trials were conducted to investigate the performance of modified cold dense graded asphalt mix using OPFAsh in modifying the asphalt binder. The Marshall properties of asphaltic concrete pavement were determined by carried out a series of test to the prepared samples with or without OPFAsh. The performances of resilient modulus also was conducted. Samples have been divided into two types which are controlled samples and modified samples (consist OPFAsh). For each modified samples the percentages of OPFASH were varied from 5, 10 and 15 %. The parameter value results for each samples will compared with the specification SPJ/JKR/2008. The results show that the strength of resilient modulus will increase with increasing of the percentage of bitumen content. Nether less, the result for the Marshall test full fill all the specification except for the stability parameter.

ABSTRAK

Banyak penyelidikan telah dijalankan bagi mencari bahan tambah alternative di dalam campuran asphalt sama ada untuk asphalt campuran panas atau asphalt campuran sejuk. Projek ini dilaksanakan bagi mengkaji kesan pengunaan ubahsuai campuran asphalt sejuk dengan menggabungkan minyak tanah, diesel dan abu kelapa sawit. Rekabentuk campuran yang diambil kira di dalam kajian ini ialah 'dense graded (AC14)'. Ujian makmal telah dijalankan untuk mengkaji prestasi ubahsuai campuran asphalt sejuk menggunakan abu kelapa sawit sebagai pengikat asphalt. Ciri-ciri Marshall bagi konkrit berasfalt telah dikaji dengan menjalankan ujikaji bagi sampel yang mengandungi OPFAsh dan juga sampel kawalan iaitu tidak mengandungi OPFAsh. Perlaksanaan 'resilient modulus' juga dilakukan. Sampel telah dibahagikan kepada dua bahagian iaitu sampel kawalan dan sampel ubahsuai termasuk abu kelapa sawit. Setiap sampel ubahsuai kandungan peratusan abu kelapa sawit dalam lingkungan 5, 10 dan 15%. Keputusan ujikaji setiap sampel akan dibandinngkan dengan spesifikasi SPJ/JKR/2008. Keputusan menunjukkan kekuatan resilient modulus akan bertambah dengan pertambahan peratusan kandungan bitumen. Bagaimanapun, keputusan untuk ujian Marshall telah memenuhi semua spesifikasi kecuali untuk parameter kestabilan.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	KNOWLEDGEMENTS	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	TAB	BLE OF CONTENTS	vii
	LIST	Γ OF TABLES	xi
	LIST	r of figures	xii
	LIST	Γ OF APPENDICES	xiii
	LIST	Γ OF ABBREVIATIONS	xiv
Ι	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	2
	1.3	Objective of The Study	3
	1.4	Scope of The Study	3
	1.5	Significant of Study	4
п	LITI	ERATURE REVIEW	5
	2.1	Introduction	5
	2.1	Advantages Of Asphalt Cold Mixes	5
	2.2		
		Limitations of Asphalt cold Mixes	6
	2.4	Asphalt Types And Uses	8
		2.4.1 Emulsified Asphalt	8

	2.4.2 Cutback Asphalt	8
2.5	Selecting the Proper Asphalt	11
2.6	Kerosene	12
2.7	Diesel	13
2.8	Oil Palm Fruit Ash	15
2.9	Volumetric Properties	17
	2.9.1 Voids in Total Mix (VTM)	17
	2.9.2 Voids in the Mineral Aggregate (VMA)	18
	2.9.3 Voids filled Bitumen (VFB)	19
	2.9.4 Density	20
	2.9.5 Stability	20
	2.9.6 Flow	21
	2.9.7 Stiffness	21
	2.10 Resilient Modulus	22
MF	CTHODOLOGY	24
3.1	Introduction	24
3.2	Operational Framework	25
3.3	Sieve Analysis of Fine and Coarse Aggregate	26
	3.3.1 Apparatus	27
	3.3.2 Procedures	27
3.4	Aggregate Gradation	28
3.5	Washed Sieve Analysis	29
	3.5.1 Apparatus	29
	3.5.2 Procedure	30
3.6	Specific Gravity of Aggregate	31
	3.6.1 Specific Gravity for Fine Aggregates	31
	3.6.1.1 Apparatus	31
	3.6.1.2 Procedure	32
	3.6.2 Specific Gravity for Coarse Aggregates	33
	3.6.2.1 Apparatus	33
	3.6.2.2 Procedure	34
3.7	Bituminous Binder	35

III

3.8	Oil Palm Fruit Ash (OPFAsh)	35
3.9	Marshall Mix Design	36
	3.9.1 Theoretical Maximum Density (Loose Mix)	38
	3.9.1.1 Apparatus	38
	3.9.1.2 Procedures	39
	3.9.2 Marshall Mix	40
	3.9.2.1 Apparatus	40
	3.9.2.2 Procedures	41
3.10	Resilient Modulus	43
	3.10.1 Apparatus	43
	3.10.2 Procedure	44
3.11	Marshall Test and Volumetric Measurement	45
	3.11.1 Bulk Specific Gravity Measurement	46
	3.11.2 Analyzing Marshall Test Results	47
RESU	LT AND DISCUSSION	49
4.1	Introduction	49
4.2	Materials Preparation	49
	4.2.1 Aggregate	50
	4.2.1.1 Aggregate Gradation	50
	4.2.1.2 Washed Sieve Analysis	51
	4.2.1.3 Specific Gravity	52
	4.2.2 Asphalt	52
	4.2.2.1 Specific Gravity	53
	4.2.3 Oil Palm Fruit Ash	53
	4.2.3.2 Specific Gravity	53
4.3	Marshall Sample	53
	4.3.1 Sample Preparation	54
	4.3.2 Determination of Optimum Bitumen	54
	Content	
	4.3.3 Theoretical Maximum Density (TMD)	54
	4.3.4 Results of Resilient Modulus	55
	4.3.5 Results of Volumetric Properties	56

IV

CON	ICLUSION	58
5.1	Introduction	58
5.2	Conclusions	58
5.3	Recommendations	59
REF	FERENCES	60
APPENDICES A-I		62 - 97

V

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Guide for uses of Asphalt in Cold Mix	9
2.2	Typical Asphalt Temperatures for Cold Mix Construction	10
2.3	Physical and chemical composition of OPFAsh	16
3.1	Gradation limit for AC 14	28
3.2	Design Bitumen Contents	35
3.3	Descriptive statistic of operation speed	37
3.4	Minimum sample size requirement for maximum theoretical specific gravity (ASTM D 2041)	38
3.5	Test and Analysis Parameters for Specialty Mixed	47
4.1	Gradation limit for AC14	50
4.2	Washed sieve analysis	51
4.3	Specific gravity of materials used	52
4.4	Verification Result's Comparison for Both Types of	55
	Samples	
4.5	Verification Result's Comparison for Both Types of	56
	Samples	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
3.1	Flow chart for laboratory process and analysis	26
3.2	Mechanical sieve shaker	29
3.3	Oil Palm Fruit Ash	36
3.4	Apparatus for TMD test	39
3.5	Materials were mixed together	42
3.6	Automatic Marshall compactor hammer	42
3.7	Resilient Modulus Testing	45
3.8	Machine of flow and stability test	48
4.1	Gradation limit of AC14	51

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Aggregate Size Distribution And Determination Of Filler AC14	63
В	Specific Gravity For Coarse	65
С	Resilient Modulus Result	69
D	Marshall Test Result (Ac14-Control)	71
Е	Marshall Test Result (AC14-5% Opfash)	75
F	Marshall Test Result (AC14-10% Opfash)	79
G	Marshall Test Result (AC14-15% Opfash)	83
Н	Theoretical Maximum Density For AC14	87
Ι	Laboratory Photographs	95

LIST OF ABBREVIATIONS

OPFAsh	Oil palm fruit ash
JKR	Jabatan Kerja Raya
AC14	Asphaltic Conncrete with Nominal Maximum Aggregate Size of
	14mm
HMA	Hot Mix Asphalt
ASTM	American Society for Testing and Materials
JKR	Jabatan Kerja Raya
VTM	Voids in Total Mix
VMA	Voids in Mineral Aggregate
VFB	Voids Filled with Bitumen
OBC	Optimum Bitumen Content
SSD	Saturated-surface-dry
TMD	Theoretical Maximum Density
G_{mb}	Bulk specififc gravity of compacted mix
G_{sb}	Combined bulk specific gravity of total aggregate
Gmm	Theoretical maximum density

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

A lot of research has been conducted in order to investigate other alternative material as a modifier in asphalt mixtures whether for hot mix asphalt or cold mix asphalt. Asphalt cold mix design is a method of designing pavement structure. The process of designing including selecting appropriate graded aggregate materials and optimum bitumen content, so that the most suitable combination of composition and properties will give required strength or stability to withstand repeated load applications and get the most economic of pavement structure.

Asphalt cold mix is almost same with hot mix asphalt, however cold mix does not require to heat the aggregate compare to hot mix. Most of asphalt mixes were designed using Marshall and Superpave method, but in Malaysia method still be used for cold mix design. Some states used both methods on the same materials to get a better understanding of the characteristics of the mixtures.

Classified by the method of mixing, there are two type of cold mix, plant-mix and mixed-in-placed. Plant-mixed cold mixes are produce in stationary plants that permit close control of the production process from materials proportioning through mixing, spreading and compacting is done with conventional paving equipment. Mixed-in-place cold mixes are produced at the paving site by means of travel plants, motor graders, or special in-place mixing equipment.

The design for cold mix is based on research conducted at the University of Illinois using a modified Marshall method of mix design and a moisture durability test. The design involved the following:

- Aggregate selection and quality test
- Asphalt selection and quality test
- Type and approximate amount of asphalt
- Water content at mixing and at compaction
- Variation of residual asphalt content
- Selection of optimum asphalt content

1.2 PROBLEM STATEMENT

In general, Malaysia has not widely use cold mix premix, except in some rural area and patching work. Furthermore, the usage of hot mix asphalt quite expensive compare to the cold mix. Cold mix is economical because it needs low investment in equipment and locally available aggregate can be used. Additionally, cold mix easy to produce, it is a mixture of mineral aggregate and emulsified or cutback asphalt without heating the aggregate.

1.3 OBJECTIVE OF THE STUDY

The objective of this study was to investigate the effect of adding fine oil palm fruit ash on the performance of the cold dense graded asphalt.

1.4 SCOPE OF THE STUDY

The scope of the study focused on mix AC14 (dense graded). The bitumen of 80-100 Pen was used by weight of mixture of 12.5% kerosene, 1% diesel and fine OPFASH as the modified cold mix. The percentage of OPFASH used were 5%, 10% and 15% by the total weight of bitumen. The oil palm fruit ash was added in the mixes by using 'Wet Process' method. The performance of modified mixes was compared with unmodified mixer AC14.

1.5 SIGNIFICANT OF STUDY

From the result of the study, the performance of different mixes with varied percentage of oil palm fruit ash can be obtained. Then, Marshall samples that meet the best performances were determine by comparing with the value suggested according to the JKR specifications. If the performance of mixes were found to be affected by the addition of oil palm fruit ash, the optimum content of oil palm fruit ash that most improves the characteristics of cold mixes was determined. Based on findings, if it is found beneficial, it can be proposed that oil palm fruit ash should be taken into consideration for further studies in the future. Besides, it really hopes that by using modified cold mix asphalt it will also can contributed to a lot of advantages

for highway engineering such as less economy by using modified cold mix asphalt compare to unmodified asphalt and also can solve the problem of waste material issue.