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ABSTRACT 
 
Monitoring and detecting deformations within an engineered structure can be determined using a 
number of geodetic (precise) methods, e.g. geotechnical approach, terrestrial observations and  space-
based methods. Nowadays, the GPS technology has become the most important tool for estimating the 
large structural engineering deformation such as buildings, dams,  long span bridges, etc. In order to 
ensure that the engineering structures are exhibiting a safe deformation behavior, a repeated and/or 
continuous GPS measurements can be employed. The GPS technology provides a quick and precise 
method of determining 3D movements of a structure over time. Application of GPS technique of 
deformation detection on a high-rise building is one example of this approach. The appropriate 
processing strategies of GPS observable to estimate the geodetic parameters of interest is usually 
carried out in post processing mode, but one may ask ‘how does one really tell the quality of GPS 
solutions?’ Two types of adjustments can be used in GPS processing, e.g. minimal constraint and 
constraint adjustment.. This paper therefore highlights the processing strategies of the GPS data from 
two epoch observations for monitoring surveys - Case study: KOMTAR building, in Penang, 
Malaysia. The results  of the adjustment in deformation surveys are presented and discussed. 
 
           
1.0 INTRODUCTION 
 
The need for deformation surveys often arises 
from concerns associated with environmental 
protection, property damage and public safety. 
Deformation refers to the changes a 
deformable body undergoes in its shape, 
dimension, and position. The determination 
and interpretation of the changes are the main 
goal of deformation surveys. Therefore, as a 
result, the design, execution and analysis of 
such surveys are also a matter of considerable 
practical importance. Various measurement 
methods may be employed in monitoring 
surveys. These include structural and 
geotechnical methods, terrestrial survey 
techniques and positioning with space-based 
systems. Various methods of positioning with 
space-based systems have been employed in 
the study of crustal dynamics and deformation 
phenomena such as Global Positioning System 
(GPS) which offers the greatest accuracy at 
regional scales, and is the most cost-effective. 

Thus, the  challenge of monitoring surveys 
using GPS has received growing attention 
during the last few years, see Kenneth and 
Behr (1998), and Brown et al. (1999) .  
 

The choice of the procedure for the 
adjustment of deformation surveys cannot be 
based only on the available computing 
facilities but must take into consideration the 
characteristics of the problem to be treated, for 
example processing strategy in the 
deformation networks. Due to the high 
sensitivity of the least squares estimation 
method for deformation application, both the 
pre-adjustment (e.g. gross errors/outlier 
detections) and post-adjustment data screening 
techniques (e.g. through statistical testing of 
the estimated observational residuals) have to 
be applied, and this is very important for 
producing reliable results.  This paper 
therefore highlight some computational 



strategies which can be applied in repeated 
survey measurements for deformation studies.
   

 
2.0  NETWORK DESIGN 
 

 The two remaining aspects of a 
monitoring scheme, which will be considered 
in details, are the design and analysis stages. 
The network design is the first step towards 
establishing a deformation network. A 
network may be designed to meet specific 
criteria, before any observations are actually 
made. In the specific case of a deformation 
monitoring network, the design may not only 
be required to meet precision (e.g. variances of 
point positions or derived quantities) and 
reliability criteria, but also to be sensitivity to 
the deformation pattern which is expected to 
take place. Since a postulated deformation 
model between two epochs of observations 
represents in effect a systematic difference 
between the two sets of measurements, the 
sensitivity assessment of a network can be 
regarded as being related to the detection of 
systematic errors (Othman, 2000). 
 

The design required usually not only 
needs to solve the problem of meeting 
precision criteria, but must also be the 
minimum-cost solution, often referred to as the 
optimum design. This introduced cost element 
can be very difficult to quantify, but possible 
designs are usually assessed subjectively 
taking regard of previous experience. Once the 
design problem has been formulated, there are 
two basic approaches to the solution. Firstly, 
and most commonly, there is the computer 
simulation, or pre-analysis method, whereby 
proposed networks are analysed in turn to see 
whether they meet the required criteria, being 
subjectively modified by operator intervention, 
and using his experience, if the proposed 
scheme is either too strong or not strong 
enough. Secondly, the analytical approach 
attempts to mathematically formulate the 
design problem in terms of equations or 
inequalities and then to explicitly solve for the 
optimum solution.   

 
3.0       NETWORK ADJUSTMENT 
 
  All points in a monitoring network are 
tied to each other by a combination of 
observable such as coordinates, elevation, etc. 

The numbers of observation usually exceeds 
the minimum number required to determine 
the unknown parameters. The method of least 
square estimation (LSE) is an important tool in 
estimating the unknown parameter from 
redundant data. Generally, the functional 
model relating the measurements and 
parameters to be estimated can be expressed in 
a function of:    
  )x(fl =     [ 1 ] 
where l is the vector of observations and x is 
the vector of parameters to be estimated. In 
general, equation [1] is non-linear, and it needs 
to be linearized by using Taylor’s theorem. 
After linearization the observation equation is 
written as: 
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where 
^

v  is the vector of residuals, A is the 

design matrix, 
^

x  is the vector of corrections to 
the approximate values (xo) and b is the 
misclosure vector.  
 
The normal equation with a full rank, can be 
written as: 
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where; l = vector of actual observation, ol = 

vector of computed observation, 1
l

2
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the weight matrix, n, u = number of 
observations and parameter. 
 

 Other important aspects that need to 
be considered are global test (Chi-square) and 
local test (TAU), precision, accuracy and 
reliability (internal and external) analysis.  
After the data for each were verified to be free 
of outliers and have a high degree of 
reliability, then the deformation analysis can 
be carried out.  The geometrical analysis of 
deformation surveys involves the reliable 
determination of changes in the geometrical 
status of a structure over time (Chrzanowski et 
al., 1986]. Deformation between subsequent 
epochs can be inferred directly from a 
comparison of raw observable, or indirectly 
from changes in coordinates. Single epoch 
adjustments allow some leeway for variations 
in observation scheme between epochs, thus 
making it possible to utilize all available 
information in the solution, but introduce the 



problem of datum dependence. In either case, 
the use of adjustments has the important 
advantage that an evaluation of the quality of 
the observations can be undertaken, and an 
opportunity for the detection of random 
outliers and systematic effects is provided. 
However, it requires that the network be 
complete and free from configuration defects 
at each epoch, and that each epoch be referred 
to a common datum. 

 
  In basic approaches to geometrical 
analysis the displacements at discrete points 
are directly compared with specified 
tolerances. In more advanced analyses, the 
point displacements are assessed for spatial 
trend, and a displacement field is determined 
by the fitting of a suitable spatial function. The 
displacement field may then be transformed 
into a strain field, which provides a unique 
description of the overall change in geometric 
status, by the selection of a suitable 
deformation model (Chrzanowski et al., 1986). 
 
4.0 NETWORK ANALYSIS 
 
 Usually, the analysis of a network 
observed for the monitoring of deformation is 
consists of the following tasks : 

- Detection of outliers. through 
various statistical tests. 

- the computation of the 
estimated parameters and 
associated covariance matrix 
and unit variance.  

 
However, a monitoring network will be 
repeatedly measured at various epochs, and a 
comparison of successive network adjustments 
must be carried out in an effective manner, so 
that  we can detect any deformations, which 
have taken place. It is essential to realize that 
the straightforward difference in the two sets 
of coordinates does not provide sufficient 
information to assess whether points have 
moved or not, since some consideration must 
be given to the accuracy with which the 
coordinates have been determined.  
 
 The aim of the analysis is to identify 
stable reference points in the network (if any), 
and detect single-point displacements, which 
will later be used to aid in the development of 
an appropriate deformation model. It is 
necessary to stress how crucial is the detection 

of outliers in each of the single epoch 
adjustments, since errors which escape 
detection are likely to be assessed as 
deformations later in the analysis. The first 
stage of a two-epoch analysis of an absolute 
network is to assess the stability of the 
reference points by assuming them to form a 
relative network and testing whether any 
points have moved. This may be achieved by 
carrying out a global congruency test. 
Similarly in analysing a relative network, the 
first step is usually to establish whether any 
group of points in the network has retained its 
shape between the two epochs, again by use of 
the global congruency test. If such a group can 
be identified, then these points may be used as 
a datum, thus providing an absolute network 
for the analysis of the other stations. If in 
either case no group of stable points can be 
identified, then the resulting relative network 
must be assessed only in terms of datum 
invariant criteria. 
 
 The test on the variance ratio 
examines the compatibility of the independent 
variance factors of the two epochs. The test 
can either be one-tailed or two-tailed, with the 
former, as shown below : 
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where 
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σ  are the estimated variance 
factors of epochs I and j. Let their respective 
degrees of freedom become dfi and dfj. The 
test statistic is in the form of a ratio of the 
variance factors: 
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assuming j and I refer to the larger and smaller 
variance factor respectively. Their relevant 
degrees of freedom become dfi and dfj. The 
outcome of the one-tailed test on variance ratio 
is: 
  T< α,df,df ij

F  , test passes, accept H0  or  

T ≥ α,df,df ij
F , test failed, reject H0 

  If H0 accepted, indicating the two 
variance factors are statistically equivalent, the 
variance ratio test is passed and the pooled 

variance factor 
2

o

^

σ  may be computed as: 
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 where df = dfi + dfj                   [ 6 ] 
 
 If H0 reject, its indicates improper 
weighting of observations, and requires the 
examinations of observational data or the 
adjustment results. From the results of the two 
single-epoch adjustments it is possible to 

calculate the displacement 
^

d and the 
associated covariance matrix  ^

d
Q from 
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(assuming 1

^

x  and 2

^

x  are uncorrelated), and in 
addition the quadratic form given by 
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 The displacement vectors (equation 7) 
and its cofactor matrix (equation 8)  need to be 
transform from minimum constraint datum to 
another datum definitions (i.e. either partial 
minimum trace of minimum trace datum): 
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where;  I = identity matrix,  d = displacement 
vector , S = S-transformation matrix, W= 
weight matrix (with diogonal value of the one 
for datum points and zero elsewhere).  The 
full components of matrix GT for a 3-D 
network can be found in  Halim & Ranjit, 
(2001) . 
 
 It is readily shown (Caspary, 1987) 
that a suitable test of the hypothesis that the 
points under consideration have remained 
stable, i.e. F(d) = 0, is 
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where h is the rank of ^
d

Q  (3n-d) for a 3D 

network, 
2^

oσ  =(r1

2^

1oσ  + r2

2^

2oσ )/r , r = r1 + r2 ,   

ir = degrees of freedom in the adjustment of 

the ith epoch. 
 
T is tested against the Fisher distribution (F-
test) with F h, r , at an appropriately chosen 
level of significance. If the test is successful 
(the hypothesis is not rejected), then the two 
epochs are assumed congruent, i.e. the points 
involved have remained stable. If the test is 
unsuccessful, at least one point has moved, 
and must be removed from the group of 
reference points. Several methods exist for 
identifying which point (or points) should be 
removed. The simplest of these methods is to 
identify the point, which has the greatest 
contribution to Ω. This point is then eliminated 
from the reference group and the global 
congruency test repeated. The process is 
repeated until a stable group of points is 
identified.   
 

  Having determined, by means of the 
global congruency test, a group of points, 
which have remained, stable, it is now 
necessary to calculate coordinates for these 
stations, as well as for the other, unstable 
points. There are different solutions to this 
problem. Firstly, it would be possible to adopt 
the first epoch estimates for the stable group 
and use these in a computation of the second 
epoch observations. However, this is not 
sensible since the measurements between the 
stable points in the second set are being 
ignored. It is also not entirely reasonable to 
adopt the separate estimates x1 and x2, since 
this would result in stable points having 
changing coordinates. The most preferable 
solution is to carry out a combined adjustment 
of the observations from both epochs, with 
only one set of unknown coordinates being 
estimated for the stable group of points, and 
two (one for each epoch) being estimated for 
the moving points. In fact, the required 
solution may be obtained without actually 
carrying out the combined solution since the 
displacements and covariance matrix of the 
unstable points can be obtained directly from 
the information available from the single 
epoch solutions (Caspary, 1987). The 
difference in the resulting coordinates for the 
moving points, (namely the displacements), 
together with the associated covariance matrix, 
can then be used in an assessment of the 
significance of the detected movements. 

  The movement 
^

d  calculated for an 



unstable point can be tested for significance by 
comparing it with the appropriate elements 
(

i

^
d

Q ) of the associated covariance matrix. 

The test statistic, which is most commonly 
used, is 
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and it is tested against the Fisher distribution 
2F 2,r at the chosen level of significance. In a 
similar fashion to the computation of absolute 
point error ellipses it is possible to compute a 
point displacement ellipse by using the 

appropriate sub-matrix of ^
d

Q  in place of the 

sub-matrix of ^
x

Q . This ellipse may then be 

plotted along with the displacement vector for 
a graphical representation of the significance 
of the movement.  
 
5.0 RESULTS AND ANALYSES 
  

The GPS network consist three 
references points, namely P314, P288 and 
DCA02. Their corresponding Cartesian 
coordinates are summarized Table 1. 

 
 
 

Table 1: Cartesian coordinates for the reference stations 
Station X (m) Y (m) Z (m) 
P 314 -1140193.1164 6246578.6211 598604.6758 
P 288 -1143708.2813 6244748.2409 610775.9046 

DCA02 -1132315.6122 6249421.9207 583780.3523 
 

The results for the coordinates repeatability 
using the minimum constraint method for the 
fixed station P314, P288 and DCA02 shows 
the daily standard deviation for all points of 
the both epochs. Generally, the standard 
deviation of all object points is less than ± 6 
mm for horizontal and ±4 mm for vertical 
component of the both epochs, respectively.  
 

The results for the displacement 
calculations for both epochs are shown in 

Table 2 – 4, respectively. Table 2, shows the 
differences of all object points for Day 1 and 
Day 3 of the fixed station P314 and the 
differences of adjusted coordinates are within 
± 1.5 cm in horizontal and ± 0.5 cm in vertical 
component. Figure 1 shows the different 
adjusted coordinates of the fixed station P314 
for Day 1 and Day 3 of the both epoch.  

 
Table 2: Different of adjusted coordinate for the fixed station P314 

1st epoch  2nd epoch  Station 
∆X (m) ∆Y (m) ∆Z (m) ∆X (m) ∆Y (m) ∆Z (m) 

KT1 0.0032 0.0036 0.0001 -0.0011 -0.0031 0.0028 
KT2 -0.0004 0.0117 -0.0052 -0.0026 -0.0009 -0.0021 
KT3 0.0062 0.0153 -0.0026 0.0052 0.0103 -0.0015 
KT4 0.0095 0.0019 0.0028 -0.0015 -0.0002 0.0080 
KT5 -0.0015 0.0165 0.0036 0.0147 0.0246 0.0077 
KT6 0.0051 -0.0059 0.0032 0.0227 0.0149 -0.0008 
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Figure 1: Different of adjusted coordinates for Day 3 and Day 1 of both epoch (fixed station P314) 

 
 
 
 
 
 

Table 3: Different of adjusted coordinate for the fixed station P288 

1st epoch  2nd epoch  Station 
∆X (m) ∆Y (m) ∆Z (m) ∆X (m) ∆Y (m) ∆Z (m) 

KT1 -0.0085 0.1154 0.2936 -0.0029 0.0152 0.0350 
KT2 -0.0025 0.0076 -0.0107 0.0254 -0.0417 -0.0205 
KT3 0.0484 0.6551 -0.5167 0.0405 0.0154 0.0142 
KT4 -0.0417 0.0771 -0.0892 0.0344 0.0284 0.0007 
KT5 0.1492 -0.3391 0.2423 -0.2561 0.6742 -0.3255 
KT6 -0.2163 -0.1878 -0.0230 0.0010 -0.1279 -0.0132 
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Figure 2: Different of adjusted coordinates for Day 2 and Day 3 of both epoch (fixed station P288) 
 
Table 3, shows the differences of all 

object points for Day 2 and Day 3 of the fixed 
station P288. As been seen on Figure 2, station 
KT3 has a bigger value, where the different 
are varies within 65.50  

 
cm and 4.80 cm in horizontal and   –52.00 cm 
in vertical component and station KT5, has a 
different value within 67.4 cm and –25.61cm 
in horizontal  and –32.55  cm    in vertical 
component

.  



 
 

Table 4: Different of adjusted coordinate for the fixed station DCA02 

1st epoch 2nd epoch Station 
∆X (m) ∆Y (m) ∆Z (m) ∆X (m) ∆Y (m) ∆Z (m) 

KT1 -0.0039 -0.0345 -0.0041 0.0095 0.0426 0.0046 
KT2 0.0186 -0.0565 0.0142 0.0184 0.0154 -0.0084 
KT3 -0.0266 0.0088 0.0340 -0.0395 -0.0456 -0.0350 
KT4 -0.0986 0.2368 0.0800 1.6426 0.3459 -0.2271 
KT5 0.0990 -1.0610 0.1997 0.0146 -0.0054 -0.0283 
KT6 0.0419 -1.0611 -0.5172 2.5478 1.6915 0.1475 
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Figure 3: Different of adjusted coordinates for Day 2 and Day 1 of both epoch (fixed station 
DCA02) 

 
Table 4, shows the differences of all 

object points for Day 1 and Day 2 of the fixed 
station DCA02. As can been seen from the 
Figure 3, station KT5 and KT6 for the first 
epoch has the different within –106.10 cm and 
90.90 cm in horizontal and –0.200 cm in 
vertical component. While at the second epoch 
station KT4 and KT6 has a bigger value within 
34.59 cm to 254.78 cm in horizontal and –
22.71 to 14.75 in vertical component. Overall 
result from the minimal constraint adjustment 
shows that the fixed station P288 and DCA02 
has a bigger differences at the stations KT3, 
KT4, KT5 and KT6 than station P314, this is 
believe that it is due to the “noise” in 
observation data at the station. 
 

The output for the two fixed points 
shows that Day 1 and Day 2 has a bigger the 
standard deviations value which is, vary from 
0 mm to 170 mm in horizontal and 0 mm to 90 
mm in vertical, while Day3 vary from 0 mm to 
9 mm in horizontal and 0 mm to 6 mm in 

vertical component for both epoch. The results 
also shows that all residuals are accepted since 
the compute Tau-max-test value is smaller 
than value from the Tau-max table, 3.03 and 
the residuals are smaller than the standard 
deviation of the observations. The internal 
reliability is varies from 0.05 to 18.52 in 
horizontal and 0.05 to 13.59 in vertical 
component. While the external reliabilty also 
small which varies from 0 to 1.457 in 
horizontal and 0.717 in vertical element. The 
results show that the network has a good 
reliability. The confidence region, shows that 
all stations has a smallest value vary from 
0.0448 m to 0.1005 m for the semi-major axis 
and 0.0312 m to 0.0995 m for the vertical. The 
average size of semi-major axis is 0.6853 m 
for Day1, 0.8459 m for Day2 and 0.0589 m for 
Day3. While, the vertical is 0.5851 m for 
Day1, 0.8393 m for Day2 and 0.0507 m for 
Day3. From the results it can be see that the 
Day3 of both epochs has a smallest confidence 



region for the network. It shown that the 
quality of the Day3 data is very good. 

 
Comparison from two fixed stations 
adjustment also has been summarized in Table 
6 – 8 and Figure 4 - 5. From Table 6, for the 
fixed stations P314 and DCA02, shows that 

the biggest value is at station KT5, whereby 
the value is 0.1652 m and –0.475 m for the 
horizontal and –0.2875 for the height. While, 
station KT2 has a smallest value of 0.0449 m 
and –0.0396 m for the horizontal and 0.0022 
m for the vertical component (see Figure 4).

 
 

Table 6: Different of adjusted coordinate for the fixed stations P314 and DCA02   
Station ∆X (m) ∆Y (m) ∆Z (m) 

KT1 0.0799 0.0910 0.0501 
KT2 -0.0396 0.0449 0.0022 
KT3 -0.0823 0.0477 -0.0278 
KT4 0.3386 0.0142 0.0679 
KT5 -0.475 0.1652 -0.2875 
KT6 0.7076 -0.2334 0.022 
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Figure 4: Different of adjusted coordinate for the fixed stations P314 and DCA02 for the Day 1  

(Epoch 2 – Epoch 1) 
 

As be seen in Table 7 and Figure 5, 
the difference of adjusted coordinate of the 
fixed stations P288 and DCA02 for all 
stations, varies from -0.7433 m to 0.8882 m in 

horizontal and –0.5196 to 0.1073 in vertical 
element. It believed that this due to the effect 
of some bias and noise at the reference points 
DCA02. 

 
Table 7: Different of adjusted coordinate for the fixed stations P288 and DCA02 
Station ∆X (m) ∆Y (m) ∆Z (m) 

KT1 0.0286 0.8882 -0.0263 
KT2 0.1134 -0.7433 0.1002 
KT3 -0.7065 0.1951 -0.5196 
KT4 -0.0289 -0.2960 0.1073 
KT5 -0.043 -0.1941 0.074 
KT6 -0.4286 -0.2423 0.0190 
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Figure 4.26: Different of adjusted coordinate for the fixed stations P288 and DCA02 
 
 
Results from Table 8, shows that the 
differences of adjusted coordinates for the 
fixed stations P314 and P288 are small 
compared to the other fixed stations. The 

differences are varies from –0.0463 m to 
0.0577 m in horizontal and –0.0394 m to –
0.0025 m in vertical. The comparison shows 
that the data of Day3 has a good quality. 

 
Table 8: Different of adjusted coordinate for the fixed stations P314 and P288 

Station ∆X (m) ∆Y (m) ∆Z (m) 
KT1 0.0013 0.0167 -0.0025 
KT2 -0.0022 -0.0283 -0.0032 
KT3 -0.00185 0.0320 -0.0114 
KT4 -0.0035 0.0137 -0.0394 
KT5 -0.0102 0.0577 -0.0106 
KT6 -0.0088 -0.0463 -0.0289 
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Figure 4.27: Different of adjusted coordinate for the fixed stations P314 and P288 

 
In order to determine whether 

significant movements occurs between the two 
epochs for the GPS observation,  a statistical 
test known as the congruency test is 
performed.  The result of the stability 
determination with two fixed point shows that 
the variance ratio test at significance level 0.05 
is pass for all three days, where the value is 

smaller than the critical value (1.204 < 2.405). 
All the datum points and object points has also 
passed the single points test at significance 
level 0.01 and the global congruency test at 
significance level 0.05 is also pass, for all 
three days, whereby all stations were 
confirmed stable. 
 



6.0 CONCLUSION 
      
       The objective of this project was to 
develop methods and processing techniques 
(strategies) to be able to detect high rise 
building deformation (if any) over time at the 
required accuracy. The monitoring network is 
properly adjusted and analyses before the 
results are used in the deformation analysis. 
From the minimally constraint solution, its can 
be seen that the fixed station P314 has a good 
quality of observations compared to reference 
stations P288 and DCA02. The contraint least 
squares adjustment with two fixed points show 
that the data quality for Day1 and Day2 
observations for both epochs have a lot of 
noise, compared to Day3 observations. A 
congruency test is also performed in this 
experiment. The corresponding results (with 
two fixed points) have shown that the variance 
ratio test at significance level 0.05 is passed 
for all observations. From the analysis, we can 
see that all reference and object points are in 
stable conditions, i.e. there was no movement 
of the KOMTAR building. Finally, the overall 
results from the GPS observations have shown 
that the contraints adjustment have give more 
information and analysis than the minimum 
constraints and therefore it is more appropriate 
to be adopted for engineering structure 
monitoring schemes.  
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