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Abstract This paper describes a procedure for identifying multiple outliers in
linear regression. This procedure uses a robust fit which is the least of trimmed of
squares (LTS) and the single linkage clustering method to obtain the potential
outliers. Then multiple-case diagnostics are used to obtain the outliers from
these potential outliers. The performance of this procedure is also compared
to Serbert’s method. Monte Carlo simulations are used in determining which
procedure performed best in all of the linear regression scenarios. Keywords:
Multiple outliers, linear regression, robust fit, Least trimmed of squares, single
linkage.
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Abstrak Kertas kerja ini menghuraikan satu prosedur untuk mengenalpasti
gandaan data terpenncil dalam regresi linear. Prosedur ini menggunakan kaedah
penyesuan teguh iaitu kaedah kuasa dua trim terkecil dan kaedah berkelompok
pautann tunggal untuk mengecam data terpencil yang mungkin. Kemudian,
diagnostik kes berganda digunakan untuk mengenalpasti data terpencil. Prestasi
prosedur ini dibandingkan dengan Serbert. Simulasi Monte Carlo digunakan
untuk mengenalpasti prosedur yang terbaik dalam semua keadaan regresi linear.

Katakunci data terpencil berganda, regresi linear, penyesuain teguh, kuasa
dua trim terkecil, pautan tunggal.
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1 Introduction

The linear regression model can be expressed in terms of matrices as y = Xβ + ε where y
is the n × 1 vector of observed response values, X is n × p matrix of p regressors (design
matrix), β is the p × 1 regression coefficients and ε is the n × 1 vector of error terms.
The most widely used technique to find the best estimates of β is the method of ordinary
least squares (OLS) which minimizes the sum of squared distances for all points from the
actual observation to the regression surface. When the error terms are not normally and
independently distributed (NID), distortion of the fit of the regression model can occur and
consequently the parameter estimates and inferences can be flawed. The presence of one or
more outliers is one of the common causes of non-normal error terms.

As defined by Barnett and Lewis (1994), outliers are observations that appear inconsis-
tent with the rest of the data set. Such outliers can have a profound destructive influence
on the statistical analysis. It is not unusual to find an average of 10% outlying observations
in data set of some processes (Hampel et al., 1986).

Figure 1 illustrates the different types of outliers. The ellipse defines the majority of
the data. Points A, B, and C are outliers in Y-space because their y values ( or response
values) are significantly different from the rest of the data and they are also residual outliers
(do not conform to the regression line or sometimes called regression outliers). Points B
and C and D are outliers in X-space, that is, their x values are unusual and these are also
referred to as leverage points. Although D is outlying in X-space, it is not a residual outlier.
Points B and C are leverage points and residual outliers. Point A is an inlier in X-space
but a residual outlier. Point E is an inlier in Y-space and also a residual outlier. All these
different types of outliers can be summarized as in Table 1.

Table 1: Different Types of Outliers

Points Y-space outlier X-space outlier residual outlier
A * - *
B * * *
C * * *
D * * -
E - * *

Figure 2 clearly indicates that it is of interest to regression practitioners to have a
set of tools to detect outlying observations since with the presence of even two outlying
observations, the estimates of the parameters can be significantly affected. It can be seen
that the group of two outlying observations exerts a considerable influence on the least
squares regression line and forces a fit of the data that is not representative of the majority
of the data.

Therefore using the least squares model to explain the relationship between the regressor
and the response variable is inappropriate in the presence of outliers. For illustration, a
hypothesized data set of size 20 where 2 of the observations are xy-space outlying is used
in Figure 2. It is quite obvious that the dotted line in Figure 2 is of a better regression line
for the data set used without taking the two outlying observations into consideration.
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Figure 1: Scatter plot for the different type of outlying observations

Fortunately, isolating a single or a few outliers can be done quite easily using routine
single-case diagnostics, that is, for example the Cook’s squared distance (Cook.,1979) mea-
sures the change in the regression coefficients that would occur if a case was omitted. But
as can be seen in Figure 2, the ordinary least squares (OLS) estimates and inference can
be affected with the presence of even two outliers. However , the standard single-case diag-
nostic measures often suffers from masking and swamping. Masking is the inability of the
procedure to detect the outliers, while swamping is the detection of clean observations as
outliers.

It is generally agreed that there is no single multiple outlier identification procedure that
can tackle all kinds of outliers scenarios. The modification of the procedure proposed by
Serbert, et. al (1998) is of interest in this research. Serbert uses the least squares to fit the
data and then cluster the data using single linkage by taking the standardized predicted
values and residual values as the values in the calculation of the similarity measures.

Since the proposed method (Method 1) uses the idea of a robust fit and clustering
technique, therefore a brief description of these two ideas are given in sections 1.1 and
1.2 respectively. Section 1.3 describes the Monte Carlo simulation used in this research to
evaluate the effectiveness of the proposed procedure in detecting multiple outliers. Section
1.4 discusses the multiple-row influence diagnostics which will be used in determining the
”true” outliers from the potential outliers obtained from Method 1.

1.1 Robust Fit /Robust Regression

This approach tries to devise estimators so that the regression fit will not be so strongly
affected by outliers. From this robust fit the outliers may be identified by looking at the
residuals. There are many such robust estimators in the literature but the least trimmed
of squares (LTS) is of interest in this paper. One of the most important properties for
robust regression estimators is breakdown point. Breakdown point is defined as the smallest
fraction of unusual data that can cause the estimator to be useless. It is a well known fact
that the LTS is a high breakdown estimator, that is, it can have a value of 50% which is the
highest value possible (Rousseeuw and Leroy, 1987). Therefore the proposed Method 1 uses
the standardized predicted values and residual values from the least trimmed of squares
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Figure 2: The OLS regression for a hypothesized data set of size 20 with two XY-space
outlying observations



Multiple Outliers Detection Procedures in Linear Regression 33

(LTS) fit rather than the OLS fit . Figure 5 shows the least square fit and the LTS fit for
a data set with outliers. From this graph it is obvious that the fit from the LTS is better
compared to the OLS in the presence of outliers.

1.2 Clustering

The objective of cluster analysis is to find natural groupings of items ( or variables). The
items in the resulting clusters should exhibit a high internal homogeneity and low external
homogeneity. Clustering techniques can be divided into two groups: hierarchical and non-
hierarchical. Hierarchical clustering techniques proceed by either a series of successive
mergers, that is, starts with n clusters and end up with a cluster which contains all of
the data points ( known as agglomerative hierarchical methods) or by a series of divisions,
that is, starts with one cluster and end up with n clusters with each cluster containing
one data point ( known as divisive hierarchical methods). An example of an agglomerative
hierarchical method is the single linkage which is incorporated in Method 1. The single
linkage algorithm uses the smallest distance between a point in the first cluster and a point
in the second cluster. The distance between these two clusters can be shown graphically as
below (Figure 3).

Figure 3: Single linkage

1.3 Monte Carlo Simulation

There are six outlier scenarios and a total of twenty four different situations considered in
this research ( see Table 2). These scenarios are similar to those used by Serbert et al.
(1998). The factors considered in this simulation are (1) levels of percentage of outliers:
10% or 20%, (2) number of outlying groups : one or two groups, (3) number of regressors
: 1, 3, or 6 and (4) distances of outliers from clean observations : 5 standard deviations or
10 standard deviations. There are 1000 replications for each scenario and all simulations
are done in S-Plus version 4.5 (statistical package). The 6 scenarios and the 24 situations
considered in this research are summarized in Table 2. As considered by Serbert et al.
(1998), the primary measures of performances are : (1) the probability that an outlying
observation is detected (symbolized as tppo and (2) the probability that a known clean
observation is identified as an outlier (symbolized as tpswamp. These measures are also
known as Type I and Type II statistical errors.
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Table 2: The 24 different situations considered in the simulations

scenario situations outliers groups of outliers sigma
1 1 10% 1 5
1 2 10% 1 10
1 3 20% 1 5
1 4 20% 1 10
2 5 10% 1 5
2 6 10% 1 10
2 7 20% 1 5
2 8 20% 1 10
3 9 10% 2 5
3 10 10% 2 10
3 11 20% 2 5
3 12 20% 2 10
4 13 10% 2 5
4 14 10% 2 10
4 15 20% 2 5
4 16 20% 2 10
5 17 10% 1 5
5 18 10% 1 10
5 19 20% 1 5
5 20 20% 1 10
6 21 10% 2 5
6 22 10% 2 10
6 23 20% 2 5
6 24 20% 2 10
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Figure 4: Simple regression picture of the six outlier scenarios
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1.4 Multiple-row Influence Diagnostics

Belsley, et al. (1980) have shown that single-row diagnostics can be extended to include
subsets of observations rather than a single observation. The multiple-row diagnostics used
in this paper are : COVRATIO, DFFITS and Cook’s D distance measure. These measures
are used to screen for the true outlilers from the potential outliers obtained from Method 1.

• Cook’s distance (Cook; 1979) : D(Dm) = [β̂−β̂(Dm)]T XT X[β̂−β̂(Dm)]
ps2

The interpretation is identical to the single-row version, therefore it is assumed that
the subset with D(Dm) > F0.5,p,n−p ≈ 1 is an outlier.

• DFFITS (Belsley, et al. ; 1980):

DFFITSDm = [β̂−β̂(Dm)]T XT
(Dm)X(Dm)[β̂−β̂(Dm)]
ps2

(Dm)

In standard deviation units, this statistics measures the change in the predicted values
of the deleted subset. There is no mention of cut-off values for this statistic in their
presentation. They look for big differences in these statistics for various subsets to
determine highly influential subsets.

• COV RATIO (Belsley, et. al ; 1980):

COV RATIO(Dm) =
dets2

(Dm)[XT
(Dm)X(Dm)]−1

dets2[XT X]−1

This is a ratio of the determinant of the covariance matrix for the estimated coefficients
without subset Dm to the determinant of the covariance matrix for the estimated
coefficients for the full data . Values of COV RATIO(Dm) > 1 : The subset improves
the precision of estimation for the regression coefficients. COV RATIO(Dm) < 1 :
The subset degrades the precision of estimation for the regression coefficients. where
Dm denotes the quantity computed without the group observations in question, p is
the number of parameters in the model including the intercept, s2 is the estimated
mean squared error and β̂ is the vector of least squares estimates of the parameters.
Belsley et al (1980), Cook and Weisberg (1982) and Serbert (1996) demonstrate that
the multiple-case diagnostics successfully assess the joint influences exerted by the
outliers.

2 Proposed Procedure-Methode 1

Method 1 is put forward in this paper (Section 1.1). This procedure is a modification of
the procedure proposed by Serbert et. al (1998). Serbert’s method uses the least square fit
and the single linkage clustering method to identify outliers while Method 1 uses the least
trimmed of squares (LTS) fit instead of the ordinary least squares (OLS) fit. For method
1, the data set is then grouped using the single linkage clustering algorithm (hierarchical
clustering technique) with the Euclidean distance between pairs of standardized predicted
values and residual values as the similarity measures.

Since Method 1 uses the standardized predicted values and residual values from the least
trimmed of squares (LTS) fit, then the following is the discussion on this estimator. The
LTS regression was proposed by Rousseeuw (1984). This method is similar to the ordinary
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least squares but instead of using all the squared residuals, it minimizes the sum of the h
smallest squared residuals ( where n-h residuals are deleted from the objective function).
The objective function for LTS is

Minimizeβ̂

h∑

i=1

(r2)i : n (1)

where r is the residuals and it is solved by either random resampling (Rousseeuw and Leroy,
1987), a genetic algorithm (Burns, 1992) which is used in S-Plus Package or forward search
(Woodruff and Rocke, 1994) . In this research, the genetic algorithm (Burns, 1992) was
used to solve the objective function of LTS. Putting h = (n/2) + [(p + 1)/2] where n is the
sample size and p is the number of regressors, the LTS reaches the maximal possible value
for breakdown point. Rousseeuw and Leroy (1987) recommend h = n(1 − α) + 1, where α
is the trimmed percentage.

Figure 5: The OLS and LTS regression for a data set with two XY-space outlying observa-
tions

Although LTS has a breakdown point of up to 50%, there are instances when residuals
from the outliers are not large enough to be successfully identified as outliers. According
to You (1999), this is due to its low efficiency and unbounded influence function. Minowski
(1999), discovered that the LTS fit on its own is less effective in detecting outliers in difficult
scenarios especially in high leverage cases. So LTS is not recommended as a stand-alone
estimator. In Table 3 are the results of simulations for n = 20 with p = 1 and p = 3 to
illustrate the ability of the LTS in detecting outliers on its own for all the 24 situations. The
tppo refers to the total probability of detecting outliers and the high probability values are
written in bold. The LTS can detect outliers with quite a high probability in a very limited
scenarios for example when there exist only 10% outlying observations with a distance of
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10 sigma from the rest of the data set. If the proportion of outlying observations is 20%,
the LTS has a poor detection capability in all the scenarios.

Table 3: Simulation results of the performance of LTS on its own in detecting outliers

Sit. outliers n = 20, p = 1 n = 20, p = 3 n = 20, p = 1 n = 20, p = 3
tppo tppo tp-swamp tp-swamp

1 10% 0.9470 0.8505 0.0732 0.1724
2 10% 1 0.992 0.0712 0.1488
3 20% 0.8488 0.5605 0.0576 0.1854
4 20% 0.988 0.882 0.0424 0.1214
5 10% 0.81 0.59 0.0848 0.2008
6 10% 0.9925 0.8985 0.0731 0.1676
7 20% 0.5945 0.3128 0.0838 0.2130
8 20% 0.9295 0.612 0.0569 0.1841
9 10% 0.944 0.867 0.0736 0.1681
10 10% 1 0.9985 0.0711 0.1504
11 20% 0.8975 0.6278 0.0461 0.1679
12 20% 0.9995 0.939 0.0385 0.1032
13 10% 0.8335 0.6085 0.0827 0.1998
14 10% 0.995 0.9145 0.0726 0.1648
15 20% 0.6398 0.3475 0.0734 0.2076
16 20% 0.9658 0.6618 0.0456 0.1659
17 10% 0.1905 0.2665 0.0978 0.2173
18 10% 0.233 0.283 0.0967 0.2152
19 20% 0.1408 0.2195 0.0966 0.2114
20 20% 0.1525 0.2155 0.0951 0.2096
21 10% 0.572 0.595 0.0873 0.1959
22 10% 0.6015 0.6335 0.0832 0.1864
23 20% 0.5425 0.5798 0.0704 0.1619
24 20% 0.5708 0.6078 0.0641 0.1478

Therefore to identify a clean base subset from the LTS fit, method 1 uses the single
linkage algorithm. Clusters are formed from individual observations by merging the nearest
neighbour, that is, the observations with the smallest distance.

Hierarchical methods routinely produce a series of solutions ranging from n clusters to
a single cluster. This can be graphically displayed in the form of a dendogram or tree
diagram. So it is necessary to get a procedure that will indicate the actual number of
clusters that exist in the data set, that is, where the cluster tree needs to be ”cut” at a
certain height . Therefore the number of clusters depend on the height of the cut. When
this procedure is applied to the results of hierarchical clustering methods, it is sometimes
referred to as a ”stopping rule”. An extensive research on the different stopping rules were
done by Milligan and Cooper (1985). The stopping rule used in this paper is proposed by
Mojena (1977). This rule is used since it is simple to calculate and performs excellently on
the data sets tested and no evidence to suggest that it is worst than other stopping rule (
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Serbert, 1998). This rule resembles a one-tailed confidence interval based on the n-1 heights
(joining distances) of the cluster tree. This rule suggests that the tree is cut at the height
of h̄ + ksh, where h̄ is the average height of the tree, sh is the sample standard deviation of
the heights and k is a specified constant which is set to 1.25 as suggested by Milligan and
Cooper (1985). Method 1 can be summarized as the following:

• Standardize the predicted and residual values from least trimmed of squares (LTS)
fit.

• The Euclidean distance is used since Johnson and Wichern (1982) and Everitt (1993)
noted that Euclidean distance is the most widely used measure of similarity when
trying to find groups among multivariate observations in p-dimensional space. It is
well known that the residuals plotted against the corresponding predicted values is a
useful tool in detecting departures from normality, inequality of variance and outliers.
Generally, the fitted regression model is considered to be with no obvious problems if
there exist an approximate horizontal band on the plot. So, from a clustering point of
view, one is looking for a horizontal long chain-like cluster. This kind of cluster can be
identified successfully by single linkage clustering algorithm (Johnson and Wichern;
1982).

• Form clusters based on tree height (ch, a measure of closeness) using the Mojena’s
stopping rule ch = h̄ + ksh where h̄ is the average height of the tree and sh is the
sample standard deviation of heights and k is a specified constant). Milligan and
Cooper (1985) in a comprehensive study, conclude that the best overall performance
is when k is set to 1.25.

• The clean data set is the largest cluster formed which includes the median, while the
other clusters are considered to be the potential outliers.

• The potential outliers will be assessed with the multiple-row diagnostics to establish
the real outliers.

3 Example

Comparisons of performances between Method 1 and the Serbert’s method are done using
the “wood specific gravity” data which has 20 observations and 5 regressors variables.
Modification to the data set is done by Rousseeuw and Leroy (1987) so that observations
4, 6, 8, and 19 are XY-space outliers.

Table 5 summarizes the potential outliers obtained from the two procedures considered
in this research which are Method 1 and Serbert’s. Although all the methods are able
to detect all the outliers, but Serbert’s tend to produce false alarms. Below are the tree
diagrams produced using Serbert’s method (figure 6) and Method 1 (Figure 7). In Figure 6,
the tree diagram is cut at the height of 0.96 while the tree diagram in Figure 7 is cut at the
height of 0.97 using the Mojena’s stopping rule. In Figures 6 and 7, the circled observations
are the ones detected as outliers.

To illustrate the multiple-row diagnostics, the potential outliers obtained from Method 1
are used. Since from Method 1 the potential outliers obtained are observations 4, 6, 8 and 19,
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Table 4: Modified “wood specific gravity” data

Obs no X1 X2 X3 X4 X5 Y
1 0.573 0.1059 0.465 0.538 0.841 0.534
2 0.651 0.1356 0.527 0.545 0.887 0.535
3 0.606 0.1273 0.494 0.521 0.92 0.57
4 0.437 0.1591 0.446 0.423 0.992 0.45
5 0.547 0.1135 0.531 0.519 0.915 0.548
6 0.444 0.1628 0.429 0.411 0.984 0.431
7 0.489 0.1231 0.562 0.455 0.824 0.481
8 0.413 0.1673 0.418 0.43 0.978 0.423
9 0.536 0.1182 0.592 0.464 0.854 0.475
10 0.685 0.1564 0.631 0.564 0.914 0.486
11 0.664 0.1588 0.506 0.481 0.867 0.554
12 0.703 0.1335 0.519 0.484 0.812 0.519
13 0.653 0.1395 0.625 0.519 0.892 0.492
14 0.586 0.1114 0.505 0.565 0.889 0.517
15 0.534 0.1143 0.521 0.57 0.889 0.502
16 0.523 0.132 0.505 0.612 0.919 0.508
17 0.58 0.1249 0.546 0.608 0.954 0.52
18 0.448 0.1028 0.522 0.534 0.918 0.506
19 0.417 0.1687 0.405 0.415 0.981 0.401
20 0.528 0.1057 0.424 0.566 0.909 0.568

Table 5: Results using the Serbert’s method and Method 1
on the “wood specific gravity” data

Methods observations identified false alarms unidentified outliers
as outliers

Serbert’s 4, 6, 7, 8, 11, 19 7, 11 none
Method 1 4, 6, 8, 19 none none
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Figure 6: Tree diagram produced using Serbert’s method

Figure 7: Tree diagram produced using Method 1
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then all possible combination of these observations will be considered in the calculations of
the multiple-row influence diagnostics. Table 6 lists the values for the single-row diagnostics
(single observation) obtained and Table 7 lists the values of the multiple-row diagnostics
(subsets of observations).

Table 6: Values for the Single-row influential diagnostics

Observations Cook’s D DFFITS COVRATIO

1 0.05597 0.03960 1.56778
2 0.00008 0.00006 1.79452
3 0.11144 0.09405 0.80105
4 0.01182 0.00824 1.95505
5 0.07396 0.05883 1.12201
6 0.01928 0.01353 1.86881
7 0.39505 0.19695 1.49018
8 0.00014 0.00009 2.19153
9 0.02569 0.01582 2.15673
10 0.05105 0.02670 2.47372
11 0.53630 0.57887 0.09393
12 0.33723 0.22369 0.84182
13 0.02664 0.01806 1.89600
14 0.05406 0.05028 0.77423
15 0.01460 0.01183 1.54250
16 0.12866 0.05904 2.55550
17 0.00745 0.00495 2.11054
18 0.00951 0.00628 2.10375
19 0.13689 0.10209 1.03383
20 0.04051 0.02650 1.89117

Observations with |DFFITSi| > 2
√

p/n = 1, |COV RATIOi − 1| ≥ 3p
n = 0.75 and

Cook’s Di > 1 are considered influential. From Table 6, that is, from the single-row
diagnostics, none of the DFFITS and Cook’s Di values indicate that any of the observations
is an outlier. While the COV RATIO values indicate too many outliers.

It is obvious by examining the values of the multiple row versions of the Cook’s D,
DFFITS and COVRATIO in Table 7, observations 4, 6, 8, and 19 do have considerable
joint influence. A very high Cook’s D value of 64.71975 shows that the combined effect of
observations 4, 6, 8, and 19 is highly influential on the estimates of the parameters. The
combined effect of those observations is also highly influential on the predictive ability of
the model as the value for the DFFITS is 24.1774. A very low COVRATIO value of 0.00002
indicates that those four observations severely degrade the precision of the estimation for
the regression coefficients.
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Table 7: Values of the multiple-row influence diagnostics
for all possible combinations of the potential outliers

Dm Cook’s D DFFITS COVRATIO
4, 6 0.00251 0.00129 4.48034
4, 8 0.01632 0.00818 4.74944
4, 19 0.12914 0.07002 2.46437
6, 8 0.04095 0.01920 4.53890
6, 19 0.52280 0.27054 1.52132
8, 19 0.39776 0.17042 2.33169
4, 6, 8 0.01010 0.00293 13.56676
4, 8, 19 0.58297 0.14508 6.88069
6, 8, 19 2.38671 0.62521 2.34725
4, 6, 19 1.03618 0.28005 4.28834

4, 6, 8, 19 64.71975 24.17749 0.00002

4 Simulation Results

These methods are further tested on generated regression data sets as done by Serbert et al.
(1998). So, six outlier scenarios with 24 regression situations are considered in this research
as discussed in section 1.3. It appears that the two methods are generally approximately
effective in detecting a single group of outliers in the XY-space ( scenario 2) and the X-space
(scenario 5). This pattern holds for all sample sizes, number of regressors and percentage
of ourliers. In the following table (Table 8) summarizes the performance of Method 1 and
Serbert’s. The symbol S is used to illustrate that Method 1 and Serbert’s are nearly equally
effective in detecting outliers with probabilities larger than 0.90.

Table 8: Summary of the performances for Method 1 and Serbert’s method

p = 1 p = 3 p = 6

Sce n = 20 n = 40 n = 60 n = 20 n = 40 n = 60 n = 20 n = 40 n = 60

1 S S S
2 S S S S S S S S S
3
4
5 S S S S S S S S S
6 S S S S S S

The detection capability of Method 1 decreases with the increase in the number of
regressors for n = 20 but improved significantly with the increase in the number of regressors
for larger sample sizes. In general Serbert’s and Method 1 are equally effective in detecting
outliers particularly for larger sample sizes and larger number of regressors. However,
Method 1 is generally superior than Serbert’s method in the sense that the probability of
swamping is less which means less likely to provide false indication of outliers.
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5 Discussion

This paper proposes a new procedure using a robust fit which is the least trimmed of
squares (LTS) and single-linkage clustering technique to identify multiple outliers in linear
regression.. Although the LTS has a breakdown point of up to 50%, there are instances
when the fit do not provide residuals of the outliers to be large enough to be successfully
identified as outliers. Table 3 illustrates the detection capability for the LTS fit on its own.
The LTS fit can detect outliers with quite high probability in the scenarios where there
exist only 10% outlying observations with a distance of 10 sigma from the rest of the data
set. This procedure is a modification of Serbert’s method (1998). In general Method 1 and
the Serbert’s method are competitive in nearly all the six scenarios but Serbert’s method
tends to produce more false alarms. Method 1 is easy to implement in statistical packages
that have programming or macro languages.

With incomplete knowledge of the exact type of outlier groupings, that is, whether there
is one group or two groups of outliers, and the percentage of outliers, Method 1 which uses
the LTS fit and single linkage clustering appears to be most consistent in having the best
performance in most circumstances.
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