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 Results of deformation analysis are directly relevant to the safety of human life. Therefore one has 
to be very careful in assessing the data of a monitoring network to avoid wrong interpretation of the 
displacements. This paper presents a deformation analysis procedure that consists of network 
adjustment of individual epochs, trend analysis of the displacement field and modelling of the 
deformation. During trend analysis, two robust methods and a non-robust method have been adopted 
and applied in determining the trend of movements for all the common points in a monitoring network. 
The trend of movements then form a basis for preliminary identification of the deformation models. 
The developed procedure has been implemented in a program package known as NETDEFAN 
(NETwork and DEFormation ANalysis). A numerical example is also given by using known data of a 
dam monitoring network.  
 
 
Introduction 
 
 The upper layers of the earth’s crust are in 
constant motion both horizontally and vertically 
due to factors such as change of ground water 
level, tectonic phenomena, land slides, etc. 
Therefore any large man-made structures such 
as bridges, high rise buildings, dams, etc., which 
are built on the surface of the earth are subject to 
deformation. This deformation needs to be 
monitored continuously for safety assessment 
purpose. 
 Generally, the deformation measurement 
techniques can be divided into geotechnical, 
structural and geodetic methods. Geotechnical 
and structural methods are direct measurement 
methods, which use special equipment to 
measure changes in length, inclination, relative 
height, strain, etc. [Teskey and Porter 1988; 
Chrzanowski 1986]. On the other hand, in the 
geodetic method there are two basic types of 
geodetic monitoring networks; namely the 
reference (absolute) and relative networks 
[Chrzanowski et al. 1986]. In a reference 
network, some of the points or stations are 
assumed to be located outside of the deformable 
body or object, thus serving as reference points 
for the determination of the absolute 
displacements of the object points. However, in 
a relative network, all surveyed points are 
assumed to be located on the deformable body. 
This paper will focus only on the geodetic 
method using a reference network. 

 In a geodetic monitoring network, the object 
or area under investigation is usually represented 
by a number of points which are permanently 
monumented or marked. All the points are then 
observed in two or more epochs of time. The 
geodetic monitoring network can be either a 
conventional (terrestrial) network, a 
photogrammetry (i.e., aerial or close-range) 
network, Global Positioning System (GPS) 
network or a combination of these network 
types.  
 Deformation analysis using the geodetic 
method mainly consists of a two-step analysis 
via independent adjustment of the network of 
each epoch, followed by deformation detection 
between the two epochs. During deformation 
analysis it is important to determine the trend of 
movements (displacements) for all the common 
points in a monitoring network. The trend of 
movements then form a basis for preliminary 
identification of the deformation models during 
the modelling of deformation.  

Although deformation analysis can be 
applied on one-dimensional (1-D), two-
dimensional (2-D) and three-dimensional (3-D) 
monitoring networks, this paper will focus only 
on the 2-D network for the purpose of simplicity 
and easier understanding. 

 
Network Adjustment 
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Deformation measurements may consist of a 
combination of observables such as distances, 
azimuths, coordinates, directions, coordinate 
differences, etc. The number of observations 
usually exceeds the minimum number required 
to determine the unknown quantities or 
parameters. In engineering surveying, these 
unknown quantities are the coordinates of the 
points. The redundant measurements are useful 
for checking gross errors or outliers in the 
measurements, precision of the unknown 
quantities and quality of the network. The 
method of least squares estimation (LSE) is an 
important tool in estimating the unknown 
parameters from redundant data. The result 
obtained by LSE is known as the best linear 
unbiased estimate (BLUE).  

The functional model relating the 
measurements and parameters to be estimated 
can be expressed as 
 

l = f(x)                           (1) 
 
where l is the vector of observations and x is the 
vector of parameters to be estimated.  

In general, equation (1) is non-linear, and it 
needs to be linearized by using Taylor’s 
theorem. After linearization the observation 
equation is written as 
 

v̂  = A x̂  + b       (2) 
 
where, v̂  is the vector of residuals, A is the 
design matrix, x̂  is the vector of corrections to 
the approximate values ( ox ) and b is the 
misclosure vector.  

In this study, the datum defect problem is 
dealt with by fixing a minimum number of 
parameters or coordinates (i.e., a minimum 
constraints datum) in order to define the 
geodetic datum. For a 2-D network there is a 
maximum of four datum parameters, i.e., two 
translations, one rotation and one scale. 
Therefore it is necessary to introduce four 
independent parameters (for example the 
coordinates of two points) in order to define the 
geodetic datum, hence leading to a full rank. 
However, some of the datum parameters can 
also be defined by certain observables, for 
example, the distance defines the scale and the 
azimuth defines the rotation of the network.  
 
 The normal equation with a full rank and 
the a priori variance factor ( 2

oσ ) is assumed to 

be known (i.e., 2
oσ  = 1), can then be written as 

 
N x̂  + U = 0        (3) 

 
where;  
 

N = TA WA,  coefficient matrix 
U = TA Wb 
b = l - ol  
l = vector of actual observations 

ol  = vector of computed observations 

x̂  = -N-1U = -( TA WA)-1 TA Wb 
ax̂  = x̂  + ox ,  the updated parameters 

ax̂Q  = ( TA WA)-1,  cofactor matrix of ax̂  

W = 1−
lQ ,  the weight matrix 

2
oσ̂  = 

un
v̂Wv̂T

−
,  a posteriori variance factor 

n = number of observations 
u = number of parameters 

v̂Q  = W-1 – AN-1 TA ,  cofactor matrix of 
the       residuals 

al̂  = l + v̂ ,  adjusted observations 

al̂
Q  = AN-1 TA ,  cofactor matrix of 

adjusted observations 
 

Although the estimated parameters, ax̂  
(i.e., coordinates of the points) and the cofactor 
matrix, ax̂Q , are datum dependent based on the 
choice of zero-variance computational base, 
there exist functions such as v̂ , v̂Q , al̂ , 2

oσ̂  and 

al̂
Q , which are datum invariant.  

During LSE, other important aspects that 
need to be considered are the global test (Chi-
square), local test (Tau test or Baarda Method), 
precision, accuracy and reliability (internal and 
external) analysis. For further details on LSE the 
interested reader are referred to Wolf and 
Ghilani [1997], Singh [1997], Caspary [1987], 
Cooper [1987], Singh [1999], Setan and Singh 
[1999], and Setan [1995], to name a few. 

Before deformation analysis can be carried 
out it is important to perform initial checking on 
the input data and test on the a posteriori 
variance factors of both epochs. 
 
 
Initial Checking of Data and Test 
on Variance Ratio 
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Initial checking of data is important to 
ensure that common points, same approximate 
coordinates and same points names are used in 
the two epochs. If the number of points in the 
first epoch is not the same as in the second 
epoch, then deformation analysis is performed 
only on the existing common points in both 
epochs. This can be easily carried out by 
extracting the common points in both epochs.  

The number of datum defects depends on 
the union of the datum defects in both epochs 
[Chen 1983; Chen et al. 1990]. For example, if 
the first epoch is a trilateration network which 
has three datum defects (i.e., two translations 
and one rotation), while the second epoch is a 
triangulation network with a datum defect of 
four (i.e., two translations, one rotation and one 
scale), then the union of datum defects is equal 
to the datum defects in the second epoch (i.e., 
four). 

The a posteriori variance factors of both 
epochs are then tested for their compatibility. 
The null and alternative hypothesis of this test 
are [Setan 1995; Caspary 1987; Chen et al. 
1990; Cooper 1987; Singh 1999] 
 

Ho :  
2
1ˆ oσ  =  2

2ˆ oσ        (4) 
 
and 

 
Ha :  

2
1ˆ oσ  >  2

2ˆ oσ     or    2
2ˆ oσ  >  2

1ˆ oσ      (5)
   
with 2

1ˆ oσ  and 2
2ˆ oσ  being the posteriori variance 

factors for the first and second epochs 
respectively.  

The test statistic is  

T = 2

2

oi

oj

ˆ

ˆ

σ

σ
    ~   F(α,dfj,dfi)    (6) 

 
with j and i represent the larger and smaller 
variance factors, F is the Fisher’s distribution, α 
is the chosen significance level (typically α = 
0.05) and dfi and dfj are the degrees of freedom 
for epochs i and j respectively. 

The above test is accepted if T < F(α,dfj,dfi) 
at a significance level α. The failure of the 
above test may be caused by incompatible 
weighting between the two epochs or incorrect 
weighting scheme, and any further analysis 
should be stopped at this stage. 
 
 

Trend Analysis 
 

After the test on the variance ratio (equation 
6) is accepted, the displacement vector 
(coordinates differences) and its cofactor matrix 
can be computed as 
 

d = 2x̂  - 1x̂        (7) 
Qd = 1x̂Q  + 2x̂Q       (8) 

 
where, 1x̂  and 2x̂  are the estimated coordinates 
of all the common points in the first and second 
epochs respectively (with same datum 
definition), 1x̂Q  and 2x̂Q  are the cofactor 
matrix of the estimated coordinates 1x̂  and 2x̂ , 
d is the displacement vector and Qd is the 
cofactor matrix of d.  

In this study, two well-established rigorous 
methods known as the robust and congruency 
testing methods have been applied for estimating 
the trend of movements for all the common 
points in a monitoring network. 
  
 
Robust Methods  
 

Caspary and Borutta [1987] have given a 
detail explanation about three robust methods 
namely Danish, M-estimation (Huber) and Least 
Absolute Sum (LAS) method, for the estimation 
of the trend of movements. According to 
Caspary and Borutta [1987], the most robust is 
the Danish method, followed by LAS and M-
estimation (Huber) method.  

Chen [1983] has proposed a robust method 
known as an iterative weighted similarity 
transformation (IWST). This robust method was 
developed at the University of New Brunswick, 
Canada. This paper will focus on two robust 
methods via the LAS and IWST for estimating 
the trend of movements of a monitoring 
network. Such methods were chosen due to their 
wide application in deformation detection.  

The LAS and IWST methods are based on 
S-transformation (similarity or Helmert 
transformation) as below [Chen 1983; Chen et 
al. 1990; Setan and Singh 1998b, c; Singh and 
Setan 1999a, b, c; Singh 1999; Setan and Singh 
1999] 
 
d(k+1)=[I-G(GTW(k)G)-1GTW(k)]d(k)=S(k)d(k)        
(9) 
 
where 
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I = identity matrix 
k = number of iterations 
d = displacement vector (equation 7) 
S = S-transformations matrix 
W = weight matrix 
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                                                         (10) 
where o

ix , o
iy  are the coordinates of point Pi 

which are reduced to the centroid or center of 
gravity of the network, i.e., 
 

o
ix  =  xi - m
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with xi, yi the approximate coordinates of point 
Pi and m is the number of common points in the 
network.  

The first two rows of the inner constraint 
matrix (GT) take care of the translations in the x 
and y directions, while the third row defines the 
rotation about the vertical (z) axis and the last 
row defines the scale of the network. For a 
trilateration network, the last row of GT is 
omitted [Caspary 1987; Cooper and Cross 
1991; Setan 1997; Chen et al. 1990; Singh 
1999].  

The main difference between the LAS and 
IWST methods is in forming the weight matrix, 
W. In the first transformation (k = 1) the weight 
matrix is taken as identity (W(k) = I) for all the 
common points, then in the (k+1) transformation 
the weight matrix is defined as 

 
For the IWST method 
 

W(k) = diag ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

k
id
1                              (13) 

 
For the LAS method 
 

W(k) = diag
( ) ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+ 22

1

)dy()dx( k
i

k
i

    (14) 

 
In equation (13), d is the displacement vector as 
in equations (7) and (9). However, in equation 
(14), dxi and dyi refer to the displacement 
components in x and y axes respectively. 

It is important to mention that the above 
weighting schemes (equations 13 and 14) are 
only applied on the common datum points (i.e., 
either the reference points for a reference 
network or a group of points in a stable block 
for a relative network), whilst for the object 
points the weight is set as zero (i.e., W(k) = 0). 

The iterative procedure continues until the 
absolute differences between the successive 
transformed displacements of all the common 
points (i.e., |d(k+1) - d(k)|) are smaller than a 
tolerance value δ  (say 0.0001 [m]).  

It is possible that during the iterations some 
)k(

id  (or dxi, dyi) may approach zero, causing 
numerical instabilities, because W(k) (equations 
13 and 14) becomes very large. There are two 
ways to solve this problem, either 

 
(i) Setting a lower bound value (e.g., 0.0001 

[m]). If )k(
id  is smaller than the lower 

bound value, its weight is set to zero, or 
(ii) Replacing equations 13 and 14 as 
 

W(k) = diag ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+δk
id

1         (15) 

W(k)=diag
( ) ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++ 22

1

)dy()dx( k
i

k
i δδ

 

                                                                (16) 
 

In equation (16), the tolerance value is only 
added to those displacement components (either 
dxi or dyi) which are smaller than its lower 
bound value. In this study, solution (i) was 
applied to the IWST method, while solution (ii) 
was applied to the LAS method. This technique 
was found to be useful in avoiding numerical 
instabilities. 

 
In this procedure, the LAS method 

minimizes the sum of the lengths of  the 

displacements (i.e., ∑ + 22 )dy()dx( ii  ⇒ 
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minimum), while the IWST method minimizes 
the total sum of absolute values of the 

displacement components (i.e., ∑ id  ⇒ 

minimum).  
In the final iteration the cofactor matrix of 

the displacement vector is computed as 
 

Qd
(k+1) = S(k)Qd(S(k))T                      (17)  

 
The stability information of each common point 
j can then be determined through a single point 
test as below [Setan 1995; Setan and Singh 
1998c) 
 

Tj=
( ) ( )

2

111)1(

ˆ2
)()(

o

k
j

k
dj

Tk
j dQd

σ

+−++

~F(α,2,df) (18) 

 
where;  
 

dj, Qdj = displacement vector and its            
cofactor matrix respectively for           
each common point j 

2
oσ̂ =

df
)]ˆ(df)ˆ(df[ oo

2
22

2
11 σσ + , common        

or pooled variance factor 
2
1oσ̂ , 2

2oσ̂  = a posteriori variance factors of                           
epochs 1 and 2 respectively 

df1, df2 = degrees of freedom of epochs 1            
and 2 

df = df1 + df2, sum of degrees of freedom of 
epochs 1 and 2 

α = significance level (usually chosen as   
0.05) 

 
If the above test passes (i.e., Tj < F(α,2,df)) 

then the point is assumed to be stable at a 
significance level α. Otherwise, if the test fails 
(i.e., Tj ≥ F(α,2,df)) then the point is assumed to 
be deformed (moved). 

For further reading on robust methods, 
Caspary [1987], Caspary and Borutta [1987], 
Chen [1983], Chen et al. [1990], Singh [1999], 
and Setan and Singh [1998c] are recommended. 
 
 
Congruency Testing Method 
 

Another rigorous method known as 
congruency testing has been applied in 
estimating the displacements of all common 
points in a monitoring network. As opposed to 

the robust methods, congruency testing will 
iteratively remove one datum point at a time 
until the congruency test passes.  

Basically the adopted procedure of 
congruency testing consists of the following 
steps [Setan 1997] 

 
(1) Transformation of displacement vector 

(d) and its cofactor matrix (Qd) 
respectively, for both epochs into a 
common datum. 

(2) Determination of stable datum points by 
congruency testing [Fraser and Gruendig 
1985]. 

(3) Localization of deformation through 
single point test, S-transformation and 
congruency testing. 

(4) Final testing of deformation by a single 
point test. 

 
 
Transformation of Both Epochs into a 
Common Datum 
 

During deformation analysis by the 
congruency testing (and robust) methods, it is 
important that the displacement vector, d 
(equation 7) and its cofactor matrix, Qd 
(equation 8) are referred to the same datum or 
computational base. The initial datum could be 
either the reference points in a reference 
monitoring network, or a group of selected 
points based on a priori information in a relative 
monitoring network. 

In this study, the S-transformation has been 
applied to transform matrix d and Qd into a 
common datum definition (either minimum trace 
or partial minimum trace solutions) [Caspary 
1987; Cooper 1987; Fraser and Gruendig 1985; 
Biacs and Teskey 1990] 
 

d1 = Sd            (19) 

1dQ  = SQd
TS                                   (20) 

S =  I - G( TG WG)-1 TG W        (21)
  
 
where d1 and 

1dQ  are the displacement vector 

and its cofactor matrix respectively based on the 
new datum or computational base, G is the inner 
constraints matrix constructed depending on the 
union of the datum defects in the two epochs 
and on the number of common points, and W is 
the weight matrix with diagonal value of one for 
datum points and zero elsewhere. Matrix S is 
symmetric only for the minimum trace solutions 
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(i.e., all points in the network were defined as 
datum). 

The group of selected datum points is then 
tested for its stability by using congruency 
testing. 
 
 
Congruency Testing on Initial Selected Datum 
Points 
 

Congruency testing is performed to 
determine whether a group of selected datum 
points have significantly moved between the two 
epochs. 

The null and alternative hypothesis for 
congruency testing are [Setan 1995; Singh 1997; 
Cooper 1987; Fraser and Gruendig 1985; Biacs 
and Teskey 1990; Singh 1999] 
 

Ho :  E( 'd1 ) = 0                   (22) 
                (no significant deformation for a 

group of datum points) 
 
 and 
 

Ha :  E( 'd1 ) ≠ 0                   (23) 
               (existence of deformation for a group 

of datum points) 
 

The test statistic is datum independent, i.e., 
 

ω = 2

'
1

''
1

ˆ
1

o

d
T

h
dQd

σ

+

  ~  F(α,h,df)       (24) 

 
where 
 

'd1 , '
dQ

1
 =  displacement vector and its 

cofactor matrix of the datum 
points common in both 
epochs 

h = rank ( '
dQ

1
) 

= (2n-d) for a 2-D network with n 
number of common datum points and d 
number of datum defects 

2
oσ̂  = common variance factor 

+'
dQ

1
=( '

dQ
1
+ rG T

rG )-1- rG ( T
rG rG T

rG rG )-1 T
rG ,   

          pseudo inverse 
α = significance level, typically α = 0.05 

 
The inner constraints matrix rG  is 

constructed depending on the number of 

common datum points and the union of the 
datum defects in the two epochs. Generally, 
matrix '

dQ
1
 is singular, thus a pseudo inverse is 

used for the computation of ω.   
The null hypothesis is accepted at the α 

level of significance if the test statistic (equation 
24) does not exceeds the critical value of the F-
distribution (i.e., ω < F(α,h,df)). The rejection 
of the null hypothesis indicates the existence of 
deformation in the group of selected datum 
points (i.e., accepting the alternative hypothesis). 
The failure of the test leads to localization of the 
deformation in locating the datum point whose 
displacements caused the network to change in 
shape. The network is then transformed into a 
new computational base. The localization 
procedure continues until all the remaining 
group of datum points were being verified as 
stable by the congruency test. 
 
 
Localization of Deformation 
 

If the congruency test (equation 24) is 
rejected, localization of deformation is then 
performed. In this study, the developed 
procedure of localization of deformation 
consists of the following steps, i.e., the single 
point test on the datum points, S-transformation 
into a new computational base and the 
congruency testing on the remaining common 
datum points [Setan 1995]. 
 
 
(i) Single Point Test on the Datum Points 
 

The purpose of the single point test is to 
locate the datum point with the largest statistical 
value (or unstable datum point), and these point 
will be eliminated from the computational base 
or datum. 

The single point test for a 2-D network, i.e., 
neglecting the correlation between the datum 
points, is [Singh 1997; Setan 1995] 

Tj =  2

'
1

1''
1

ˆ2
1

o

jd
T
j dQd

j

σ

−

    (25) 

 
where '

jd1  and '
d j

Q
1

 are the displacement vector 

and its cofactor matrix of each datum point j, 
and 2

oσ̂  is the pooled variance factor (equation 
18).  

Instead of the single point test (equation 
25), one can also apply the decomposition of the 
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quadratic form in order to determine the 
significantly unstable datum point. More details 
are given in Caspary [1987], Setan [1995], 
Cooper [1987], and Fraser and Gruendig 
[1985]. 

The datum point with the largest Tj is 
assumed to have caused the change of shape in 
the network, and it will be eliminated from the 
computational base. The network is then 
transformed into a new computational base 
which is defined by the remaining datum points. 
 
 
(ii) Transformation of the Network into a New 

Computational Base 
 

An S-transformation is then carried out to 
transform d1 and 

1dQ  into a new computational 

base, hence equations 19 to 21 can be written as 
 

d2 = Sd1                        (26) 

2dQ  = S
1dQ ST                (27) 

S =  I - G( TG WG)-1 TG W             (28) 
 
where d2 and 

2dQ  are the displacement vector 
and its cofactor matrix referring to the new 
datum definition and W is the weight matrix 
(with diagonal value of one for the remaining 
datum points and zero elsewhere). 

The “retained” datum points are then tested 
for stability by congruency testing. 
 
 
(iii) Congruency Testing on a Group of 

Remaining Datum Points 
 

The statistical test is the same as in equation 
24, except that this test is performed only on the 
remaining datum points. The hypotheses for this 
test are 
 

Ho :  E( 'd 2 ) = 0                  (29) 
                (no significant deformation for a 

group of remaining datum points), 
 
 and 
 

Ha :  E( 'd 2 ) ≠ 0                  (30) 
                (existence of deformation for a group 

of remaining datum points) 
 

The test statistic then becomes (refer 
equation 24) 

ω = 2

'
2

''
2

ˆ)2(
2

o

d
T

kh
dQd
σ−

+

  ~  F(α,h-2k,df)    (31) 

 
where 'd 2  and '

dQ
2

are the displacement vector 

and its cofactor matrix of the remaining datum 
points, and k is the number of points removed 
from the datum definition.  

If the null hypothesis is rejected (i.e., ω ≥ 
F(α,h-2k,df)), then the localization process will 
be repeated until the null hypothesis is accepted. 
Otherwise, if the null hypothesis is accepted 
(i.e., ω < F(α,h-2k,df)) then the stability 
information of all the common points in the 
network is determined through the final testing 
of deformation. 
 
 
Final Testing of Deformation by Single Point 
Test 
 

After the congruency test (equation 31) 
passes, the single point test is then carried out on 
all the common points in the network at a 
significance level α. 

The null and alternative hypothesis for this 
test are 
 

Ho :  d2j = [dx2j dy2j]T = 0        (32)    
               (no deformation for each common 

point in the network), 
 
 and 
 

Ha : d2j = [dx2j dy2j]T ≠ 0           (33) 
              (existence of deformation for each             

common point in the network) 
 

The test statistic (refer equations 18 and 25) 
is 
 

Tj =  2

2
1

2

ˆ2
2

o

jd
T

j dQd
j

σ

−

  ~  F(α,2,df) (34) 

 
If the above test passes (i.e., Tj < F(α,2,df)) 

at a significance level α (typically α = 0.05), 
then the point j is considered as stable (i.e., the 
vector of displacements lies within its 
confidence region). Otherwise, the rejection of 
the above test indicates that the point j is 
significantly unstable (i.e., the vector of 
displacements lies outside its confidence 
region). 
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All the final datum points should be verified 
as stable by the single point test. If there still 
exist any unstable datum points, then the datum 
point with the largest statistical value (equation 
34) should be eliminated from the datum, and 
the localization process has to be repeated. 

For a better interpretation of the 
displacements of the points, a graphic 
presentation in the form of displacement vector 
and error ellipses is used. This graphic 
presentation is useful in verifying the results of 
the single point test. Generally, both the graphic 
presentation and the single point test should 
provide identical results.  

One can see that the formulations and 
procedures involved for the congruency testing 
method are much more complex compared to the 
robust methods. The robust and congruency 
testing methods are important tools for 
determining the trend of movements of all the 
common points in the network, which form a 
basis for preliminary identification of the 
deformation models during deformation 
modelling.  
 
 
Modelling of Deformation 
 

In this study the procedure for modelling of 
deformation is based on the well known 
generalized method developed at the University 
of New Brunswick, Canada [Chen 1983]. 
Deformation modelling can be carried out by 
using either the observation differences 
approach or displacement (coordinate 
differences) approach. This paper will focus 
only on the displacement approach. However, 
the interested reader can refer to Chen [1983] for 
a detail explanation of the two approaches. 

The generalized method consists of three 
basic processes  

  
(1) Preliminary identification of the 

deformation model 
(2) Estimation of the deformation 

parameters 
(3) Diagnostic checking of the deformation 

models and the final selection of the 
“best” model 

 
 
Preliminary Identification of the 
Deformation Model 
 

The identification of the deformation 
models is based on a priori information or on 
trend analysis of the displacements. In a 2-D 
analysis the following deformation parameters 
must be considered 

 
(i) Two components of the rigid body 

displacement (ao and bo) 
(ii) A rotation parameter in xy axes (ω(x,y)) 
(iii) Two normal strain components in x and 

y axes (εx(x,y) and εy(x,y)) and shearing 
strain in xy axes (εxy(x,y)) 

 
The deformation of a block is fully 

described if a displacement function d(x,y) is 
given for the whole block. In a general case the 
displacement function is determined through a 
polynomial approximation of the displacement 
field as 
 

dx =  ao + a1x + a2y + a3xy + a4x2 + … (35) 
dy =  bo + b1x + b2y + b3xy + b4x2 + … 
   

where dx and dy are the displacements in the x 
and y axes, and x and y are the coordinates of the 
common points (i.e., either approximate or 
estimated coordinates). 

However, in this study only the linear model 
has been taken into consideration and equation 
(35) can be further simplified as 
 

dx =  ao + a1x + a2y                (36) 
dy =  bo + b1x + b2y  

 
or 
 

dx =  ao + εxx + εxyy - ωy                 (37) 
dy =  bo + εxyx + εyy + ωx 

 
Equation (37) can be written in matrix form 

as (ignoring rotation parameter ω) 
 

d =  B ĉ                         (38) 
 
or 
 

⎥
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xy
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o

b
a

ε
ε
ε  (39) 

 
where d is the vector of displacements (equation 
7), B is the design matrix and ĉ  is the vector of 
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unknown deformation parameters (or 
coefficients of the polynomials). Equation (38) 
is well known as the deformation model. 

Some examples of the typical deformation 
models can be found in Chrzanowski et al. 
[1983], Chen [1983], and Chrzanowski et al. 
[1986]. In this study, six typical deformation 
models have been adopted and applied i.e., 

 
(1) No global deformation (dx = 0 ,  dy = 0) 
(2) Stable points (dxi = 0 ,  dyi = 0) 
(3) Single point movement (dxi = ai ,  dyi = 

bi) 
(4) Rigid body movement (dx = ao ,  dy = 

bo) 
(5) Homogeneous strain (dx = εxx + εxyy ,  

dy = εxyx + εyy) 
(6) Rigid body plus homogeneous strain (dx 

= ao + εxx + εxyy ,  dy = bo + εxyx + εyy). 
 
 
Estimation of the Deformation 
Parameters 
 

The deformation model equation (38) is 
based on the Gauss-Markov model which can be 
written as 
 

d + v̂  =  B ĉ                   (40) 

where v̂  is vector of residuals. 
In order to determine the vector ĉ , the 

number of known displacements of the common 
points must be at least equal to the number of 
unknown deformation parameters in the 
deformation model. If the number of known 
displacements d is larger than that of the 
unknown deformation parameters, then the 
vector ĉ  is determined through LSE. 

The solution is then obtained from 
 

ĉ  =  ( TB PdB)-1 TB Pdd           (41) 
 
where Pd is the weight matrix and is calculated 
as [Chen et al. 1990; Chen 1983; Singh and 
Setan 1999b, c; Singh and Setan 1998; Singh 
1999] 

 
(i)  for all the common points in the network: 

 
Pd=[S dQ TS +G( TG G)-1 TG ]-1-G( TG G)-1 TG   

                                 (42) 
 
or 

  
Pd =  N1(N1 + N2 + G TG )-1N2       (43) 

 
with 
 

S =  I - G( TG G)-1 TG          (44) 
 

where, Qd is given in equation (8) and N1 and N2 
are the coefficient matrix (i.e., full matrix) for 
epochs 1 and 2 respectively. Matrix N1, N2, G 
and Qd are formed with respect to all the 
common points in the network. 
 

(ii) for a portion of common points in the 
network: 

 
Pd=[Sr rdQ T

rS +Gr( T
rG Gr)-1 T

rG ]-1-Gr( T
rG Gr)-

1 T
rG   

 (45) 
 
or 
 
 Pd= rN1 ( rN1 + rN2 + rG T

rG )-1
rN2     (46) 

 
with 
 

Sr = I - Gr( T
rG Gr)-1Gr         (47) 

N1 = 
⎥
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⎤

⎢
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⎡
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''

NN
NN

2221

1211          (48) 

N2 = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
''''

''''

NN
NN

2221

1211                (49) 

 rN1  =  '
22N  - '

21N  1'
11
−N  '

12N       (50)
  

rN2  =  "
22N  - "

21N 1"
11
−N "

12N       (51)
     
where matrix Sr, rdQ , Gr, 'N11  and "N11  are 
formed only for a portion of common points. 

The cofactor matrix of ĉ  is 
 

ĉQ  =  ( TB PdB)-1                (52) 
 
 The procedure for calculation as shown 
above should be followed in order to avoid any 
numerical problems. According to Chen [1983] 
the rotation parameter ω can be omitted 
(considered as being zero) from the deformation 
model (equation 40) if the weight matrix Pd is 
calculated as in equations (42) or (43) and (45) 
or (46). Only in this case the omission of ω is 
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justified when no external orientation of the 
network is included in the observables. The 
rotation parameter ω only plays the role of a 
additional or nuisance parameter without any 
practical meaning. More details are given in 
Chen [1983]. 
 
 
Diagnostic Checking of the 
Deformation Model and Selection of 
the “Best” Model 
 

The global appropriateness of the 
deformation model can be tested using the 
quadratic form of the residuals v̂ . The global 
test is based on the following hypotheses 
 

Ho : 2
ĉoσ̂  = 2

oσ̂                 (53) 
 
and 
 

Ha : 2
ĉoσ̂  ≠ 2

oσ̂                 (54) 
 
where 2

oσ̂  is the common variance factor and 
2
ĉoσ̂  is calculated as [Chen 1983; Chrzanowski 

et al. 1983; Kuang 1996; Secord 1985; Singh 
and Setan 1998; Singh and Setan 1999b, c; 
Singh 1999] 
 

2
ĉoσ̂  =  

c

d
T

df
v̂Pv̂                 (55) 

 
where 
 

v̂  =  B ĉ  - d ,  vector of residuals, equation 
(40) 

Pd =  weight matrix (equation 17) 
dfc =  2n - d - mc ,  with n number of points 

in forming matrix Pd, d is number of 
datum defects and mc is number of 
parameters to be estimated, ĉ . 

 
The statistic then becomes 

 

T = 2

2

o

ĉo

ˆ
ˆ
σ
σ  = 2ˆ

ˆˆ

oc

d
T

df
vPv

σ
   ~  F(α,dfc,df)    (56) 

 
The test passes or the null hypothesis is 

accepted if the statistic does not exceed the 
critical value (i.e., T ≤ F(α,dfc,df)) at a 
significance level α (typically α = 0.05). 

Otherwise the null hypothesis is rejected if the 
statistic exceeds the critical value (i.e., T > 
F(α,dfc,df)).  

The deformation model is acceptable if the 
null hypothesis is not rejected at a significance 
level α. 

The significance of the individual parameter 

iĉ  or a group of parameters '
iĉ  which is a subset 

of ĉ  (equation 41), is given by the following 
hypotheses [Chen 1983; Kuang 1996; Singh 
1999] 
 

Ho : iĉ  = 0 and Ha : iĉ  ≠ 0 (individual 
parameter)           (57) 

 
Ho : '

iĉ  = 0 and Ha : '
iĉ  ≠ 0 (a group of 

parameters)               (58) 
 

The local test becomes [Chen 1983; Kuang 
1996; Chrzanowski et al. 1983; Chrzanowski et 
al. 1986; Secord 1985; Singh and Setan 1999b; 
Singh 1999] 
 

Ti =  
ico

i

q
c

ˆ
2

2

ˆ
ˆ

σ
  ~ F(α,1,df)   (individual 

parameter)            (59) 
 

Tg =
io

ic
T

i

u

cQc
i

2

'
ˆ

'

ˆ

ˆˆ '

σ
  ~ F(α,ui,df)  (a group of 

parameters)             (60) 
 
where 
 

iĉq = the ith diagonal element of matrix ĉQ  

iĉ  = individual parameter 
2
oσ̂  = common variance factor 

df = sum of degrees of freedom of epoch 1 
and epoch 2 

'
iĉ  = subset of ĉ  

ui = number of parameters in '
iĉ  

'
iĉQ  = submatrix of ĉQ  

α = significance level, usually α = 0.05. 
 

The null hypothesis (equations 57 or 58) 
will be rejected at a significance level α if 
 

Ti > F(α,1,df)   or   Tg > F(α,ui,df)      (61) 
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The tested parameters are expected to be 
statistically significant. If the parameters are not 
significant, then a new deformation model needs 
to be selected and re-evaluated [Kuang 1996]. 
This process is repeated until the global test 
passes and all the parameters are statistically 
significant. 

Since the behavior of the deformable body 
is usually not completely known, there is often 
more than one possible model that may be 
appropriate. The “best” model is selected based 
on the following criteria 

 
(i) The model passes the global test and all 

the parameters involved are statistically 
significant 

(ii) If more than one model satisfies criteria 
(i), the model with the fewest parameters 
is then selected 

(iii) On the basis of the estimated trend of 
movements or a priori or other 
information (makes “mechanical” sense) 

 
 
Program Package NETDEFAN 
 

The adopted procedure (i.e., network 
adjustment, trend analysis and modelling of 
deformation) has been implemented in a 
program package known as NETDEFAN 
(NETwork and DEFormation ANalysis) 
developed at the Center for Industrial 
Measurement and Engineering Surveying, 
Universiti Teknologi Malaysia [Singh 1999]. 
NETDEFAN is develop using FORTRAN77, 
and can handle only 2-D monitoring networks. 
The program package consists of three modules 
known as COMPUT2, DEFORM2 and 
STRANS2 [Setan and Singh 1997; Setan and 
Singh 1998a; Singh 1997].  

Program COMPUT2 is designed for the 
network adjustment of each epoch, with three 
main options, i.e., 

 
(i) LSE of each epoch 
(ii) Pre-analysis 
(iii) Variance component estimation 

 
Program DEFORM2 is designed for 

deformation analysis, and consists of seven main 
options, i.e., 

(i) Trend analysis by congruency testing 
method 

(ii) Trend analysis by IWST method 
(iii) Trend analysis by LAS method 

(iv) Trend analysis by direct coordinate 
differences [Singh and Setan 1999a] 

(v) Sensitivity analysis for estimating the 
minimum detectable deformation of a 
monitoring network 

(vi) Modelling of deformation 
(vii) Strain analysis 
 

 Only option (i) of program COMPUT2 and 
options (i), (ii), (iii) and (vi) of program 
DEFORM2 are mentioned in this paper. 
 Program STRANS2 is an additional 
program for S-transformations of LSE results of 
a single epoch from one datum definition to 
another.  
  The input for program COMPUT2 are the 
observations and the approximate coordinates 
files of each epoch. Program COMPUT2 
produces LSE summary files, deformation files 
and plot files for epochs 1 and 2. The 
deformation file of each epoch contains 
information of a posteriori variance factor, 
degrees of freedom, number of datum defects, 
types of datum defects, approximate coordinates, 
estimated coordinates and the lower triangle of 
the cofactor matrix of the estimated coordinates.  

The deformation files of epoch 1 and 2 are 
then used as input for program DEFORM2 for 
deformation analysis. The deformation file for 
each epoch is also used as input for program 
STRANS2 for transformation of LSE results 
into a new datum definition. 

All the above programs provide plot files 
which are used as input for a special program 
called Graphical Presentation for Deformation 
Survey Version 2 (GPDSV2), for graphical 
display of the displacement vectors and their 
standard ellipses respectively [Singh 1999].  

 
 

Deformation Analysis of a Dam 
Monitoring Network 
 

A known data of a dam monitoring network 
(refer Figure 1), taken from Caspary [1987], 
have been used to test the developed procedure 
and the program package.  
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Figure 1: A dam monitoring network [Caspary 
1987]. 

 
The monitoring network consists of two-

epochs of observations with 12 points i.e., 7 
reference points (1, 2, 3, 4, 6, 7 and 9) and 5 
object points (10, 11, 12, 13 and 14). Points 10 
through 14 are located on the crest of the dam 
thus represent the object under investigation. 
Each epoch consists of 49 directions (standard 
error of 1 second) and 6 horizontal distances 
(standard error of 0.3 [mm]). Simulated 
deformation were given to points 3, 11, 12 and 
13 as shown in Table 1. 
 
Table 1: Simulated deformation [Caspary 1987]. 
 

Point dx (mm) dy (mm) 
3 -0.60 -0.50    
11 -0.75 0.60 
12 0.50 1.10 
13 0.30 1.00 

 
 
Adjustment of the Network 
 

Network adjustment of each epoch is 
carried out by using program COMPUT2 by 
fixing coordinates x1, y1 and x2 (minimum 
constraints solution) and leading to 29 degrees 
of freedom and 26 parameters (i.e., 21 
coordinates and 5 orientation parameters). The 
significance levels for the Chi-square and Tau 
tests were chosen as 0.05. The criteria for 
convergence was set to 0.0001 [m], and both 
epochs converged at the second iteration.  

The estimated variance factors were 0.829 
and 0.937 for the first and second epoch 
respectively. The combined variance factor is 
0.883. The LSE results of each epoch passed 
both the global and local tests. The average 
redundancy number is 0.53 for both epochs, thus 
indicating that the network possesses a high 
degree of reliability. 

 

 
Trend Analysis of the Displacement 
Field 
 

The trend of movements of the monitoring 
network are determined by using program 
DEFORM2 with three solutions as below 

 
(i) Trend analysis by the congruency testing 

method with points 1, 2, 3, 4, 6, 7 and 9 
defined as a datum 

(ii) Trend analysis by IWST method with 
points 1, 2, 3, 4, 6, 7 and 9 defined as  a 
datum 

(iii) Trend analysis by LAS method with 
points 1, 2, 3, 4, 6, 7 and 9 defined as a 
datum. 

 
The significance level for deformation 

detection is specified as 0.05. The tolerance 
value and the lower bound value were taken as 
0.0001 [m] and 0.000001 [m] respectively. The 
test on the variance ratio passes at 0.05 
significance level (i.e., 1.130 < 1.861), thus 
indicating the compatability between the two 
epochs.  

The congruency test (equation 24) failed for 
solution (i), thus confirming the existence of 
deformation for a group of selected datum 
points. The localization process then removes 
unstable datum points from the computational 
base one at a time until the congruency test 
passes. This procedure removed point 3 and 6, 
resulted in 5 datum points (i.e., 1, 2, 4, 7 and 9) 
for final computation of the displacements. All  
datum points passed the single point test 
(equation 34) and were confirmed as stable. 
Solution (i) verified points 3, 6, 11, 12 and 13 as 
significantly deformed and the rest of the points 
as stable.  

Solutions (ii) and (iii) converged at the 
second iteration. Solution (ii) verified points 3, 
12 and 13 as moved and the rest of the points as 
stable. While solution (iii) verified points 3, 6, 
12 and 13 as moved and the rest of the points as 
stable. The coordinate differences obtained for 
the three solutions are shown in Table 2. 
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Table 2: Estimated displacements for solutions (i) to 
(iii) 
(*  Point verified as moved). 

 
 solution (i) solution (ii) solution (iii) 

point dx 
(mm) 

dy 
(mm) 

disp. 
vect. 
(mm) 

dx 
(mm) 

dy 
(mm) 

disp. 
Vect. 
(mm) 

dx 
(mm) 

dy 
(mm) 

disp. 
vect. 
(mm) 

1 0.1 0.1 0.2 0.3 0.0 0.3 0.3 0.1 0.3 
2 0.0 0.0 0.0 0.2 -0.1 0.2 0.2 0.0 0.2 
3 -0.9 -0.5 1.0* -0.7 -0.6 0.9* -0.7 -0.5 0.9* 
4 -0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 
6 -0.5 0.2 0.5* -0.3 0.1 0.3 -0.3 0.2 0.4* 
7 0.2 0.0 0.2 0.4 -0.1 0.4 0.4 0.0 0.4 
9 -0.2 -0.2 0.3 0.0 -0.2 0.2 -0.1 -0.1 0.1 

10 0.1 0.1 0.1 0.3 0.0 0.3 0.2 0.1 0.3 
11 -0.7 0.4 0.8* -0.5 0.3 0.6 -0.5 0.4 0.7 
12 0.5 1.3 1.4* 0.6 1.3 1.4* 0.6 1.3 1.5* 
13 0.1 1.1 1.1* 0.3 1.1 1.1* 0.3 1.1 1.2* 
14 -0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 

 
 

Selection of the “Best” Displacements 
 

The stability information (i.e., stable and 
moved points) varies between the three solutions 
(i.e., congruency testing, IWST and LAS). The 
“best” displacements is then selected based on 
the results of modelling of single point 
movement. Three models were selected as below 

  
(i) Points 3, 6, 11, 12 and 13 are 

experiencing single point movement in 
separate blocks, while the rest of the 
points as a stable block 

(ii) Points 3, 12 and 13 are experiencing 
single point movement in separate blocks, 
while the rest of the points as a stable 
block 

(iii) Points 3, 6, 12 and 13 are experiencing 
single point movement in separate blocks, 
while the rest of the points as a stable 
block. 

 
The global test (equation 23) failed for 

models (ii) and (iii). Model (i) was therefore 
selected as the “best” model because the global 
test passed and all the group of parameters are 
statistically significant. The results of single 
point movement are shown in Table 3. Figure 2 
depict the “best” displacements via the 
congruency testing method (model i). 
 
 
 
 
 
 
 
 
 
Table 3: Results of modelling of single point movement 
for model (i) to (iii). 

 
model 

no. 
estimated deformation parameters and their statistical 

testing for a group of parameters 
global test 

 
i 

 
 dx3 = -0.8    dy3 = -0.5        34.47 > 3.13 (significance) 
 dx6 = -0.5    dy6 = 0.1           4.52 > 3.13 (significance) 
 dx11 = -0.8   dy11 = 0.5        12.07 > 3.13 (significance) 
 dx12 = 0.4    dy12 = 1.4        19.25 > 3.13 (significance) 
 dx13 = 0.2    dy13 = 1.2        11.55 > 3.13 (significance) 
 

 
passed 

0.55 < 1.96 

 
ii 

 
 dx3 = -0.7    dy3 = -0.5        35.10 > 3.13 (significance) 
 dx12 = 0.5    dy12 = 1.3        18.63 > 3.13 (significance) 
 dx13 = 0.2    dy13 = 1.1        10.63 > 3.13 (significance) 
 

 
failed 

2.64 > 1.84 

 
iii 

 
 dx3 = -0.9    dy3 = -0.5        39.23 > 3.13 (significance) 
 dx6 = -0.5    dy6 = 0.0           4.74 > 3.13 (significance) 
 dx12 = 0.5    dy12 = 1.3        18.14 > 3.13 (significance) 
 dx13 = 0.2    dy13 = 1.1          9.43 > 3.13 (significance) 
 

 
failed 

2.32 > 1.89 
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Figure 2: Graphical display of the “best” displacements 
together with their 95% confidence ellipses for model i 
(not to scale) 
 
 
Modelling of Deformation 
 

A trend analysis of the displacement field 
(refer Figure 2) leads to a choice of several 
possible deformation models as below 

 
(i) No global deformation model on all the 

points in the network 
(ii) Points 10, 11, 12, 13 and 14 are 

experiencing homogeneous strain 
(iii) Points 3, 6 and 11 are experiencing 

single point movement in separate 
blocks, points 12 and 13 are 
experiencing rigid body movement and 
the rest of the points as a stable block 

(iv) Points 3 and 6 are experiencing single 
point movement in separate blocks, 
points 10, 11, 12, 13 and 14 are 
experiencing rigid body movement plus 
homogeneous strain and the rest of the 
points as a stable block. 
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The results of the selected deformation 

models are shown in Table 4. All models (except 
model iii) failed the global test. Model (iii) was 
then selected as the “best” model because it 
passes the global test and all the group of 
parameters are statistically significant. 
 

Table 4: The estimated deformation models. 
 

model 
no. 

Estimated deformation parameters and their statistical testing for 
a group of parameters 

global test 

 
i 

 
 

 
failed 

1.85 > 1.49 
 

 
ii 

 

xε = 20.98 μstrain 

yε = -10.05 μstrain 

xyε = 7.37 μstrain 

6.70 > 2.70 (significance) 
 

 
failed 

1.65 > 1.51 

 
iii 

 
dx3 = -0.8 mm      dy3 = -0.5 mm    35.91 > 3.13 (significance) 
dx6 = -0.5 mm      dy6 = 0.1 mm       4.21 > 3.13 (significance) 
dx11 = -0.8 mm     dy11 = 0.5 mm    12.46 > 3.13 (significance) 
 
ao = 0.3 mm         bo = 1.4 mm       26.60 > 3.13 (significance) 
 

 
passed 

0.60 < 1.89 

 
iv 

 
dx3 = -1.1 mm      dy3 = -0.5 mm    72.15 > 3.13 (significance) 
dx6 = -0.6 mm      dy6 = 0.1 mm       6.21 > 3.13 (significance) 
 
ao = -0.9 mm         bo = -1.8 mm     10.75 > 3.13 (significance) 
 

xε = 8.1 μstrain 

yε = 19.7 μstrain 

xyε = -2.4 μstrain 

7.50 > 2.75 (significance) 
 

 
failed 

4.36 > 1.92 

 
Therefore it can be concluded that the body 

was experiencing rigid body movement for 
points 12 and 13, while points 3, 6 and 11 are 
experiencing single point movement in separate 
blocks. The results for model (iii) (refer Table 4) 
are similar to the simulated deformation (i.e.,  
Table 1). The “best” model is graphically 
presented in Figure 3.  

Caspary [1987] only estimated the trend of 
movements for this monitoring network (i.e. , 
using congruency testing and robust (LAS) 
method) and modelling of deformation was not 
performed. Therefore no further comparison can 
be made with Caspary [1987] regarding the 
results of modelling (refer Table 4). 
 

12                 13

11
3

6
 
 
 
 

 
Figure 3: Graphical presentation of the “best” 
deformation model. 
 
 
Conclusions 
 

This paper has presented a procedure of 
deformation analysis, which comprises of  the 
network adjustment of each epoch, trend 
analysis and the modelling of deformation. The 
developed procedure provides a systematic step-
by-step analysis and it can be applied to either 
reference or relative monitoring network. 

The six typical deformation models applied 
in this study were found to be optimal enough in 
determining the behavior of the body or object 
under investigation. However, the second and 
third order models (equation 35) should also be 
taken into consideration in order to obtain a 
deeper insight of the behavior of the body. 

During trend analysis of the displacement 
field, several methods have been compared in 
order to avoid wrong interpretation of the trend 
of movements of the object under investigation. 
The “best” displacements are then selected 
based on the results of modelling of single point 
movement before deformation modelling is 
performed. 

The results obtained for the dam monitoring 
network show that the developed procedure and 
the program package are applicable for the 
geometrical analysis of deformation. 
 

      undeformed 
            deformed at epoch 2
(Note:-  not to scale) 
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