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Abstract This paper considers Forced KdV equation with negative forcing term.
The supercritical solitary wave solutions of the stationary Forced KdV equations are
obtained. In order to obtain the solutions, the domain of the problem has been divided
into three parts; the left, the middle and the right parts. The solution on the left and
the right parts are obtained by an analytical method. The solution on the middle
part is expressed in terms of Weierstrass elliptic function. A computer program using
Mathematica is designed to produce the solutions. The complete solution is found by
matching the solutions of all the three parts. It is found that there are four different
solutions according to the values of the phase shift. All solutions are positive.
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1 Introduction

The forced KdV equation is a first -order approximation of a long nonlinear surface wave in
a channel flow of an inviscid fluid of constant density over a bump or a dent. This equation
is normally written in the form (Gong and Shen, 1994)

ηt + ληx + 2αηηx + βηxx = fx(x) −∞ < x < ∞ t > 0 (1)

where λ > 0, α < 0 and β < 0 are constant and f(x) is a given function called the forcing
term which is differentiable and has a compact support i.e. it is nonzero only in a closed
bounded set. Equation (1) was first derived by Akylas (1984) and in an asymptotically
reduced result from Euler equations of fluid motion and the corresponding boundary con-
ditions. The unknown η(x, t) represents the first order elevation of the free surface of the
fluid from its equilibrium level. The forcing function f(x) is due to the bottom topography
of the fluid domain (such as a bump or dent) or due to an external pressure on the free
surface such as the wind stress on the surface of an ocean.

In the absence of the forcing function term i.e f(x) = 0 equation (1) becomes the familiar
Korteweg deVries(KdV) equation

ηt + ληx + 2αηηx + βηxx = 0 −∞ < x < ∞ t > 0. (2)
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When ηt = 0 equation (1) becomes the equation of our concern, the stationary forced
(sfKdV) equation,

ληx + 2αηηx + βηxx = fx(x) −∞ < x < ∞ (3)

Equation (3) was first derived by Shen (1993). The solutions of equation (3) are categorized
according to the value of λ (Upstream flow velocity) as follows (Shen, 1993).

(i) Supercritical stationary waves. They occur only when λ is positive and sufficiently
large.

(ii) Subcritical stationary waves. They occur only when λ is negative and sufficiently
small.

(iii) Unsteady periodic soliton radiation. This solution appears when |λ| is small. Such a
solution is called the transcritical solution.

2 Problem Statement

In this paper we study supercritical solitary wave solutions of equation (3) with negative
forcing terms in the rectangular dent. In this work we shall take the value of λ equal to 3
and the length of rectangular dent equals 2 in order to compare with the previous results.

Solitary waves refer to any surface wave profile that dies out at infinity which means
that the free surface elevation λ has the property

η → 0, ηx → 0, and ηxx → 0 as x → ±∞ (4)

Integrating equation (3) once with respect to the independent variable from −∞ to x,
we have

λη + αη2 + βηxx = f(x), −∞ < x < ∞, λ > 0 (5)

with
η → 0, and ηx → 0 as x → ±∞ (6)

In this paper we shall study equation (5) and (6) with the following conditions

(i) α = −3
4

< 0, β = −1
6

and λ = 3.

(ii) f(x) =

{
−1

2
, −a

2
≤ x ≤ a

2
0, otherwise

where a is a positive constant representing the length of a rectangular dent.
In order to obtain the solution of equation (5) and (6) the domain of the problem has

been divided into three parts. The left
(
x ≤ −a

2

)
, the middle

(
−a

2
< x <

a

2

)
and the right

parts
(
x ≥ a

2

)
. The complete solution was found by matching the solutions of all parts.

Section 3 and Section 4 describes the method of finding solution on the left and the right
part respectively. Section 5 describes the solution in the middle part. In Section 7 we
combine the solutions obtained in Section 4 and Section 5.
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3 Left-Side Solution

In this Section we need to solve equations (5) and (6) in the region of zero forcing term
by using analytical method. Meanwhile, the solution in the region of nonzero forcing term
(middle part) will be discussed later in Section 5.

Outside the region of the forcing term, equations (5) and (6) become

λη + αη2 + βηxx = 0
a

2
≤ x ≤ −a

2
, λ > 0 (7)

η → 0, and ηx → 0 as x → ±∞. (8)

We need to find the solution in the negative region
(
x ≤ −a

2

)
outside the rectangular

bump. In this region equations (7) and (8) are written as

λη + αη2 + βη′′ = 0 −∞ < x < −a

2
, λ > 0 (9)

η → 0, and ηx → 0 as x → −∞. (10)

where equation (10) is the half negative solitary wave conditions. We start by rearranging
equation (9) in the form

βη′′ = −λη − αη2 −∞ < x ≤ −a

2
, λ > 0 (11)

where η′ =
dη

dx
.

The procedure we adopt here in order to integrate equation (11) is that we write η′′ as

η′′ = η′
dη′

dx
(12)

Substituting equation (12) into equation (11) we obtain

βη′dη′ =
(−λη − αη2

)
dη (13)

Equation (13) is simply a first order separable equation which can be integrated easily
to get

β

2
(η′)2 = −λ

2
η2 − α

3
η3 + C. (14)

Multiplying both sides of equation(14) by
3
α

we then obtain

3β

2α
(η′)2 = −3λ

2α
η2 − η3 +

α

3
C (15)

where
β

α
is positive constant and C is the integration constant.
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By the half negative solitary wave conditions (10), equation (15) has a real double root, r0

and r0 is smaller than the third real root r. Then equation (15) can be written as

3β

2α
(η′)2 = (r − η) (η − r0) , r0 < r. (16)

If we now let

v = η − r0 ζ =
√

2α

9β
x,

then equation (16) can be written as

1
3

(
dv

dζ

)
= v2 (s1 − v) , where s1 = r − r0 > 0. (17)

Equation (17) can be integrated to yield

v = s1 sec h2

√
3s1

4
ζ. (18)

Hence, the actual solution on the left side is

η(x) = −3λ

2α
sec h2

√
−λ

4β
(x− L0) , (19)

where L0 is the phase shift to be determined in Section 6. All graphs of these solutions
are shown in Figure 1. In Section 6 we shall show how to calculate L0. For the purpose of
illustration we now use the values of L0 obtained in Section 6 to produce the appropriate
solution of the sfKdV on the left side.

The graphs shown in Figure 1 are the solution of the sfKdV equation on the left side
when λ = 3 and a = 2. The values of L0 used for this purpose are 0.16614, -0.153332,
-0.795703 and -1.8466578 for graph (a), (b), (c) and (d) respectively.

4 The Right-Side Solution

In this section we determine the solution on the right side
(
x ≥ α

2

)
that lies outside the

rectangular dent. In this region equations (7) and (8) become

λη + αη2 + βη′′ = 0,
a

2
≤ x < ∞, λ > 0 (20)

η → 0 ηx → 0 as x → +∞ (21)

where equation (21) in normally termed as the positive half solitary wave conditions.
The difference between the left and the right region is simply on the solitary wave

conditions. The same procedure as used for the left side can be applied to find the solution
in the right and we thus obtain

η(x) = −3λ

2α
sec h2

√
−λ

4β
(x− L1) , (22)
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where the phase shift L1 = −L0. All graphs of these solutions are shown in
The graphs shown in Figure 2 are the solutions of the sfKdV equation on the right side

when λ = 3 and a = 2. The values of L1 used for this purpose are -0.116614, 0.1553332,
0.7957503 and 1.8466578 for graph (a), (b), (c) and (d) respectively.

5 The Middle Solution

At this stage, we have obtained the solutions at both sides outside the region of the forcing
terms discussed in Section 3 and Section 4, respectively. What is left now is to find the
solutions in the middle. This means that we need to solve equations (5) and (6) in the
region of the forcing terms. We will show that the solution in this region can expressed in
terms of Weierstrass elliptic functions. The solutions we obtained in Section 3, 4, and 5 will
be combined to give the full solutions. This will be presented in Section 7.

In this region, |x| ≤ a

2
, the solution must satisfy

λη + αη2 + βηxx = 1, λ > 0. (23)
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We shall be dealing with equation (23). In order to solve this equation we need to deduce
some conditions. These conditions come from continuity of η and η′ at x = −a

2
and x =

a

2
.

Now at x = −a

2
, we have

η
(
−a

2

)
≡ η0 and η′

(
−a

2

)
≡ η1 (24)

where

η0 = −3λ

2α
sech2

√
−λ

4β
(x + L0) (25)

η1 =

√
−λ

β
η0 tanh

√
−λ

4β

(a

2
+ L0

)
(26)

At x =
a

2
we have

η
(
−a

2

)
= η

(a

2

)
,

η′
(
−a

2

)
= η′

(a

2

)
or η′

(
−a

2

)
= −η′

(a

2

)
(26*)

Integrating equation (23) from −a

2
to x

(
<

a

2

)
, we find

β

2
(η′)2 = η − λ

2
η2 − α

3
η3 + η0 (27)

Equation (27) can be written as

(η′)2 = b1η
3 + b2η

2 + b3η + b4 (28)

where
b1 = −2α

3β
, b2 = −λ

β
b3 = − 1

β
and b4 = −2b3η0.

By making the transformation
η = c1u + c2

Equation (28) is converted into

c2
1u
′2 = b1 (c1u + c2)

3 + b2 (c1u + c2)
2 + b3 (c1u + c2) + b4 (29)

Dividing both sides of equation (29) by (c1)
2 we obtain

(u′)2 = (b1c1)u3

+
[
3b1

(
− b2

3b1

)
+ b2

]
u2

+
[
3b1

(
b2
2

9b2
1

)
+ 2b2

(
− b2

3b1

)
+ b3

]
u

c1

+
(
b1c

3
2 + b2c

2
2 + b3c2 + b4

) 1
c1

(30)
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Equation (30) is now written in a simplified form as

u′2 = 4u3 − g2u− g3 (31)

where

c1 =
4
b1

, c2 = − b2

31
, g2 = − (c2c2)

c1
, and g3 = − (b1c

2
2 + b3c2 + b4)

c2
1

In equation (31), g2 is constant and g3 is a function of L0 for given λ, α, β and a. The
general solution of equation (31) can be expressed in term of Weierstrass elliptic function
(Gong, 1994)

u(x) = ℘ (x + T, g2, g3)

where T is a constant.
Thus, in the region of the non-zero forcing term

(
|x| ≤ a

2

)
the supercritical solitary

wave solution can be written as

η(x) = c1℘ (x + T, g2, g3) + c2. (32)

Equations (25) and (26) are now respectively reduced to

η0 = c1℘
(
−a

2
+ T, g2, g3

)
+ c2 (33)

and

η1 = c1℘
(
−a

2
+ T, g2, g3

)
(34)

From Wang and Guo(1989), we find the identity

(x + T, g2, g3) =
1
4

{
℘′(x, g2, g3)− ℘′(T, g2, g3)
℘(x, g2, g3)− ℘(T, g2, g3)

}2

− ℘(x, g2, g3)− ℘(T, g2, g3) (35)

Substituting equations (33) and (34) into equation (35), we then obtain

(x + T, g2, g3) =
1
4





℘′(x, g2, g3)− η1

c1

℘(x, g2, g3)−
(

η0−c2
c1

)





2

− ℘(x, g2, g3)− η0 − c2

c1
(36)

We now observe that in equation (36), the right hand side is independent of constant
T . We then have

(x + T, g2, g3) =
1
4

{
c1℘

′(x, g2, g3)− η1

℘(x, g2, g3)− η0 + c2

}2

− ℘(x, g2, g3)− η0 − c2

c1
(37)

Using Mathematica, substituting equation (37) into equation (32), we get the solution
on the middle side. All graphs of these solutions are shown in Figure 3.

Figure 3 shows the solutions of the sfKdV in the middle, when λ = 3 and a = 2. The
values of L0 are -0.116614, 0.1553332, 0.7957503 and 1.8466578 for graph (a), (b), (c) and
(d) respectively.
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6 The Phase Shift L0

In this section we shall determine the phase shift L0 which depends on the forcing terms
and the continuity conditions between each adjacent part.

Substituting x =
a

2
and x = −a

2
into equation (32) we get

η
(a

2

)
= c1℘

(a

2
+ T, g2, g3

)
and η

(
−a

2
+ T, g2 + g3

)
+ c2.

Substituting the above expression in equation (26*) we obtain

℘
(a

2
+ T, g2, g3

)
− ℘

(
−a

2
+ T, g2 + g3

)
= 0 (38)

From equations (33), (34), (37) and (38) we can obtain

B (λ,L0) =
c1

4

{
c1℘

′(a, g2, g3)− η1

c1℘(a, g2, g3)− η0 + c2

}2

− c1℘(a, g2, g3) + 2c2 − 2η0 = 0 (39)

Equation (39) determines the phase shift L0.
Equation (39) have a solitary wave solution only when B(λ,L0) = 0 (Gong, 1994).

Hence, B(λ,L0) = 0 is the condition used to calculate the phase shift L0. Using Mathemat-
ica, the function B(λ,L0) was plotted versus trial L0 . The intersection point with L0-axis
was found as the values of L0. (see Figure 4)
This curve has four intersection point with L0-axis, i.e. B(λ,L0) has four zero, L0 =
0.16614, −0.15332, −0.795703 and −1.8466578 that means we have four supercritical soli-
tary wave solutions.
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7 Complete Solutions

We have obtained the solutions of the sfKdV equation at both sides and also in the middle
as discussed in Section 3, 4, and 5, respectively. In this Section we shall give the complete
solutions of the sfKdV equation. This means that we need to combine the solutions on both
side with the middle ones.

We rewrite the solutions outlined in Section 3 as

η(x) = −3λ

2α
sec h2

√
−λ

4β
(x− L0) (40)

for the left side, and

η(x) = −3λ

2α
sec h2

√
−λ

4β
(x− L1) (41)

for the right side. The solution in the middle parts

η(x) = c1℘ (x + T, g2, g3) + c2 (42)

By matching equations (40), (41) and (42) we get

η(x) =





− 3λ
2α sec h2

√
− λ

4β (x− L0) , −∞ < x ≤ −a
2

c1℘ (x + T, g2, g3) + c2, −a
2 < x < a

2

− 3λ
2α sec h2

√
− λ

4β (x− L1) , a
2 ≤ x < ∞

(43)

Equation (43) is the complete solution of sfKdV equation.
The graphs shown in Figure 5 are the complete solutions of the sKdV equation when

λ = 3 and a = 2. The values of L0 are −0.116614, 0.1553332, 0.7957503 and 1.8466578 for
graphs (a), (b), (c) and (d) respectively

8 Conclusion

In this paper we have studied the solutions of the stationary Korteweg-deVries (sfKdV)
equation. In order to obtain the solution of the sfKdV equation, the domain of the problem
has been divided into three parts, the left, the middle and the right parts. The solutions on
the left and right parts were obtained in Section 3 and Section 4 by using analytical method.
The solution on the middle was expressed in the terms of Weierstrass elliptic function. In
both cases we have constructed two computer programs using Mathematica to produce the
solutions. The complete solution of the sfKdv equation is given in Section 7, by matching
the solutions of the three parts i.e. the left, the middle and the right parts. We have
found that the solutions of the stationary Korteweg-deVries (sfKdV) equation produce four
different solutions according to the value of the phase shift L0. All solutions are positive.
Further research can be carried out for large negative forcing term.
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