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Abstract A dengue disease transmission model by Esteva & Vargas assumes that
once a person recovers from the disease he or she will not be reinfected by the disease.
However recovering from one of the four types of virus will not guarantee that a
person is immuned to the other types. Hence it is reasonable to assume that the
immune subpopulation is negligible. Consequently the model is reduced to a two-
dimensional planar system. In this model, the endemic state is stable if the basic
reproductive number of the disease is greater than one, and this result is similar to
the result of the transmission model with immunity. For a relatively small series of
outbreaks of the disease in population sufficiently large for the number of susceptible to
remain effectively constant, the model is reduced to a population model for the group
of infectives. Taking the incubation period into consideration, the model without
immunity gives rise to a two-dimensional delay differential equations. The presence of
the delay seems to destabilise the dynamics
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1 Introduction

Dengue fever is transmitted to human by female aedes aegypti mosquitoes. Some known
facts about aedes aegypti mosquitoes and the transmission process are as follows [4]:

(i) Mosquito biting occurs during day time (there is a tendency to be multiple biters).
(ii) Life time of mosquitoes is about 10 days.
(iii) Flying distance of mosquitoes is about 100 meters.
(iv) Mosquitoes lay eggs in a clean water environment (nesting sites are believed inside

houses).
(v) Mosquitoes eggs hatch in 6-8 days, but could survive in much longer period and hatch

after the first contact with water.
(vi) Survival rate from eggs to adults is very low.
(vii) Incubation period is about 14 days.
(viii) Virus lives in human body for about 7 days and then dies naturally.
(ix) Vertical transmission in mosquitoes is insignificant.
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2 Host-Vector Model for Dengue Fever Transmission

Esteva & Vargas [2] developes a dengue fever transmission model by assuming that once a
person recover from the disease, he or she will not be reinfected by the disease. The model
also also assumes that the host population NH is constant, that is the death rate and the
birth rate equal to µH . The vector population is assumed to be governed by

d

dt
NV = A− µV NV

where µV is the mortality rate of the vector, and A is the recruitment rate. The mosquitoe
model can be explained from the fact that only a small portion of the large supply of
eggs survive to adult stage. Therefore A is independent from the adult population. The
vector approaches to the equlibria A/µH as t → ∞. The host population is subdivided
into the susceptible SH , the infective IH and the recovered (and the immune) RH . The
vector population, due to a short life period, is subdivided into the susceptible SV and the
infective IV . The host-vector model for the dengue transmission of Esteva & Vargas [2] is
as follows:

d

dt
SH = µHNH − βHb

NH
ShIV − µHSH

d

dt
IH =

βHb

NH
SHIV − (µH + γH)IH

d

dt
RH = γHIH − µHRH

d

dt
SV = A− βV b

NH
SV IH − µV SV

d

dt
IV =

βV b

NH
SV IH − µV IV

(1)

where
NH = the host population
SH = the number of susceptibles in the host population
IH = the number of infectives in the host population
RH = the number of immunes in the host population
NV = the vector population
SV = the number of susceptibles in the vector population
IV = the number of infectives in the vector population
µH = the birth/death rate in the host population
µV = the death rate in the vector population
βH = the transmission probabilty from vector to host
βB = the transmission probabilty from host to vector
γH = the recovery rate in the host population

b = the biting rate of the vector
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Equation (1) is reduced to three dimensional dynamic since

SH + IH + RH = NH and SV + IV =
A

µV
.

The resulting dynamic, expressed in proportion

x =
SH

NH
, y =

IH

NH
and z =

IV

A/µV

is given by
dx

dt
= µH(1− x)− αxz

dy

dt
= αxz − βy

dz

dt
= γ(1− z)y − δz

(2)

where

α =
bβHA

µV NH
, β = γH + µH , γ = bβV and δ = µV .

The fixed points of the system are F1(1, 0, 0) and F2(x0, y0, z0) where

x0 =
µH + βδ

γ(µH + α)
, y0 =

µH(αγ − βδ)
βγ(µH + α)

and z0 =
µH(αγ − βδ)
α(µHγ + βδ)

.

The second fixed point exists only if the thresold parameter

R =
αγ

βδ
> 1.

The number R0 =
√

R is called the basic reproductive number. The following theorem is
proved in [2].

Theorem 1 If R < 1, the fixed point F1 is globally stable. If R > 1, F1 is unstable and the
endemic fixed point F2 is globally asymptotically stable.

Global stability of F1 for R < 1 is shown in [2] using Lyapunove function γy + βz. For
R > 1 the fixed point F1 becomes locally unstable and F2 becomes locally asymptotically
stable. The global stability is shown using the property of stability of periodic orbits.

3 Dengue Fever Transmission Model without Immunity

Not enough information is known about the immunity after recovery. Four types of virus
have been identified. Recovering from one of the four types of virus will not guarantee that
a person will immune to the other types. Hence it is reasonable to assume that the immune
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subpopulation is negligible. Assuming that the immune subpopulation is negligible, then
the system of equations (1) is reduced to

d

dt
SH = µHNH − βHb

NH
ShIV − µHSH

d

dt
IH =

βHb

NH
SHIV − (µH + γH)IH

d

dt
SV = A− βV b

NH
SV IH − µV SV

d

dt
IV =

βV b

NH
SV IH − µV IV

(3)

where
SH + IH = NH and SV + IV =

A

µA
.

Using the same notation for the propotion varibles y and z as before, the system becomes

dy

dt
= α(1− y)z − βy

dz

dt
= γ(1− z)y − δz

(4)

The linearisation of (4) at the fixed point (0, 0) is given by



dy

dt
dz

dt


 =



−β α

γ −δ







y

z


 (5)

and its charateristic equation is

λ2 + (β + δ)λ + (βδ − αγ) = 0.

The origin remains locally stable if (βδ − αγ) > 0. The same Lyapunove function γy + βz
can be used to show that the origin is globally stable.

When (βδ − αγ) < 0 (this is equivalent to R > 1), the origin becomes unstable. In this
case the second fixed point (y0, z0) comes into play, where

y0 =
αγ − βδ

γ(α + β)
and z0 =

αγ − βδ

α(γ + δ)
.

The linearisation of (4) at the second fixed point (x0, y0) is given by



dy

dt

dz

dt


 =




−γ(α + β)
(γ + δ)

αβ(γ + δ)
γ(α + β)

γδ(α + β)
α(γ + δ)

−α(γ + δ)
(α + β)







y

z


 (6)

The characteristic equation for the second fixed point is

λ2 + a0λ + (αγ − βδ) = 0. (7)
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where

a0 =
γ(α + β)2 + α(δ + γ)2

(α + β)(γ + δ)
.

Both eigenvalues of (7) has negative real parts. Hence the second fixed point is locally
stable. Global stability can be shown by using phase plane analysis. The following theorem
is proved in [4].

Theorem 2 Let

Ω =
{

(x, y) :
βy

α(1− y)
≤ z ≤ γy

γy + δ
, 0 ≤ y ≤ y0

}
.

If αγ − βδ > 0, then Ω is a trapping region and contains the heteroclinic orbit connecting
(0, 0) and (x0, y0).

4 Allowance for Incubation Period

There is a latent period that after infection, at the end of which the infected individual
becomes infectious. If we take this fact into consideration, then (4) becomes

dy

dt
= αz(t)− αz(t)y(t− r)− βy(t− a)

dz

dt
= γy(t− a)− γz(t)y(t− a)− δz

(8)

where r is the delay. The fixed points of (8) are the same as for (4).
The linearisation of (8) at the fixed point (0, 0) and (x0, y0) is, respectively, given by




dy

dt
dz

dt


 =



−β α

γ −δ







y(t− r)

z


 (9)

and 


dy

dt

dz

dt


 =




−γ(α + β)
(γ + δ)

αβ(γ + δ)
γ(α + β)

γδ(α + β)
α(γ + δ)

−α(γ + δ)
(α + β)







y(t− r)

z


 (10)

The characteristic equations of the linearised equation for the first and the second fixed
point is, respectively, given by

λ2 + δλ + βλe−λr + (βδ − αγ)e−λr = 0 (11)

λ2 +
α(γ + δ)
α + β

λ +
γ(α + β)

γ + δ
λe−λr + (γα− βδ)e−λr = 0. (12)

To find sufficient conditions for every roots of (11) and (12) to have negative real parts
we use a result in Driver [1], and we state it as the content of the following Lemma.
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Lemma 1 Suppose that
λ2 + bλ + qλe−λr + pe−λr = 0 (13)

where b, q, p and r are nonnegative constants. If b > q + pr, then every solution of (13) has
negative real part.

Applying Lemma 1 to (11) and (12), we have the following results.

Theorem 3

( i) The fixed point (0, 0) of (8) is locally stable if (βδ − αγ) > 0 and

(δ − β) > (βδ − αγ)r.

( ii) The fixed point (x0, y0) of (8) is locally stable if (αγ − βδ) > 0 and

α(γ + δ)2 − γ(α + β)2

(α + β)(γ + δ)
> (αγ − βδ)r.

5 Model with Relatively Small Series of Outbreak

Usually only a small series of outbreak of the dengue fever disease occur in a large community
such as a housing estate. Hence consider a relatively small series of outbreaks in a population
sufficiently large for the number of susceptibles and infective of the host population to remain
effectively constant. By letting y = n, then (4) becomes a single equation

dz

dt
= γ(1− z)n− δz. (14)

We thus have a population model for infective in the vector population with solution

z =
q

p
+ z0e

−pt

where p = (nγ + δ) and q = nγ. As t →∞ we have

z =
q

p
=

nγ

(nγ + δ)
.

6 Conclusion

In the host-vector model [2], the fixed point at the origin is globally stable if the threshold
paramater is less than one; in this case the disease dies out. If the threshold parameter is
greater than one, the endemic parameter is globally stable, which implies that the disease
remains endemic. If we assume no immunity after recovery from the disease, the host-vector
model is reduced to two-dimensional planar equation and the dynamic produce similar
results to the result of the model with immunity.

For a relatively small series of outbreaks in a large population, the number of sus-
ceptibles and infective of the host population can be assumed to remain constant. The
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two-dimensional model is reduced to a single population model for the infective vector
population. In this case also the disease will not die out.

Taking the incubation period into consideration, the model without immunity gives
rise to two-dimensional delay differential equations. The presence of the delay seems to
destabilise the dynamics; however more study should be done for this case.

Since no vaccine is yet available for dengue fever, the efforts to control the disease
should be focused on vector. Application of insectisides to kill the adult population of
mosquitoes does not seem to be entirely viable, since the report in [3] indicates that after
its application, the adult population of mosquitoes returned to the pretreatment levels
within two weeks. Consequently, decreasing the carrying capacity of the environment for
mosquitoes by frequent reduction of vector breeding sites, seems to be the more effective
way of controlling the disease.
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