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Abstract. Baseline length-dependent errors in GPS RTK 
positioning, such as orbit uncertainty, and atmospheric 
effects, constrain the applicable baseline length between 
reference and mobile user receiver to perhaps 10-15km. 
This constraint has led to the development of network-
based RTK techniques to model such distance-dependent 
errors. Although these errors can be effectively mitigated 
by network-based techniques, the residual errors, 
attributed to imperfect network functional models, in 
practice, affect the positioning performance. Since it is 
too difficult for the functional model to define and/or 
handle the residual errors, an alternative approach that 
can be used is to account for these errors (and observation 
noise) within the stochastic model. In this study, an 
online stochastic modelling technique for network-based 
GPS RTK positioning is introduced to adaptively 
estimate the stochastic model in real time. The basis of 
the method is to utilise the residuals of the previous 
segment results in order to estimate the stochastic model 
at the current epoch. Experimental test results indicate 
that the proposed stochastic modelling technique 
improves the performance of the least squares estimation 
and ambiguity resolution.  
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1. Introduction 

Carrier phase-based GPS has become an essential 
technique for a wide range of precise positioning 
applications, such as kinematic surveying and vehicle 
navigation and guidance. The ‘relative’ positioning 

concept, in which one GPS receiver’s position is derived 
with the aid of observations made at a stationary 
reference station, has been used in most implementations 
of the technique. The current state-of-the-art 
implementation for high precision GPS positioning is the 
so-called Real-Time Kinematic (RTK) hardware/software 
system that can deliver centimetre-level positioning 
accuracies of a moving (i.e. kinematic) user receiver, if 
the integer carrier phase ambiguities are correctly 
resolved. However, the impact of baseline length-
dependent GPS errors, such as orbit uncertainty, and 
atmospheric effects, constrains the applicable baseline 
length between reference and mobile user receiver to 
perhaps 10-15km. These constraints have led to the 
development of several network-based RTK techniques, 
including the Virtual Reference Station (VRS) approach, 
and the Area Correction Parameter techniques (Wübbena 
et al., 2001) 

The key concept in using multiple reference stations (i.e., 
a network) to support GPS carrier phase-based 
positioning is: (a) to generate so-called “correction terms” 
representing the distance-dependent errors; and (b) to 
interpolate and apply them to mobile user receiver 
measurements, so as to significantly diminish the residual 
error terms, thus making it possible to perform medium 
or long-range (tens to hundred kilometre receiver 
separations) positioning. The correction message data are 
generated based on the pre-determined coordinates of the 
reference stations. Integer ambiguities among the 
reference stations must be correctly resolved and station-
dependent errors, such as multipath, measurement noise, 
and antenna phase centre variation, should be mitigated in 
the correction terms. In addition, the generated correction 
message data with respect to each reference stations have 
to be interpolated or modelled for the user’s location. 
Over the past decade, a number of interpolation methods 
have been proposed. These include Linear Combination 
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Model, Distance-Based Linear Interpolation Method, 
Linear Interpolation Method, Lower-Order Surface 
Model and Least-Square Collocation (Fotopoulos & 
Cannon, 2001). However, Dai et al (2001) demonstrated 
that the performances of all of these methods are similar.  

In order to obtain optimal estimates from the least-square 
solution, both a mathematical model, also called a 
functional model, and a stochastic model should be 
correctly defined. The functional model describes the 
relationship between measurements and unknown 
estimates. On the other hand, the stochastic model 
represents the statistical characteristics of the 
measurement that is mainly provided by the covariance 
matrix for the measurements. Whilst the mathematical 
models for the network-based GPS RTK positioning are 
sufficiently investigated and well documented (e.g., Han 
and Rizos, 1996; Raquet, 1997; Wanninger, 1995; 
Wübbena et al., 1996), stochastic modeling is still an 
issue under investigation. In the case of network-based 
GPS RTK, the positioning performance is largely 
affected by the residual biases due to imperfect network 
mathematical models (Musa et al., 2004). The residual 
biases contribute to the noise terms and make it difficult 
to define a functional model that can deal with them. 
Hence, they should be taken into account within the 
stochastic model. 

In this paper a stochastic modelling method that can be 
efficiently implemented for network-based GPS RTK 
positioning will be introduced. This technique determines 
the covariance matrix of observations at the current epoch 
based on the estimation residuals from the previous 
positioning results. Experimental test results will be 
presented to demonstrate the application of the stochastic 
modelling method. 

2. Online stochastic modelling  

A stochastic model for the network-based GPS RTK has 
to take into account uncertainties due to: (a) residual 
vectors at reference stations; (b) residual interpolation; (c) 
measurements at the mobile receiver. An online 
stochastic model reflecting all the uncertainties can be 
derived using the residuals from Kalman Filter solutions 
(Wang, 2000).  

Since the true values of the model errors (measurement 
noise or process noise) are unknown, stochastic 
modelling has to be based on the filtering residuals of the 
measurements and state corrections, which are generated 
in the process of parameter estimation.  A problem here is 
that the parameter estimation process itself relies on the 
estimated measurement covariance matrix R  and process 
covariance matrix Q . The process covariance matrix can 
be fixed to the appropriate values to neglect the impact of 
the dynamic model on the GPS RTK solutions. Then, 

Kalman filtering results are in fact identical to the least-
squares solutions (see e.g., Wang, 2000).  An adaptive 
procedure can be used to estimate the matrix R  online.  

The basic idea of the adaptive method is that the residuals 
collected from the previous segment of positioning 
results are used to estimate the covariance matrices of the 
measurement noise and process noise for the current 
epoch. Preset default covariance matrices are needed to 
seed the adaptive estimation process. Within a segment, 
the covariance matrices for each epoch are assumed to be 
the same. Therefore, the formulation of an adaptive 
stochastic modelling method includes two critical steps, 
namely: (a) to derive suitable formulae for use in 
estimating the covariance matrices, and (b) to determine 
the optimal segment (window width), which is 
application-dependent (Wang, 2000; Dai, 2002). 

Suppose the measurement filtering residuals are: 

kkkz xHzv
k

ˆ−=    
  (1) 

where zk  is the measurement vector and Hk is the 
measurement design matrix. Equation (1), obviously, is 
the optimal estimator of the measurement noise level 
because the estimated values xk  (not the predicted 
values xk ) of the state parameters are used in their 
computations.  In order to obtain the covariance matrix of 
the measurement filtering residuals, equation (1) is 
further derived as 

kkkkkkkkz dGHEdGxHzv
k
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where Gk  is the gain matrix and dk  is the innovation 
vector. By applying the error propagation law to equation 
(2), after extensive computations, one obtains  

Q R H Q Hv k k x k
T

zk k
= −    

 (3) 

In equation (3), if the covariance matrix Qvzk
 is 

computed using the measurement filtering residuals from 
the previous m  epochs, the covariance matrix Rk  can be 
estimated as (Wang, 2000) 
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which can be used in the computation of epoch k + 1 .  In 
equation (4), m  is called the width of moving windows.  
It is noted that the covariance matrix Rk  estimated with 
equation (4) is always positive definite because it is the 
sum of the two positive definite matrices.  Equation (4) 
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requires some extra computations for both vzk
 and 

H Q Hk x k
T

k
, which are not generated by the standard 

Kalman filtering process. Fortunately, the amount of 
these additional computations is small and leads no 
significant time delay in data processing. 

The initial covariance matrix is determined by using the 
previous covariance matrix. Based on the residuals at the 
previous epochs, the covariance matrix of the 
observations can be estimated in real-time using Equation 
(4).  

3. Testing results 

3.1 The Experiments 

Field experiments were carried out on 21st October 2004 
at Olympic Park in Sydney. The objective of these 
experiments was to test performance of the proposed 
stochastic modelling method. Three reference stations 
were used in the experiments. Whilst two of them are 
Continuously Operating Reference Stations (CORS), 
which belong to ”SydNet” - a network of GPS reference 
stations in the Sydney metropolitan area (Rizos et al., 
2003), the other one is a permanent GPS station on the 
roof of the Electrical Engineering Building at The 
University of New South Wales. Since MGRV was 
selected as a master reference station, the baseline length 
between reference and mobile receiver was 
approximately 32km. The locations of the reference 
stations and the trajectory of the mobile receiver are 
illustrated in Figures 1 and 2. During the fifteen minutes 
of the experiment, seven satellites were tracked. The data 
interval was one second. In addition, one more GPS 
station was installed in the experimental area to generate 
a reference trajectory using short-range data processing. 

The acquired data was processed in the post-mission 
mode using in-house GPS kinematic processing software. 
However, it should be noted that all the algorithms used 
are applicable for real-time implementation. The 
network-based GPS positioning begins with generating 
network corrections to mitigate baseline distance-
dependent errors (see Musa et al., 2004). The generated 
L1 and L2 carrier phase corrections for the test data are 
depicted in Figure 3. It can be seen from the figure that 
the baseline distance-dependent errors are at the few 
centimetre-level. This is due to the factor that the baseline 
length in this experiment was about 32km and the test site 
is geographically located in a middle latitude region 
where the ionospheric delay effect is relatively small. In 
the data processing, the initial standard deviation for the 
pseudo-range and carrier phase measurements was 
defined as 0.3m and 0.05 cycles, respectively. The width 

of the moving window for estimating the measurement 
covariance matrix was set to ten epochs and the initial 
estimate was calculated using measurement residuals of 
the least squares from the first ten epochs with 
ambiguities being fixed.  
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Fig. 3 Network corrections for L1 and L2 carrier phases measurements 

3.2 Testing Results 

First of all, a comparison between single and multiple 
reference station solutions was made in order to study 
potential benefits of using the additional reference 
stations in the carrier phase-based GPS kinematic 
positioning. Figures 4 and 5 depict the standard 
deviations of L1 and L2 carrier phases showing the 
precision (e.g., noise level) of these measurements and 
the positioning accuracy.  
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Fig. 4 Standard deviation of L1 and L2 carrier phases measurements 

-0.1

-0.05

0

0.05

0.1
Single Reference-Based Processing

m
0 100 200 300 400 500 600 700 800 900

-0.1

-0.05

0

0.05

0.1
Network-Based Processing

Epoch (sec)
m

∆ X
∆ Y
∆ Z

Fig. 5 Accuracy of positioning solution 

As already mentioned, the additional reference GPS 
station installed within the test area with baseline length 
approximately 100m provided the reference trajectory 
since its accuracy can be at the few centimetre level with 
correct integer ambiguity (e.g., short-range kinematic 
positioning). Hence, it is possible to use the trajectory for 
evaluating positioning accuracy of the test results. It can 
be recognised from these results that the application of 
the network corrections significantly reduces the 
measurement errors and consequentially improves 
positioning accuracy, demonstrating the main advantage 
of the GPS network for medium and long baseline 
kinematic positioning. 

In order to clearly demonstrate effectiveness of the online 
stochastic modelling method for network-based GPS 
kinematic positioning, a comparison of the online 
modelling method with a model based on an apriori 
assumption of the measurement precision was made. For 
convenience, they are referred to as ‘Preset’ (based on the 
error propagation law – see Musa et al., 2004) and 
‘Estimated’ (i.e., Equation 4). Figure 6 shows the 
aposteriori variance value changes obtained from the two 
different stochastic models. The values should have unity 
according to the least squares estimation theory (Cross, 
1983) if both the functional and stochastic models are 
correctly defined. In other words, if the variance is 
significantly different from unity, it is suspected that 
outliers exist in the measurements, or there is a problem 
with the fidelity of the stochastic and/or functional 
models (ibid). The figure shows that the variance values 
from the preset model are more variable than those from 
the estimated model. This may be due to the fact that the 
stochastic model does not realistically reflect the residual 
biases of the measurements which are mainly caused by 
the functional model uncertainty. On the other hand, the 
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estimated results show that the variance values are stable 
and very close to ‘1’, demonstrating that the residuals are 
appropriately considered by the introduced online 
modelling method.  
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Fig. 6 Posterior variance changes 

Figures 7 and 8 illustrate the standard deviations for the 
DD C1 code and L1 carrier phase observations, 
respectively. It is evident that big differences exist 
between the two stochastic models. In reality, the 
accuracy of the measurements may be influenced by 
many factors, which must be considered by the 
appropriate stochastic model. As mentioned early, there 
are three factors causing the uncertainty (i.e., residual 
biases) of GPS observations after applying the corrections 
in the network-based approach. Even though it goes 
without saying that the uncertainty should be variable due 
to the satellite and receiver dynamics, the results with the 
preset stochastic model are almost constant values, which 
are unrealistic. In contrast, the fluctuations in the 
estimated results using the proposed on-line stochastic 
modelling method indicate that such uncertainties are 
reflected in the stochastic model, making them more 
realistic. 

The determination of the integer ambiguities, commonly 
referred to as ambiguity resolution (AR), is the most 
critical data analysis step for high precision GPS based 
positioning. With fixed integer ambiguities, the carrier 
phases can be used as unambiguous precise range 
measurements. A realistic estimation of measurement 
covariance matrices can provide reliable statistics for 
ambiguity resolution. To demonstrate this more clearly, 
both the solutions with the preset and estimated 
covariance matrices were generated. The ADOP 
(Ambiguity Dilution of Precision) measure defined by 

Teunissen and Odijk (1997) is designed to describe the 
impact of the receiver-satellite geometry on the precision 
and the correlation of ambiguity parameters. The 
calculated ADOP values are depicted in Figure 9, 
indicating significant improvement of the precision and 
the correlation of the estimated float ambiguities. As a 
consequence of this it is expected that the ambiguity 
search volume is reduced and its shape becomes more 
like a sphere, speeding up the ambiguity searching 
process (ibid). 
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Fig. 9 Ambiguity Dilution of Precision (ADOP) 

It is crucial to ensure that the most likely integer 
ambiguity combination is statistically better than the 
second best combination, as defined by the second 
minimum quadratic form of the least squares residuals, 
the so-called the ‘ambiguity validation test’. The 
improved float ambiguity estimates are of great 
importance for the ambiguity validation test (Wang, 
2000; Wang et al., 2003; Lee, 2004). First of all, in order 
to check the correctness of the best ambiguity 
combination, the reference ambiguity combination was 
computed from the reference trajectory obtained from the 
short-range positioning. A comparison of the best 
combination with the reference one indicated their 
ambiguities were exactly the same, hence being able to be 
considered as the correct ambiguity set. Therefore, it is 
anticipated that the larger validation test statistics, the 
higher the probability of validating the correct ambiguity 
combination.  

Figure 10 depicts the validation test statistics using the 
W-ratio proposed by Wang et al. (1998). These results 
shown in Figure 10 indicate that the ambiguity validation 
test statistics with the ‘Estimated’ measurement 
covariance matrices are much larger than those of the 
preset measurement covariance matrices. 
Consequentially, the best ambiguity combination has 
more probability to be validated by the test, making it 
possible to reliably resolve correct ambiguities through 
avoiding type I errors in the statistical hypothesis test.  

 

Fig. 10 W-ratio values 

4. Concluding remarks 

Although the impact of baseline length-dependent GPS 
errors, such as orbit uncertainty, and atmospheric effects, 
constrains the applicable baseline length between 
reference and mobile user receiver to perhaps 10-15km, 
the development of the network-based approaches makes 
it possible to overcome this constraint. However, the 
positioning performance is largely affected by the 
residual biases due to imperfect network mathematical 
models. These residual biases contribute to the noise 
terms and make it difficult to define a functional model 
that can deal with them.  

In this paper, an online stochastic modelling method that 
reflects all the uncertainties of the network-based GPS 
RTK positioning has been introduced. This stochastic 
modelling method estimates the covariance matrix of 
observations at the current epoch based on the estimation 
residuals from the previous positioning results. In 
addition, field experiments were carried out to evaluate 
the performance of the modelling technique. Test results 
indicate that the proposed technique improves: (a)  the 
covariance matrix of the observations; (b) the model 
fidelity of the least squares estimation; and (c) the 
performance and reliability of the ambiguity resolution 
for network-based GPS kinematic positioning.  
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