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Abstract In this article, we explore the performance of estimators in mixture sur-

vival model using simulated data recorded cross-sectionally and longitudinally. We

use the maximum likelihood estimation approach in estimating the unknown model

parameters. We found, in particular, that the maximum likelihood estimator for the

proportion of long-term survivors in longitudinal setting gain better efficiency and

precision for a certain distance of recording time.
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1 Introduction

Standard survival function is typically used to describe the survival experience of individuals
related to a particular event of interest, such as death, occurrence of complications, relapse,
and so on. Here, the population is assumed to consist of the individuals who are all at risk
of failure. A mixture survival function, however, extends the standard function by allowing
the possibility of long term survivorship of an individual to be incorporated at the outset. In
this case, the population is assumed to consist of two subgroups of individuals: susceptible
or at-risk individuals and long-term survivors who will never fail. This is practically true in
the study of occurrence of complications, for example, where a proportion of patients may
never get the complications in long term.

A study by Maller & Zhou [1] has explored survival analysis with long-term survivors.
They were particularly interested in estimating the proportion of long-term survivors in the
survival mixture model.

Likewise, Yu et al. [2] also explored the same modelling approach and concentrated on
estimating the proportion of long-term survivors. Yu et al. [2] further concluded that the
estimate of the proportion of long-term survivors is sensitive to the choice of distributions
of the survival times for susceptible patients and the length of follow-up time. Price &
Manatunga [3] did also explored and applied a number of survival models which include the
survival mixture models that incorporate frailty or random effect in the susceptible survivor
function and a compound Poisson model in their research. However, these studies did not
incorporate any covariates in the selected models.
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Another work by Young et al. [4] also adopted a mixture survival model to analyze
data related to the occurrence of retinopathy complications in Type I diabetic patients. In
their study however, they have incorporated several covariates in both survival functions for
long-term and susceptible patients in gaining the knowledge about the prognostic factors
that accelerate the progression of the complication.

The analyses in all above studies, nonetheless, were carried out cross-sectionally, that
is the data used were recorded at a single time point, for example at the baseline visit in
Young et al. [4]. The estimators resulting from cross-sectional modeling may be inaccurate
and imprecise compared to the case where data collected longitudinally are utilized. The
rational is that the longitudinally recorded data may provide better information about
the state of every individual, and thus will result in more accurate estimation of model
parameters for better decision making.

The aim of our study is thus to compare the performance of estimators in a mixture
survival model that is analyzed cross-sectionally and longitudinally. In addition, we also
incorporate a vector of covariates in the model through the mixture component and the
survivor function for the susceptible individuals. For analysis, we use simulated data and
the simulation procedure will be described.

2 Mixture Survival Model

Suppose the non-negative response variable is T which represents the time from a defined
origin to an event of interest. The mixture survival function is given as

S(t) = ρ + (1 − ρ)S∗(t), t > 0

where S∗(t) is the standard proper survival function and ρ denotes the proportion of long-
term survivors and ρ ∈ [0, 1]. In our study, we assume T to follow a two-parameter Weibull
[5] distribution having real positive spread and shape parameters denoted as µ and δ re-
spectively. The proper survival function is then S∗(t) = exp(−[µt]δ) and hence,

S(t) = ρ + (1 − ρ) exp(−[µt]δ) (1)

As mentioned in Section 1.1, we introduce covariates in the model above through the spread
parameter µ and the long-term survival parameter ρ. Here,

µ = exp(−[α0 + α1X]) (2)

and

ρ =
1

1 + exp(β0 + β1X)
(3)

where X is a vector of explanatory variables introduced into ρ and µ with their corresponding
coefficients α1 and β1 respectively. We further assume that the explanatory variables X
are distributed with standardized multivariate normal distributions. Furthermore, for an
unconstrained estimation procedure, the shape parameter δ is reparameterised to its natural
logarithm, δ0 = loge(δ) where δ0 ∈ R. The vector of unknown parameters that needs to be
estimated, say θ, is then (α0, α1, β0 , β1, δ0) ∈ R

5.
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3 Simulation

We use simulated data for analysis. In order to simulate the data of interest, we assume
that the vector of unknown parameters has a set of real values in the model of interest. In
this study, we choose θ = [2,−0.25, 1.5, 0.5, 0.25] where the parameter values resemble the
MLEs obtained in the real data analysis in [6] where any increase in any of the covariates
at a specific time t, will lead to a reduction in the chance of surviving the event of interest.

Firstly, we assume that there are N individual individuals in the study which consists
of ρ100%(= N0) long-term survivors and (1− ρ)100%(= N1) susceptible individuals at the
beginning of study period, when t = 0. Needless to say, N0 remains the same throughout
the study period.

We use a table-look-up method to simulate N0, whereas its complement is simply given
by N1 = N−N0. The failure time for susceptible individuals, on the other hand, is simulated
by using the inversion method from its cumulative density function (cdf), subject to the
condition that the cdf is a proper function. We know that F (t) = 1− S(t) where S(t) is as
given in Equation (1). Therefore,

F (t) = 1 − S(t)

= 1 −

[
ρ + (1 − ρ)S∗(t)

]

= (1 − ρ)

[
1 − S∗(t)

]

where S∗(t) is the survivor function for the susceptible individuals. However, as t → ∞,
S∗(t) → 0 and hence S(t) → ρ, so that F (t) → (1−ρ). This shows that F (t) is not a proper
function. However, it can clearly be seen that F (t)/(1 − ρ) → 1 as t → ∞, where

F (t)

1 − ρ
= 1 − S∗(t)

= F0(t)

which is the cdf of the failure times for the susceptible individuals. Consequently, we will
instead simulate t from this cdf which is a proper function, i.e. t can be simulated directly
from the susceptible cdf given by F0(t) = 1 − S∗(t). Now, suppose that U is a uniform
random variable with its values {ui} ranging in (0, 1). By the inversion method we have

ti = F−1
0 (ui)

=
1

µi

[
− loge(1 − ui)

] 1
δ

or more efficiently,

ti =
1

µi

[
− loge(ui)

] 1
δ

for i = 1, 2, . . . , N1.
The i-th susceptible individual will have failed or still be surviving the event of interest

during a time of examination, say at τj for j = 1, 2, . . . , k visits. Therefore, by definition,
at τj, the failure time {ti} for a susceptible individual can either be ti 6 τj or ti > τj .
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3.1 Cross-sectional Setting

In a cross-sectional analysis, we only have one reference time point, say τ1 which is the length
of time between the time origin and the reference point, at which there are N1f susceptible
individuals who fail before or at τ1 and N1s who still survive the event of interest at τ1 so
that their failure times are greater than τ1. Notice that N1f + N1s = N1 which is the total
number of susceptible individuals in the study. The simulated values for N1f and N1s are
given below:

N1f =

N1∑

i=1

I(ti 6 τ1)

and

N1s =

N1∑

i=1

I(ti > τ1)

respectively, where I(.) is an indicator variable having values of 1 if true and 0 otherwise.

3.2 Longitudinal Setting

Extending the cross-sectional work to a longitudinal analysis, we now have more than one
reference time point. Here, for illustration, we consider two reference points, say τ1 and
τ2, where τ2 is the length of time between the time origin and the second reference time
point, and τ2 > τ1. Subsequently, in addition to the information known at τ1, we will have
further information about failures and survivors at the next reference point, τ2. In other
words, some of the survivors at τ1 may develop the event of interest by τ2 and the others
would still survive at the second time. As a result, N1s can be further divided into N2f and
N2s where N2f is the number of individuals who fail in (τ1, τ2] and N2s is the number of
individuals who still survive past τ2. In short, the simulated values of N2f and N2s can be
expressed as follows:

N2f =

N1s∑

i=1

I(ti 6 τ2| ti > τ1)

=

N1s∑

i=1

I(τ1 < ti 6 τ2)

and

N2s =

N1s∑

i=1

I(ti > τ2| ti > τ1)

=

N1s∑

i=1

I(ti > τ2)
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with I(.) as an indicator variable and I(ti > τ1) = 1.
In this simulation study, the choices of τ1 and τ2 are arbitrary, with the constraint that

τ2 is always greater than τ1. We can expect that the earlier the time of the first visit, that
is the smaller the value of τ1 is, the smaller the number of failures at τ1 will be. Similarly,
a smaller gap, denoted by ∆ = τ2 − τ1, between τ1 and τ2 will generally result in a smaller
number of failures in the interval (τ1, τ2]. In the latter situation, if ∆ is too small, it may
lead to a coincidence of cross-sectional and longitudinal approaches. This can also arise
in another circumstance, where if τ1 is large enough, all susceptible individuals may have
failed by τ1 and the survivors at τ1 consist only of those long-term survivors who never
develop the event of interest. Subsequently, there will be no failures in (τ1, τ2], and hence
the longitudinal likelihood function is reduced to the cross-sectional expression.

For the case with more than two visits, that is k > 2, we can generalise the above
procedure for longitudinal analysis as follows: recall that at the start of the study, we have
a total of N individuals of which N0 and N1 are the numbers of long-term survivors and
susceptible individuals respectively. We index the visits by j = 1, 2, . . . , k. When j = 1,
N1 consists of N1f failures and N1s survivors at τ1. When j = 2, N1s further divides into
N2f failures who fail in (τ1, τ2] and N2s survivors at τ2. Similarly, when j = 3, N2s consists
of N3f susceptible individuals who fail in (τ2, τ3] and the other N3s still survive at τ3, and
so on. Generally then, at j = k, N(k−1)s divides into Nkf individuals who fail in (τk−1, τk]
and Nks individuals who still survive at τk, where

Nkf =

N(k−1)s∑

i=1

I(τk−1 < ti 6 τk)

and

Nks =

N(k−1)s∑

i=1

I(ti > τk)

where I(.) is 1 if true, or 0 otherwise. When k is large enough,

N1f + N2f + . . . + Nkf = N1

which is the number of susceptible individuals in the study, and Nks = 0. Note that the
number of long-term survivors, N0, stays the same throughout the study period. Therefore,
we can expect that when k is large enough, all susceptible individuals will fail and the
survivors at τk are only long-term survivors.

For all cases, we choose an arbitrary N = 500 patients in the study. For each pair of
values (τ1, τ2), we simulate the data set 250 times where at each time, the simulated data
are used for estimation. Therefore, we will have 250 sets of the MLEs for the unknown
parameters for each pair of values (τ1, τ2). The average of these MLEs and their standard
errors are then used for summary and comparison.

4 Maximum Likelihood Estimation

We adopt the method of maximum likelihood estimation to estimate our model parameters.
As such, the likelihood functions for both cross-sectional and longitudinal settings need to
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be explicitly stated. In this study, we assume all individuals have the same length of time
between the initial visit and the first follow-up visit, so that for all i, ti = τ1. Furthermore,
we define m1CS

= N1f and m2CS
= N1s + N0. Without loss of generality, the likelihood

function in cross-sectional setting can be expressed by the following expression:

LCS =

m1CS∏

i=1

Pr(Ti 6 τ1)

m1CS
+m2CS∏

i=m1CS
+1

Pr(Ti > τ1) (4)

where CS is short for “cross-sectional” and m1CS
+ m2CS

= N .
For longitudinal setting, on the other hand, the likelihood function is defined as follows.

Let us first define N0 as the number of long-term survivors, N1f as the number of failures
at τ1, Njf as the number of failures in (τj−1, τj] for j = 2, 3, . . . , k and Nks as the number
of susceptible individuals who still survive at τk. The longitudinal likelihood function can
then be expressed as:

LL =

N1f∏

i=1

Pr(Ti 6 τ1) ×

k∏

j=2

[ Njf∏

i=1

Pr(τj−1 < Ti 6 τj)

]
×

Nks+N0∏

i=1

Pr(Ti > τk) (5)

Here, our investigation focuses on the case of two follow-up visits. Similar to the cross-
sectional approach, we assume that all individuals have the same length of time between
the initial visit and the first follow-up visit denoted by τ1. We also assume the same length
of time between the initial visit and the second follow-up visit denoted by τ2. Furthermore,
we define m1L

= N1f , m2L
= N2f and m3L

= N2s + N0. The likelihood function therefore
has the following form:

LL =

m1L∏

i=1

Pr(Ti 6 τ1)

m1L
+m2L∏

i=m1L
+1

Pr(τ1 < Ti 6 τ2)

m1L
+m2L

+m3L∏

i=m1L
+m2L

+1

Pr(Ti > τ2).

where L stands for “longitudinal” and m1L
+ m2L

+ m3L
= N . It can clearly be seen

that there is an extra (middle) term in the longitudinal likelihood function which in part
indicates the extra information employed in the estimation procedure from the observation
at τ2. Moreover, if τ2 → τ1, then Pr(τ1 < Ti 6 τ2) → 0, and hence LL → LCS .

5 Results

After the simulated data set is achieved, we use these data to estimate the unknown para-
meters by maximizing the likelihood function with respect to the unknown parameters, and
compare the maximum likelihood estimates (MLEs) of the parameters with their assumed
true values. We then compare the accuracy and precision of these MLEs between the two
modeling approaches by graphical displays, which are omitted in this article.

The accuracy is measured by the distance between the MLEs and the assumed true
values for an unknown parameter θ. As such, we will use bias to determine the accuracy of
an estimator, where bias is commonly defined as the difference between the expected value
of an estimator and the true value, expressed as

bias = E[θ̂] − θ
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where θ̂ is the maximum likelihood estimator for θ. A smaller bias indicates that an esti-
mator is closer to the true value on average and hence more accurate.

Although bias can be used to measure the accuracy of an estimator, it is the mean
square error (MSE) of the estimator that provides a better assessment of the quality of an
estimator, particularly in a simulation study where the true parameter values are assumed
known at the outset. The MSE of an estimator is known as the expected squared deviation
of the estimated parameter value from the true parameter value, and using a standard
notation for a scalar parameter it can be decomposed into the following form:

MSE(θ̂) = Var(θ̂) + (bias)2.

For comparison between single parameter cross-sectional and longitudinal estimators,
we will use a relative efficiency measure (er) defined as the ratio of the mean-square error
of the longitudinal estimator to that of the cross-sectional estimator. The relative efficiency
measure er is defined as:

er =
MSE(θ̂L)

MSE(θ̂CS)

where the numerator is the MSE for the longitudinal estimator, θ̂L, and the denominator is
the MSE for the cross-sectional estimator, θ̂CS . When er = 1, both estimators are equally
efficient. However, if er < 1 then this implies that MSE(θ̂L) is smaller, and hence θ̂L is

more efficient than θ̂CS . On the other hand, if er > 1 then this implies that MSE(θ̂L) is

larger and therefore θ̂CS is more efficient than θ̂L, which we do not anticipate.

5.1 Fixed τ1 and Varying Follow-up Distance, ∆

Consider the following three cases listed below:

Case 1 : τ1 = 5 and τ2 = 6, 7, . . . , 45, so that ∆ = 1, 2, . . . , 40
Case 2 : τ1 = 10 and τ2 = 11, 12, . . . , 45, so that ∆ = 1, 2, . . . , 35
Case 3 : τ1 = 20 and τ2 = 21, 22, . . . , 45, so that ∆ = 1, 2, . . . , 25.

In each case, τ1 is fixed but τ2 increases which leads to a wider distance, ∆, between τ1 and
τ2. We can expect that m1CS

= m1L
for all cases and constant when plotted against τ2.

The average of simulated m2CS
values from 250 iterations is constant in each case, as

expected, since τ1 is unchanged. Between cases however, m2CS
at τ1 = 20 has the highest

value. This is simply because more failures will have been identified by then.

The simulated m2L
values however are increasing at a decreasing rate in all cases when

∆ increases with the values in Case 1 being higher than those in cases 2 and 3. In the last
two cases, τ1 is longer and hence more failures have been included in m1L

, leaving a smaller
fraction of patients who would have failed in (τ1, τ2].

As for m3L
, its values are decreasing in all cases and approach a value representing the

number of long-term survivors in the sample since more susceptible individuals have been
identified to have failed by a large value of τ2 and leaving only the long-term survivors in
the sample.
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Table 1: MLEs from Cross-sectional Analysis Approach Using Simulated Data for the Single
Reference Time Points Given by τ1 = 5, 10, and 20

Parameters True values MLEs Time at the FV after diagnosis

τ1 = 5 τ1 = 10 τ1 = 20

α0 2 Mean 1.9202 1.9549 1.8740

s.e. 3.7196 2.5831 3.5835

|bias| 0.0798 0.0451 0.1260

MSE 13.8418 6.6744 12.8573

α1 -0.25 Mean -0.4123 -0.4296 -0.3888

s.e. 2.0424 2.0630 1.8837

|bias| 0.1623 0.1796 0.1388

MSE 4.1977 4.2882 3.5676

β0 1.5 Mean 1.8582 1.9550 1.8253

s.e. 1.9113 1.4585 0.9473

|bias| 0.3582 0.4550 0.3253

MSE 3.7814 2.3342 1.0032

β1 0.5 Mean 0.8591 0.8211 0.7072

s.e. 0.7679 0.6131 0.4226

|bias| 0.3591 0.3211 0.2072

MSE 0.7186 0.4790 0.2215

δ0 0.25 Mean 0.1871 0.1291 0.1649

s.e. 5.5376 5.6073 5.5462

|bias| 0.0629 0.1209 0.0851

MSE 30.6690 31.4564 30.7676
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5.1.1 Performance of Estimators in Cross-sectional Analysis

Table 1 lists the average, standard error, bias and MSE for the MLEs from the cross-
sectional estimation approach. There is a mixture of performance for the estimators of α0

and α1 which are contained in the spread parameter µ, as τ1 increases. For example, at
τ1 = 5, α̂0 is more biased with a larger standard error when compared to that at τ1 = 10
and worst at τ1 = 20. However, α̂1 is the least biased at the latest time τ1 = 20 and more
biased at τ1 = 10. The MSEs for α̂0 and α̂1 also demonstrate different patterns: for α̂0, its
MSE is the smallest at τ1 = 10, but the MSE for α̂1 is the largest at the same τ1.

As for δ0, its estimator is the most biased when τ1 = 10 and the least biased at the
earliest τ1. The value of MSE for its MLEs, however, are substantially higher at all values
of τ1 which mainly result from very large standard errors, indicating a very poor quality
and precision.

The MSE values for β̂0 and β̂1 contained in the long-term survivor parameter, ρ, create
an interesting pattern: as τ1 gets larger, the values of MSE become smaller, indicating a
better quality at a later time. This is consistent with the definition of ρ whereby as τ1

increases, more failures are correctly classified and the remaining survivors are those who
are truly long-term survivors, hence the estimate of the proportion will be more reliable at
a much later time. This behaviour can be expected to be a function of the parameters in
the survivor function for the susceptible patients.

5.1.2 Performance of Estimators in Longitudinal Analysis

Within the longitudinal analysis approach at different values of τ1 and τ2 for τ1 = 5, 10
and 20, and ∆ = 1, 2, . . . where ∆ = τ2 − τ1, the maximum likelihood estimators for the
parameters involved in defining the susceptible survivor function, which in our illustration
include α0, α1 and δ0 , acquire good performance in terms of attaining higher efficiency
and better precision when τ1 is not very large. The relative efficiency measure for the
longitudinal estimators when τ1 = 20 is much higher than the corresponding values for the
same longitudinal estimators when τ1 = 5 or 10. This suggests that the values of mean-
square error for these longitudinal estimators at a later time have increased more relative
to the corresponding value for the same longitudinal estimators at an earlier τ1.

The longitudinal estimators for β0 and β1 are less biased and more precise when τ1 is
larger, and for all values of τ1, the bias and standard errors reduce as ∆ increases. Hence,
this leads to smaller values of MSE for these estimators when τ1 increases and reduces
further as ∆ becomes wider.

The relative efficiency measures for the longitudinal MLEs of β0 and β1 is higher than
the corresponding values for the estimators of the other unknown parameters. A reasonable
explanation for this event is that both longitudinal and cross-sectional estimators for the
parameters defining the proportion of long-term survivors are gaining better efficiency and
becoming closer to the true values, as well as becoming more precise, as τ1 increases. There-
fore, their values of MSE will not differ very much. In our example, however, the values of
MSE for the longitudinal estimators are still more desirable than the MSE values for the
cross-sectional estimators in all cases which further reveals that the longitudinal estimators
once again achieve better efficiency and precision.

In summary, all longitudinal estimators are more efficient relative to the cross-sectional
estimators since the relative efficiency measure is apparently lower than 1 in all cases.
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5.2 Varying τ1 and Fixed Follow-up Distance ∆

Repeating the simulation steps in section 5.1, we obtain the simulated data for use in the
estimation procedure for this example. This time, however, τ1 varies and ∆ is fixed at
5, 10 and 20, so that the same distance is generated between the first and second visits,
and varying estimates will occur from cross-sectional as well as from longitudinal analysis
approaches at all different values of τ1. In short, the three cases for illustration here are

Case 1 : τ1 = 1, 2, . . . , 30 and τ2 = 6, 7, . . . , 35, so that ∆ = 5
Case 2 : τ1 = 1, 2, . . . , 30 and τ2 = 11, 12, . . . , 40, so that ∆ = 10
Case 3 : τ1 = 1, 2, . . . , 30 and τ2 = 21, 22, . . . , 50, so that ∆ = 20.

This example is analogous to a moving window, instead of a wider window in the previous
example. For all cases, the average number of failures, m1, simulated at the first visit is
nearly the same for both analyses, which are increasing at a decreasing rate as τ1 increases.
Next, the average number of patients who fail in (τ1, τ2], that is m2L

, in the longitudinal
analysis is decreasing towards zero as τ1 increases. This is different from the previous
example where m2L

is increasing due to a wider ∆. In the current example however, ∆
is constant for all cases and therefore m2L

should be expected to reduce as more failures
are included in m1L

. In short, m2L
is inversely related to m1L

. Furthermore, Case 3 has
the highest m2L

since ∆ is the largest which allows more failures to be identified in the
interval. Lastly, the number of survivors at τ2 can be seen as decreasing and approaching a
constant value represented by the number of long-term survivors, with Case 1 with smallest
∆, having the highest value of m3L

for the longitudinal approach indicating that more
susceptible patients do not yet fail by τ2.

5.2.1 Comparisons for Parameters in S∗(t)

Now, we look at the MLEs for α0, α1 and δ0 which defines S∗(t). As in the situation in the
earlier section, the MLEs for these parameters are more favourable when ∆ is smaller at
all values of τ1. Indeed, when τ1 is large and ∆ = 20, the longitudinal MLEs are becoming
worse than when ∆ = 5 or 10. In all circumstances, however, the standard errors for these
MLEs are still better in the longitudinal analysis approach as compared to those obtained
from cross-sectional analysis.

Hence, the resulting MSEs for the longitudinal estimators are more desirable than those
for the cross-sectional estimators which leads to the relative efficiency measures being less
than unity. Note that, for this example as well, the longitudinal estimators perform better
when τ1 is earlier and ∆ is smaller.

5.2.2 Comparisons for Parameters in ρ

Parameters in ρ behave in a similar way to before where later time periods provide better
estimates and precision. This is indeed true for both analysis approaches. A more convincing
set of MLEs are those obtained from the longitudinal approach when ∆ is the largest.

6 Discussion

The results from our simulation study have demonstrated the different performances of
the MLEs with their corresponding standard errors for different values of the unknown
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parameters.

Clearly, the MLEs for the parameters defining ρ gain better efficiencies and precisions
when the first visit becomes later and the distance between the first and second times of visit
becomes wider, provided that the time of the first visit is not so large that no information
is gained within the period between the first and second visit.

As for the parameters defining the susceptible survivor function, which are the spread
parameter µ and the shape parameter δ, it is shown that a combination of a reasonably
earlier time of the initial visit and a smaller gap between the first and the second visit is
preferable in gaining an optimal set of MLEs.

There seems to exist a contradicting phenomenon between these two components of
the combined survivor function, whereby the longitudinal MLEs can be better for some
parameters and not for the others at different values of (τ1, τ2), for example the estimators
for the parameters defining the susceptible survivor function perform better at an earlier
time and smaller gap between the first and second visit. The reverse however is true for
the estimators of the unknown parameters defining the proportion of long term survivors
in the data. Nonetheless, the combined results from the longitudinal approach are still
desirable since the bias in most cases is small and the level of precision is evidently better
in the longitudinal analysis which is further justified by the smaller-than-unity values of the
relative efficiency measures.

The results obtained so far for the case with two reference time points for the longitudinal
analysis calibrate what we expect about the longitudinal estimators and we gain a better
understanding about the estimators’ behaviours. These results however inevitably are a
function of parameter values used in the simulation.

It is worthwhile noting again that the covariate values used in this simulation study
for the longitudinal analysis are assumed fixed, and hence the values are the same at both
visits. Since our objective in this study is to investigate and compare the performance of
the estimators from the cross-sectional and longitudinal analysis, the longitudinal model
assuming the fixed covariates should suffice. Furthermore, the assumption helps making
the process of simulating the values of the response variables much simpler.

In practice however, we have at least two difficulties: one concerns the length of time
between the initial visit, for example the time of diagnosis, and the time of the first follow-
up visit which certainly varies between individuals. Similarly, the duration between the
first and the next follow-up visits differ between individuals. This is why we consider a
different combination of τ1 and ∆ in our investigation in order to get some ideas on how
the estimators perform when such differences in the duration of time occur.

The other difficulty concerns the changing values of the covariates in the longitudinal
approach. This is not covered in our simulation, but we need to be aware that changing
covariate values can affect the performance of longitudinal parameters, particularly the
proportion of long-term survivors, ρ, since analytically this parameter is only a function of
x but not t. Therefore, by changing x, increasing the t values may not necessarily reduce ρ,
and hence the longitudinal estimator for parameters involved in ρ may perform differently
from the performance discussed so far. Furthermore, even in our example with the fixed
covariate values, the relative efficiency measure for these estimators, though smaller than
unity, are quite close to the unit value.

Our example can be generalised to the case with more than 2 visits for the longitudinal
analysis, where at each subsequent visit the number of survivors decreases since more sus-
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ceptible individuals would be known to fail after some additional time. Due to increasing
information gained when the number of visits increases, we should expect that the estima-
tors perform even better than those in the cross-sectional analysis or longitudinal analysis
with a lower number of visits. The estimation for the longitudinal model with more than
two visits however is more complex, particularly when it involves time-varying covariates
in the model. Despite this complexity, it can be done and at this stage it is proposed for
future work.

Generally from this investigation, we can see that the longitudinal estimators perform
better than do the cross-sectional estimators and the increase in efficiency can be seen to
increase substantially. We should anticipate the same performance to persist when we deal
with the real data whereby the longitudinal estimators are preferable than the cross-sectional
estimators.
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