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ABSTRACT 
 

Baseline length-dependent errors in GPS RTK positioning, such as orbit 
uncertainty, and atmospheric effects, constrain the applicable baseline length 
between reference and mobile user receiver to perhaps 10-15km. This 
constraint has led to the development of network-based RTK techniques to 
model such distance-dependent errors. Although these errors can be 
effectively mitigated by network-based techniques, the residual errors, 
attributed to imperfect network functional models, in practice, affect the 
positioning performance. Since it is too difficult for the functional model to 
define and/or handle the residual errors, an alternative approach that can be 
used is to account for these errors (and observation noise) within the 
stochastic model. In this study, an online stochastic modelling technique for 
network-based GPS RTK positioning is introduced to adaptively estimate the 
stochastic model in real time. The basis of the method is to utilise the 
residuals of the previous segment results in order to estimate the stochastic 
model at the current epoch. Experimental test results indicate that the 
proposed stochastic modelling technique improves the performance of the 
least squares estimation and ambiguity resolution.  
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1. INTRODUCTION 
 
Carrier phase-based GPS has become an essential technique for a wide range of precise 
positioning applications, such as kinematic surveying and vehicle navigation and guidance. 



 

 

 

The ‘relative’ positioning concept, in which one GPS receiver’s position is derived with the 
aid of observations made at a stationary reference station, has been used in most 
implementations of the technique. The current state-of-the-art implementation for high 
precision GPS positioning is the so-called Real-Time Kinematic (RTK) hardware/software 
system that can deliver centimetre-level positioning accuracies of a moving (i.e. kinematic) 
user receiver, if the integer carrier phase ambiguities are correctly resolved. However, the 
impact of baseline length-dependent GPS errors, such as orbit uncertainty, and atmospheric 
effects, constrains the applicable baseline length between reference and mobile user receiver 
to perhaps 10-15km. These constraints have led to the development of several network-based 
RTK techniques, including the Virtual Reference Station (VRS) approach, and the Area 
Correction Parameter techniques (Wübbena et al., 2001) 
 
The key concept in using multiple reference stations (i.e., a network) to support GPS carrier 
phase-based positioning is: (a) to generate so-called “correction terms” representing the 
distance-dependent errors; and (b) to interpolate and apply them to mobile user receiver 
measurements, so as to significantly diminish the residual error terms, thus making it possible 
to perform medium or long-range (tens to hundred kilometre receiver separations) 
positioning. The correction message data are generated based on the pre-determined 
coordinates of the reference stations. Integer ambiguities among the reference stations must be 
correctly resolved and station-dependent errors, such as multipath, measurement noise, and 
antenna phase centre variation, should be mitigated in the correction terms. In addition, the 
generated correction message data with respect to each reference stations have to be 
interpolated or modelled for the user’s location. Over the past decade, a number of 
interpolation methods have been proposed. These include Linear Combination Model, 
Distance-Based Linear Interpolation Method, Linear Interpolation Method, Lower-Order 
Surface Model and Least-Square Collocation (Fotopoulos & Cannon, 2001). However, Dai et 
al (2001) demonstrated that the performances of all of these methods are similar.  
 
In order to obtain optimal estimates from the least-square solution, both a mathematical 
model, also called a functional model, and a stochastic model should be correctly defined. The 
functional model describes the relationship between measurements and unknown estimates. 
On the other hand, the stochastic model represents the statistical characteristics of the 
measurement that is mainly provided by the covariance matrix for the measurements. Whilst 
the mathematical models for the network-based GPS RTK positioning are sufficiently 
investigated and well documented (e.g., Han and Rizos, 1996; Raquet, 1997; Wanninger, 
1995; Wübbena et al., 1996), stochastic modeling is still an issue under investigation. In the 
case of network-based GPS RTK, the positioning performance is largely affected by the 
residual biases due to imperfect network mathematical models (Musa et al., 2004). The 
residual biases contribute to the noise terms and make it difficult to define a functional model 
that can deal with them. Hence, they should be taken into account within the stochastic model. 
 
In this paper a stochastic modelling method that can be efficiently implemented for network-
based GPS RTK positioning will be introduced. This technique determines the covariance 
matrix of observations at the current epoch based on the estimation residuals from the 
previous positioning results. Experimental test results will be presented to demonstrate the 
application of the stochastic modelling method. 
 
 
 
 



 

 

 

2. ONLINE STOCHASTIC MODELLING  
 
A stochastic model for the network-based GPS RTK has to take into account uncertainties due 
to: (a) residual vectors at reference stations; (b) residual interpolation; (c) measurements at the 
mobile receiver. An online stochastic model reflecting all the uncertainties can be derived 
using the residuals from Kalman Filter solutions (Wang, 2000).  
 
Since the true values of the model errors (measurement noise or process noise) are unknown, 
stochastic modelling has to be based on the filtering residuals of the measurements and state 
corrections, which are generated in the process of parameter estimation.  A problem here is 
that the parameter estimation process itself relies on the estimated measurement covariance 
matrix R  and process covariance matrix Q .  The process covariance matrix can be fixed to 
the appropriate values to neglect the impact of the dynamic model on the GPS RTK solutions. 
Then, Kalman filtering results are in fact identical to the least-squares solutions (see e.g., 
Wang, 2000).  An adaptive procedure can be used to estimate the matrix R  online.  
 
The basic idea of the adaptive method is that the residuals collected from the previous 
segment of positioning results are used to estimate the covariance matrices of the 
measurement noise and process noise for the current epoch. Preset default covariance matrices 
are needed to seed the adaptive estimation process. Within a segment, the covariance matrices 
for each epoch are assumed to be the same. Therefore, the formulation of an adaptive 
stochastic modelling method includes two critical steps, namely: (a) to derive suitable 
formulae for use in estimating the covariance matrices, and (b) to determine the optimal 
segment (window width), which is application-dependent (Wang, 2000; Dai, 2002) 
 
Suppose the measurement filtering residuals are: 
 

v z H xzk k k k= − $    (1) 
 
where zk  is the measurement vector and Hk is the measurement design matrix. Equation (1), 
obviously, is the optimal estimator of the measurement noise level because the estimated 
values $xk  (not the predicted values xk ) of the state parameters are used in their computations.  
In order to obtain the covariance matrix of the measurement filtering residuals, equation (1) is 
further derived as 
 

v z H x G d E H G dz k k k k k k k kk
= − + = −( ) ( )    (2) 

 
where Gk  is the gain matrix and dk  is the innovation vector. By applying the error 
propagation law to equation (2), after extensive computations, one obtains  
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T
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In equation (3), if the covariance matrix Qvzk

 is computed using the measurement filtering 
residuals from the previous m  epochs, the covariance matrix Rk  can be estimated as (Wang, 
2000) 
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which can be used in the computation of epoch k + 1 .  In equation (4), m  is called the width of 
moving windows.  It is noted that the covariance matrix $Rk  estimated with equation (4) is 
always positive definite because it is the sum of the two positive definite matrices.  Equation 
(4) requires some extra computations for both vzk

 and H Q Hk x k
T

k$
, which are not generated by 

the standard Kalman filtering process. Fortunately, the amount of these additional 
computations is small and leads no significant time delay in data processing. 
 
The initial covariance matrix is determined by using the previous covariance matrix. Based on 
the residuals at the previous epochs, the covariance matrix of the observations can be 
estimated in real-time using Equation (4).  
 
3. TESTING RESULTS 
 
3.1 The Experiments 
 
Field experiments were carried out on 21st October 2004 at Olympic Park in Sydney. The 
objective of these experiments was to test performance of the proposed stochastic modelling 
method. Three reference stations were used in the experiments. Whilst two of them are 
Continuously Operating Reference Stations (CORS), which belong to ”SydNet” - a network 
of GPS reference stations in the Sydney metropolitan area (Rizos et al., 2003), the other one is 
a permanent GPS station on the roof of the Electrical Engineering Building at The University 
of New South Wales. Since MGRV was selected as a master reference station, the baseline 
length between reference and mobile receiver was approximately 32km. The locations of the 
reference stations and the trajectory of the mobile receiver are illustrated in Figures 1 and 2. 
During the fifteen minutes of the experiment, seven satellites were tracked. The data interval 
was one second. In addition, one more GPS station was installed in the experimental area to 
generate a reference trajectory using short-range data processing. 
  
The acquired data was processed in the post-mission mode using in-house GPS kinematic 
processing software. However, it should be noted that all the algorithms used are applicable 
for real-time implementation. The network-based GPS positioning begins with generating 
network corrections to mitigate baseline distance-dependent errors (see Musa et al., 2004). 
The generated L1 and L2 carrier phase corrections for the test data are depicted in Figure 3. It 
can be seen from the figure that the baseline distance-dependent errors are at the few 
centimetre-level. This is due to the factor that the baseline length in this experiment was about 
32km and the test site is geographically located in a middle latitude region where the 
ionospheric delay effect is relatively small. In the data processing, the initial standard 
deviation for the pseudo-range and carrier phase measurements was defined as 0.3m and 0.05 
cycles, respectively. The width of the moving window for estimating the measurement 
covariance matrix was set to ten epochs and the initial estimate was calculated using 
measurement residuals of the least squares from the first ten epochs with ambiguities being 
fixed.  
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Figure 1. Configuration of the reference stations and the roving station 
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Figure 2. Trajectory of mobile receiver  
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Figure 3. Network corrections for L1 and L2 carrier phases measurements 

 
 
3.2 Testing Results 
 
First of all, a comparison between single and multiple reference station solutions was made in 
order to study potential benefits of using the additional reference stations in the carrier phase-
based GPS kinematic positioning. Figures 4 and 5 depict the standard deviations of L1 and L2 
carrier phases showing the precision (e.g., noise level) of these measurements and the 
positioning accuracy.  
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Figure 4. Standard deviation of L1 and L2 carrier phases measurements 

 



 

 

 

-0.1

-0.05

0

0.05

0.1
Single Reference-Based Processing

m

0 100 200 300 400 500 600 700 800 900
-0.1

-0.05

0

0.05

0.1
Network-Based Processing

Epoch (sec)

m

∆ X
∆ Y
∆ Z

 
Figure 5. Accuracy of positioning solution 

 
As already mentioned, the additional reference GPS station installed within the test area with 
baseline length approximately 100m provided the reference trajectory since its accuracy can 
be at the few centimetre level with correct integer ambiguity (e.g., short-range kinematic 
positioning). Hence, it is possible to use the trajectory for evaluating positioning accuracy of 
the test results. It can be recognised from these results that the application of the network 
corrections significantly reduces the measurement errors and consequentially improves 
positioning accuracy, demonstrating the main advantage of the GPS network for medium and 
long baseline kinematic positioning. 
 
In order to clearly demonstrate effectiveness of the online stochastic modelling method for 
network-based GPS kinematic positioning, a comparison of the online modelling method with 
a model based on an apriori assumption of the measurement precision was made. For 
convenience, they are referred to as ‘Preset’ (based on the error propagation law – see Musa et 
al., 2004) and ‘Estimated’ (i.e., Equation 4). Figure 6 shows the aposteriori variance value 
changes obtained from the two different stochastic models. The values should have unity 
according to the least squares estimation theory (Cross, 1983) if both the functional and 
stochastic models are correctly defined. In other words, if the variance is significantly 
different from unity, it is suspected that outliers exist in the measurements, or there is a 
problem with the fidelity of the stochastic and/or functional models (ibid). The figure shows 
that the variance values from the preset model are more variable than those from the estimated 
model. This may be due to the fact that the stochastic model does not realistically reflect the 
residual biases of the measurements which are mainly caused by the functional model 
uncertainty. On the other hand, the estimated results show that the variance values are stable 
and very close to ‘1’, demonstrating that the residuals are appropriately considered by the 
introduced online modelling method.  
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Figure 6. Posterior variance changes 

 
Figures 7 and 8 illustrate the standard deviations for the DD C1 code and L1 carrier phase 
observations, respectively. It is evident that big differences exist between the two stochastic 
models. In reality, the accuracy of the measurements may be influenced by many factors, 
which must be considered by the appropriate stochastic model. As mentioned early, there are 
three factors causing the uncertainty (i.e., residual biases) of GPS observations after applying 
the corrections in the network-based approach. Even though it goes without saying that the 
uncertainty should be variable due to the satellite and receiver dynamics, the results with the 
preset stochastic model are almost constant values, which are unrealistic. In contrast, the 
fluctuations in the estimated results using the proposed on-line stochastic modelling method 
indicate that such uncertainties are reflected in the stochastic model, making them more 
realistic. 
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Figure 7. Standard deviation of C1 pseudo-range measurements 
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Figure 8. Standard deviation of L1 carrier phase measurements 

 
The determination of the integer ambiguities, commonly referred to as ambiguity resolution 
(AR), is the most critical data analysis step for high precision GPS based positioning. With 
fixed integer ambiguities, the carrier phases can be used as unambiguous precise range 
measurements. A realistic estimation of measurement covariance matrices can provide 
reliable statistics for ambiguity resolution. To demonstrate this more clearly, both the 
solutions with the preset and estimated covariance matrices were generated. The ADOP 
(Ambiguity Dilution of Precision) measure defined by Teunissen and Odijk (1997) is 
designed to describe the impact of the receiver-satellite geometry on the precision and the 
correlation of ambiguity parameters. The calculated ADOP values are depicted in Figure 9, 
indicating significant improvement of the precision and the correlation of the estimated float 
ambiguities. As a consequence of this it is expected that the ambiguity search volume is 
reduced and its shape becomes more like a sphere, speeding up the ambiguity searching 
process (ibid). 
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Figure 9. Ambiguity Dilution of Precision (ADOP) 



 

 

 

It is crucial to ensure that the most likely integer ambiguity combination is statistically better 
than the second best combination, as defined by the second minimum quadratic form of the 
least squares residuals, the so-called the ‘ambiguity validation test’. The improved float 
ambiguity estimates are of great importance for the ambiguity validation test (Wang, 2000; 
Wang et al., 2003; Lee, 2004). First of all, in order to check the correctness of the best 
ambiguity combination, the reference ambiguity combination was computed from the 
reference trajectory obtained from the short-range positioning. A comparison of the best 
combination with the reference one indicated their ambiguities were exactly the same, hence 
being able to be considered as the correct ambiguity set. Therefore, it is anticipated that the 
larger validation test statistics, the higher the probability of validating the correct ambiguity 
combination.  
 

 
Figure 10. W-ratio values 

 
Figure 10 depicts the validation test statistics using the W-ratio proposed by Wang et al. 
(1998). These results shown in Figure 10 indicate that the ambiguity validation test statistics 
with the ‘Estimated’ measurement covariance matrices are much larger than those of the 
preset measurement covariance matrices. Consequentially, the best ambiguity combination 
has more probability to be validated by the test, making it possible to reliably resolve correct 
ambiguities through avoiding type I errors in the statistical hypothesis test.  
 
5. CONCLUDING REMARKS 
 
Although the impact of baseline length-dependent GPS errors, such as orbit uncertainty, and 
atmospheric effects, constrains the applicable baseline length between reference and mobile 
user receiver to perhaps 10-15km, the development of the network-based approaches makes it 
possible to overcome this constraint. However, the positioning performance is largely affected 
by the residual biases due to imperfect network mathematical models. These residual biases 
contribute to the noise terms and make it difficult to define a functional model that can deal 
with them.  
 
In this paper, an online stochastic modelling method that reflects all the uncertainties of the 
network-based GPS RTK positioning has been introduced. This stochastic modelling method 
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estimates the covariance matrix of observations at the current epoch based on the estimation 
residuals from the previous positioning results. In addition, field experiments were carried out 
to evaluate the performance of the modelling technique. Test results indicate that the proposed 
technique improves: (a)  the covariance matrix of the observations; (b) the model fidelity of 
the least squares estimation; and (c) the performance and reliability of the ambiguity 
resolution for network-based GPS kinematic positioning.  
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