THE EFFECT OF SOIL RESISTIVITY ON CORROSION BEHAVIOUR OF COATED AND UNCOATED LOW CARBON STEEL

SITI RAHMAH BINTI SHAMSURI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical-Materials)

> Faculty of Mechanical Engineering University Teknologi Malaysia

> > MAY 2010

This study is especially dedicated to my beloved Mommy and Daddy Brothers and sisters, Beloved fiancé, *Abdul Hakim Amir Abdullah* for everlasting love, care, and support...

ACKNOWLEDGEMENT

First and foremost, I would like to express my utmost gratitude to my Creator, Allah s.w.t for His Rahmah and Rahim in making me a person that I am today. May His Grace is blessed upon all other Muslim and human being as well.

With the accomplishment of this project, the author would like to extend the special and greatest gratitude to the supervisor, Prof Dr. Esah Hamzah of Faculty of Mechanical Engineering, Universiti Teknologi Malaysia for her enthusiastic effort and concern. With her valuable advice, guidance and encouragement, the author was able to complete this project.

The author gratefully acknowledges the cooperation Mr Zainal Abidin, Mr Adnan, Mr Ayub Abu, Mr Jefri, Mr Azri and other laboratory technicians during the experimental works and data collection.

Deepest thanks to the author's fiancé and family especially for their encouragement and support in life. Without them the author would not be able to complete the project.

ABSTRACT

Underground pipeline and steel structure are usually expected to have a long working life. Pipeline made of steel normally corrodes in soil if remain unprotected. Thus the aim of this project is to determine the effect of soil properties and content on the corrosion behaviour of low carbon steel. Soil and water samples were taken along Bekok, 50km water pipeline in Yong Peng. The samples used in this research is low carbon steel both coated (with bitumen) and uncoated. Moisture, pH and the resistivity of soil are the parameters that involve in determining the corrosivity of the soil. The concentrations of the soil parameters are found to have the following properties: pH (1.76- 5.6), temperature (25-50°C), moisture contents (20 - 40%), and resistivity (<1000 Ω .cm). Corrosivity of the soil samples were evaluated using the American Water Works Association (AWWA) C 105 numerical scale. The resistivity measurement shows that the value decrease by increasing the water content and ionic concentration. The corrosion rate of low carbon steel in soil test solution has been investigated using electrochemical test method (Tafel slope). The result shows that the corrosion rate of the steel increases considerably at very low acidic pH environment (pH 1 to 2) and corrosion current density increase with temperature in the range of 25 to 50°C. Immersion test indicated that the highest corrosion rate of the steel sample was observed in soil containing the lowest pH value 1.76. Based on visual inspection, it is found that uncoated sample has higher corrosion rate than coated steel sample.

ABSTRAK

Saluran paip dan struktur keluli dalam tanah lazimnya dijangka mempunyai jangka hayat yang panjang. Saluran paip diperbuat daripada keluli lazimnya akan terkakis di dalam tanah jika tidak dilindungi. Tujuan projek ini adalah untuk mengkaji kesan sifat tanah terhadap kelakuan kakisan keluli karbon rendah. Sampel air dan tanah diambil di beberapa kawasan di sepanjang saluran paip Bekok di Yong Peng. Kajian ini menggunakan dua jenis sampel iaitu keluli karbon rendah bersalut (bitumen) dan tanpa salutan. Parameter yang dikaji ialah seperti berikut; kelembapan tanah, kesan pH, kerintangan dan juga kandungan klorida. Di dalam kajian ini, kandungan kepekatan yang di jalankan adalah seperti berikut: pH (1.76- 5.6), suhu (25-50°C), kandungan kelembapan (20 – 40%), dan sifat kerintangan tanah (<1000 Ω .cm). Sifat kakisan pada tanah telah dinilai berdasarkan ukuran skala menurut urutan angka American Water Works Association (AWWA C 105). Teknik pengiraan daya rintangan tanah telah menunjukkan bahawa sifat kerintangan tanah akan menurun apabila kandungan air dan juga kepekatan ionik di dalam tanah meningkat. Ujian elektrokimia mengunakan teknik kecerunan Tafel telah digunakan untuk mengetahui kadar kakisan keluli karbon rendah di dalam larutan tanah tersebut. Keputusan kajian menunjukkan kadar kakisan meningkat secara mendadak apabila terdedah kepada persekitaran berasid rendah (pH 1-2). Keputusan ini juga menunjukkan ketumpatan arus kakisan meningkat apabila suhu menigkat dalam julat 25 kepada 50°C. Manakala untuk ujian rendaman pula, keputusan menunjukkan kadar kakisan yang tertinggi adalah pada sampel tanah yang mempunyai nilai pH 1.76. Berdasarkan pemeriksaan visual, sampel keluli tanpa salutan didapati mempunyai kadar kakisan yang tinggi berbanding keluli bersalut.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

TITTLE	i
STUDENT DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENT	vii
LIST OF TABLE	xi
LIST OF FIGURES	xii
LIST OF APPENDICES	XV

1 INTRODUCTION

1.1	Background of the Research	1
1.2	Objectives of the Research	2
1.3	Scopes of Research	2

2 LITERATURE REVIEW

2.1	Introd	uction	3
	2.1.1	Corrosion Principle and Mechanism	4

2.2	Corro	sion in Soil	5
	2.2.1	Factors that Effect Corrosion in Soil	6
		2.2.1.1 Soil Texture	6
		2.2.1.2 Moisture Content	8
		2.2.1.3 Soil Resistivity	8
		2.2.1.4 pH of Soil	12
		2.2.1.5 Oxidation and Reduction Potential	14
		2.2.1.6 Chloride Content	16
		2.2.1.6 Microbiological influenced corrosion	17
	2.2.2	Types of Corrosion in Soil	18
		2.2.2.1 Pitting	18
		2.2.2.2 Stress Corrosion Cracking	20
		2.2.2.3 Microbial Corrosion	23
2.2	Corro	sion Control	25
	2.2.1	Cathodic Protection	25
		2.2.1.1 Introduction	25
		2.2.1.2 Practical Application of Cathodic protection	26
		2.2.1.3 Criterion for Cathodic Protection	28
2.3	Mater	ial Selection	29
	2.3.1	Carbon Steel	29
		2.3.1.1 Physical and Mechanical Properties	29
		2.3.1.2 Corrosion Resistance	29
	2.3.2	Metal Coating in Buried Pipeline Structure	30
	2.3.3	Coating Defect and Failure in Soil Environment	33
		2.3.3.1 Bacterial or Fungal Attack	33
		2.3.3.2 Blistering	33
		2.3.3.3 Orange Peel	34
		2.3.3.4 Pin Holes	34

METHODOLOGY

3.1	Introd	uction	36
3.2	Water	Analysis	37
3.3	Soil A	nalysis	39
	3.3.1	Compositional Analysis of the Soil Samples	40
	3.3.2	Moisture Content of the Soil Samples	41
3.4	Soil R	esistivity Measurement (Wenner Four Pin Method)	43
3.5	Micro	structural Study of the Carbon Steel	44
3.6	Electro	ochemical Test	45
	3.6.1	Sample and Solution Preparation	45
	3.6.2	Experimental Setup	47
3.7	Immer	rsion Test	48

RESULTS AND DISCUSSION

4.1	Comp	ositional Analysis of the Material	50
4.2	Metal	lurgical Microstructure	51
4.3	Soil A	nalysis	53
	4.3.1	Compositional Analysis of the Soil	54
	4.3.2	Analysis of Moisture Content in the Soil	55
	4.3.3	pH Analysis of the Soil	56
4.4	Water	Analysis	58
4.5	Soil R	esistivity Measurement	60
4.6	Result	t of Polarization Curve	62
	4.6.1	Effect of pH influence	62
	4.6.2	Effect of temperature influence	64
4.7	Result	t of Soil Corrosivity Parameters	66
4.8	Imme	rsion test	67
	4.8.1	Visual Inspection before and after Immersion test	69

5 CONCLUSION AND RECOMENDATIONS FOR FUTURE WORK

5.	1 Conclusions	71
5.	2 Recommendations for future work	72
REFERENCES		73
APPENI	DICES	76

LIST OF TABLES

TABLES

TITTLE

PAGE

2.1	Corrosivity Ratings Based on Soil Resistivity	12
2.2	Acidity and alkalinity of the Soil	13
2.3	The Point System for Predicting Soil Corrosivity According	
	the AWWA C-105 Standard	15
3.1	Solution for Electrochemical Analysis	46
3.2	Immersion Test Parameters	49
4.1	Chemical Composition of as Received Carbon Steel Sample	51
4.2	EDX Analysis on the Soil Sample in 8 Different Locations	54
4.3	Moisture Content of Soil Samples Taken from the Site at	
	Yong Peng	55
4.4	pH Analysis of as- received Soil	57
4.5	pH and Chloride Content of the Water Samples	59
4.6	Soil Resisitivity Value under different Moisture Condition	61
4.7	Tafel Polarisation Curve Parameters in Simulated Soil Solution	
	at Room Temperature.	63
4.8	Tafel Polarisation Parameters at pH 1.75 at different temperature	64
4.9	Soil Corrosivity Parameters of Buried Steel in Soil Environment	66
4.10	Corrosion Rates of Samples in four different Soil Locations	67

LIST OF FIGURES

FIGURES

TITLE

PAGE

2.1	Schematic diagram of Fe dissolution, liberating into solution	
	Fe ions Fe ²⁺ and into electron which consumed by reduction	
	of H^+ to H_2	4
2.2	Pipe line installation in Nabucco Gas Pipeline, Europe	6
2.3	Percentages of clay, silt, and sand in the basic soil textural classes	7
2.4	Illustration between soil dry density and moisture content.	8
2.5	Principle of Operation Wenner four pin methods	9
2.6	Principle of Operation Wenner four pin Methods using	
	resistance meter	10
2.7	A Soil Box	11
2.8	The pH scale runs from 0 (most acid) to 14.0 (most alkaline)	14
2.9	A typical pitting corrosion in heat exchanger fracture surface	19
2.10	Pitted steel surface in $5x \ 10^{-3} \text{ M Ca}(\text{OH})_2$ in presence of:	
	(A) 5 x 10^{-2} M Na ₂ SO ₄ and (B) 5 x 10^{-2} M NaCl after immersion	
	for 2 hours	20
2.11	Intergranular SCC of an Inconel heat exchanger tube with	
	the crack following the grain boundaries	22
2.12	Chloride stress corrosion cracking in austenitic stainless	
	steel is characterized by the multi-branched "lightning bolt	
	transgranular crack pattern	22
2.13	Biofilm on a metallic condenser surface	23
2.14	Microbiological Induced Corrosion (MIC) resulted in penetration	
	of this Steel Heating Oil Storage Tank within 4 years	24

2.15	Principle of cathodic protection	26
2.16	Schematic of sacrificial anode is place on the buried structure in	
	the ground	27
2.17	ICCP systems in buried structure.	28
2.18	Fusion bonded epoxy system	31
2.19	Enamel coating	32
2.20	Tape Coating	32
2.21	Epoxy Spray coating	32
2.22	Top of line cracks in CTE under soil loading	34
2.23	Corrosion at failed tape overlap and under disbonded tape	35
3.1	Flow Chart for Project I and II	37
3.2	Collecting Water Samples at the Site	38
3.3	Water Analysis equipment-DR/4000 HACH	38
3.4	Schematic diagram of the soil sample location along	
	50km water pipeline	39
3.5	Collecting the soil samples at the site in Yong Peng	39
3.6	Scanning Electron Microscope with EDX Attachment	40
3.7	Photograph of (a) Gold Sputtering machine (b) Silver colloidal	41
3.8	Schematic of measuring moisture content (a) Mass for the	
	container, (b) Mass for the container and initial sample,	
	(c) Sample is put inside the oven to dry, (d) Mass after dry.	42
3.9	Resistivity measurement using soil box method	44
3.10	Mounted Sample for Electrochemical Test	46
3.11	Cell Kit set- up for Electrochemical Process	47
3.12	Figure of (a) Sample immersed in soil taken at location L4 and L5	
	(b) Samples immersed in soil taken at location L6 and L7	48
4.1	Optical micrographs of low carbon steel as received sample	
	(a) Magnification: 200x (b) Magnification: 500x	52
4.2	Bitumen coating on low carbon steel	53
4.3	Percentage of moisture contents in each of the soil sample location	56
4.4	Bar chart of pH value for each of the soil sample	58
4.5	Bar chart of chloride content and pH of the water sample	59

4.6	Bar chart of soil resistivity measurement under different		
	conditions of moisture.	61	
4.7	Chart showing corrosion rate of the as- received Samples at different	ent	
	pH values at Room Temperature	63	
4.8	Corrosion rate of the as- received Samples		
	at different Temperature	65	
4.9	Chart showing the effect of temperature on potential	65	
4.10	Chart showing the corrosion rate of two different type of steel;		
	coated and uncoated.	68	
4.11	Visual inspections of specimen before immersion test		
	(a) Uncoated (b) Coated	69	
4.12	Visual inspections of specimen after immersion test for Uncoated		
	Samples (a) Sample 1 -immersed at pH 1.76 (b) Sample 2 -immer	sed	
	at pH 2.52 (c) Sample 3 -immersed at pH 4.6 and		
	(d) Sample 4 -immersed at pH 5.5	70	

LIST OF APPENDICES

APPENDICES

TITLE

PAGE

A	Soil analysis using EDX for eight different location of soil sample	76
В	Soil Analyis using XRD for eight different location of soil sample	79
С	Polarization Curve at four different pH of soil solution	83
D	Polarization Curve at four different temperature of soil solution	85
E	Calculation of corrosion rate in mpy for immersion test result	87

CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Fundamental cause of deterioration of pipeline buried underground soil is soil corrosion. Pipeline corrodes in soil by complex electrochemical process because of the presence of different soil electrolyte. Bekok water pipeline, managed by Syarikat Air Johor (SAJ) in conjunction with RANHILL Malaysia has been chosen as the area of study. This water pipeline is made by carbon steel protected with bitumen coating have been installed with cathodic protection (ICCP) system. The system is specified by minimum potential of -850mV in reference to Cu/CuSO₄ electrode. A periodic is conducted to make sure the ICCP system is effective as corrosion protection along the 50 km water pipeline. The potential difference between soil and pipeline shows that it is less than -850mV (Cu/CuSO₄), which affect the cathodic protection system. Resistivity of the soil maybe the cause of the problem and it is the major study in determining the effect of corrosion behaviour.

1.2 Objective of the Research

The main objective of this research is to study the corrosivity of the soil based on American Water Works Association AWWA C 105 standard numerical scale. Besides that, it is also to determine the effect of water content on the resistivity of the soil.

1.3 Scopes of Research

Scopes of the research are as follows;

- (a) Literature review on soil corrosion and corrosion protection.
- (b) Experimental set-up on soil corrosion and corrosion protection.
- (c) Selection of soil samples and materials for the specimen.
- (d) Corrosion test on coated steel buried in soil.
- (e) Analysis of results using optical microscope, SEM and XRD.