LOG PERIODIC FRACTAL KOCH ANTENNA FOR WIRELESS APPLICATIONS

MOHD NAZRI BIN A KARIM

UNIVERSITI TEKNOLOGI MALAYSIA

LOG PERIODIC FRACTAL KOCH ANTENNA FOR WIRELESS APPLICATIONS

MOHD NAZRI BIN A KARIM

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MARCH 2010

ABSTRACT

In wireless communication system, antenna is one of the important devices to allow two ways communications. At lower frequency bands, the antenna size is bigger compared to the higher frequency band. Various techniques have been used in reducing the antenna size such as fractal technique and higher dielectric constant while maintaining the performance of the antenna. In this work, the fractal Koch geometry has been used as a method to reduce the size of the developed antennas. This is based on the advantages that are inherent for fractal Koch geometry in reducing the size and maintaining the performances. The design of the antenna begins with the understanding of the basic antenna properties such as return loss, radiation pattern including the understanding of the Koch geometry. A number of designs has been developed such as zero, first, second (0th, 1st, 2nd) and series iteration which are targeted for wideband and Ultra High Frequency (UHF). The simulation work is done using Computer Simulation Technology (CST 2008) software. About 27 % reduction of the antenna size has been achieved by using fractal Koch technique. The designs obtained from simulation are fabricated on FR4 board using wet etching technique. The results from simulation and measurement have been compared and analyzed. The antennas show good return loss lower than -10 dB at the desired frequency, directional radiation patterns with beamwidth of 110 degree, wide bandwidth up to 200 %, and gain between 5 dBi and 8 dBi.

ABSTRAK

Dalam sistem perhubungan wayarles, antena merupakan salah satu peranti yang penting dalam memastikan wujudnya perhubungan dua hala. Pada jalur frekuensi rendah, saiz antena adalah lebih besar berbanding pada jalur berfrekuensi tinggi. Pelbagai teknik telah digunakan untuk mengurangkan saiz antena antaranya menggunakan teknik fraktal dan pemalar dielektrik yang tinggi tanpa menjejaskan prestasi sediada. Dalam kerja ini, rekabentuk geometri fraktal Koch telah digunakan sebagai satu teknik untuk mengecilkan saiz antena yang dibangunkan. Ini adalah berdasarkan kelebihan yang terdapat pada rekebentuk geometri Koch yang mampu mengecilkan saiz disamping mengekalkan prestasi antena tersebut. Rekabentuk antena ini bermula dengan memahami ciri-ciri asas sesuatu antena seperti kehilangan balikan, corak sinaran dan sebagainya disamping memahami fraktal geometri itu sendiri. Beberapa rekabentuk telah dibangunkan seperti lelaran sifar, pertama, kedua dan sesiri untuk aplikasi jalur lebar dan jalur frekuensi ultra tinggi (UHF). Kerjakerja simulasi dilakukan dengan menggunakan perisian Teknologi Simulasi Komputer (CST 2008). Dengan menggunakan teknik fraktal Koch, didapati bahawa saiz antena berkurang sebanyak 27 %. Rekabentuk yang diperoleh daripada simulasi telah difabrikasikan dengan papan FR-4 menggunakan teknik punaran basahan. Keputusan daripada kerja-kerja simulasi dan pengukuran dibandingkan dan dianalisis. Kesemua antena menunjukkan kehilangan kembali yang baik dibawah -10 dB pada frekuensi berkaitan, corak sinaran terarah dengan lebaralur 100 darjah, lebar jalur yang besar iaitu melebihi 200 % serta gandaan antara 5 dBi dan 8 dBi.

TABLE OF CONTENTS

CHAPTER

1

2

TITLE

PAGE

DEC	LARATION	ii
DEDICATION		
ACKNOWLEDGEMENT		
ABS	TRACT	v
ABS	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	F OF TABLES	xi
LIST	FOF FIGURES	xii
LIST	F OF SYMBOLS	xvii
INTI	RODUCTION	
1.1	Introduction	1
1.2	Project Background	1
1.3	Problem Statement	2
1.4	Objective	3
1.5	Scope of the Study	3
1.6	Project Contribution	4
1.7	Organization of the Thesis	4
LITH	ERATURE REVIEW	
2.1	Introduction	6
2.2	Fractal Antenna Technology	6
	2.2.1 Fractal Geometry	7

2.2.2 Fractal Antenna Classification 8

	2.2.3	Advantages of Fractal Antenna	9
2.3	Anten	na Properties	10
	2.3.1	Operating Frequency	10
	2.3.2	Radiation Pattern	11
	2.3.3	Bandwidth	12
	2.3.4	Gain	13
	2.3.5	Polarization	13
	2.3.6	Half Power Beam Width	14
2.4	Log P	eriodic Technique	14
	2.4.1	Fractal Koch Log Periodic Antenna	
		Design	16
	2.4.2	Backfire Radiation	18
2.5	Previo	bus Work	18
	2.5.1	Fractal Antenna Design for RFID	
		Application	19
	2.5.2	Hilbert Curve Fractal Antenna: A Small	
		Resonant Antenna for VHF / UHF	
		Applications	20
	2.5.3	Analysis of the Patch Antenna based on the	
		Minkowski fractal	21
	2.5.4	An Overview of Fractal Antenna	
		Engineering Research	22
	2.5.5	Size Reduction and Bandwidth Enhancement	
		of Snowflake Fractal Antenna	23
	2.5.6	Fractal Antenna A Novel Antenna	
		Miniaturization Technique and applications	24
	2.5.7	Ultra-Wideband Planar Antenna for UHF	
		Communications	25
	2.5.8	Analysis, Design and Simulation of Log Periodic	
		Antenna for Mobile Communication Bands.	26
	2.5.9	Design of Fractal UWB Antenna	27
2.6	Chap	ter Summary	28

3 METHODOLOGY

4

3.1	Introd	uction	29
3.2	Metho	odology	29
3.3	The D	besign of 0 th and 1 st Iteration Fractal	
	Koch	Antenna for Broadband Applications	32
3.4	The D	besign of 0 th , 1 st and Series Iteration	
	Fracta	l Koch Antenna for UHF Band Applications	35
3.5	The D	besign of 0 th and 2 nd Iteration Fractal Koch	
	Anten	na	38
3.6	Port C	Creation	41
	3.6.1	SMA Port	43
	3.6.2	Port Modes	44
3.7	Fabric	cation Process	45
3.8	Measu	arements Setup	46
	3.8.1	Input Return Loss Measurement	46
	3.8.2	Radiation Pattern Measurement Setup	47
3.9	Chapt	er Summary	50
RES	ULTS A	ND DISCUSSION	
4.1	Introd	uction	51
4.2	Broad	band Fractal Koch Antennas	51
	4.2.1	Result of Input Return Loss for Broadband	
		Antennas	52
	4.2.2	Analysis of Radiation Pattern for Broadband	
		Fractal Koch Antennas	55
	4.2.3	Half Power Beam Width (HPBW)	61
	4.2.4	Analysis of Gain for Broadband Fractal Antennas	62
	4.2.5	Current Distribution Analysis	64
4.3	Fracta	l Koch Antenna 0^{th} , 1^{st} and Series Iteration for	
	UHF	Band Applications	65
	4.3.1	Analysis of Return Loss for UHF Fractal Koch	
		Antennas	66
	4.3.2	Analysis of Radiation Pattern for UHF Fractal Koc	h
		Antennas	71

	4.3.3	Half Power Beamwidth (HPBW)	75
	4.3.4	Analysis of Gain for Fractal Koch for UHF	
		Band Application	75
	4.3.5	Current Distributions of 0 th , 1 st and Series	
		Iteration Antennas	77
4.4	Fracta	l Koch Antenna for 0 th and 2 nd Iteration	78
	4.4.1	Analysis of Return Loss for Fractal Koch Antenna	
		for DTV	79
	4.4.2	Analysis of Radiation Pattern for Fractal Koch	
		Antennas	83
	4.4.3	Half Power Beamwidth (HPBW)	86
	4.4.4	Analysis of Gain for Fractal Koch Antennas	86
	4.4.5	Current Distribution Analysis of 2 nd Iteration	88
4.5	Summ	ary	90

5 CONCLUSION AND FUTURE WORK

5.1	Conclusion	91
5.2	Key Contribution	92
5.3	Propose Future work	93

REFERENCES

Appendices A-I

99 - 146

94

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Summary of experimental result	21
3.1	Design Specification of the Broadband Antenna	32
3.2	Dimension of 0^{th} and 1^{st} iteration antenna for broadband	34
	applications	
3.3	Comparison of size reduction of broadband fractal Koch	34
	antenna	
3.4	Design Specification of the Broadband Antenna	35
3.5	Dimension of 0 th iteration antenna for UHF band	37
	applications	
3.6	Comparison of size reduction of UHF fractal Koch	38
	antenna	
3.7	Design Specification of the Fractal Koch Antenna	39
3.8	Dimension of Fractal Koch antenna	40
3.9	Comparison between 0 th and 2 nd iteration	41
4.1	Half Power Beam Width for Broadband Fractal Koch	62
	Antenna	
4.2	Gain and efficiency of 0 th and 1 st iteration broadband	62
	antenna	
4.3	Half Power Beamwidth for UHF Fractal Koch Antenna	75
4.4	Gain of 0^{th} , 1^{st} and series iteration antenna for UHF	76
	band applications	
4.5	Half Power Beamwidth for Second Iteration Fractal	86
	Koch Antenna	
4.6	Simulated gain for 0 th and 2 nd iteration antenna	87

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Example of Fractal Antennas, (a) Sierpinski Carpet, (b)	8
	Cantor Set, (c) Koch Curve, (d) Sierpinski Gasket, (e) 3D	
	Sierpinski, (f) Fractal Tree	
2.2	Fractal Antenna Classification	9
2.3	Type of iterations	10
2.4	Coordinate system for radiation pattern measurement	11
2.5	Configuration of Log Periodic Antenna	15
2.6	A half-wave dipole and the Koch Fractal dipole	19
2.7	Generation of Hilbert Curve antenna	20
2.8	Radiation pattern in two orthogonal planes	20
2.9	Fabricated Square and fractal patch antenna	21
2.10	Fabricated Array Square and fractal patch antenna	21
2.11	Return loss at different iteration factor	22
2.12	Koch curves and fractal trees used in miniaturized dipole	22
	antennas	
2.13	Sierpinski Carpet and Sierpinski Gasket Antenna	22
2.14	Geometry of original Koch Snowflake for four iterations	23
2.15	Simulated return loss of Snowflake fractal antenna	23
2.16	Radiation pattern of new Snowflake at third iteration at	24
	5.875 GHz	
2.17	Mathematically generated plants, created using Fractint	24
2.18	The iterative generation procedure for Minkowski Island	25
2.19	Geometry of the ultra-wideband patch antenna	25
2.20	Simulated and measured return losses	26

2.21	Schematic diagram of LPDA	26
2.22	Output from simulation	27
2.23	Antenna prototype	27
2.24	Simulated and measured return loss	28
2.25	Measured radiation pattern	28
3.1	Flow Chart of Research Methodology	31
3.2	0 th Iteration Fractal Koch Broadband Antenna	33
3.3	1 st Iteration broadband fractal Koch antenna	33
3.4	0 th iteration Fractal Koch Antenna for UHF band	36
	applications	
3.5	1 st iteration fractal Koch antenna for UHF band	36
	applications	
3.6	Series Iteration fractal Koch antenna for UHF band	37
	applications	
3.7	Layout of 0 th Iteration Fractal Koch Antenna	40
3.8	Layout of 2 nd Iteration Fractal Koch Antenna	40
3.9	Parameter of Coaxial Structure	42
3.10	Design flow for SMA port	43
3.11	Port Mode (E Field)	44
3.12	Port Mode (H Field)	44
3.13	Etching Process	45
3.14	Calibrated input return loss a) Before calibration, b) After	47
	calibration	
3.15	Measurement Return Loss (S ₁₁) process	47
3.16	Radiation pattern measurement setup in anechoic	48
	chamber	
3.17	Measurement Radiation Pattern, a) Anechoic Chamber, b)	49
	Signal Genrator and Spectrum Analyzer	
4.1	Broadband Fractal Koch Antenna a) 0 th Iteration b) 1 st	52
	Iteration	
4.2	Comparison between simulated return loss for 0 th	53
	iteration and 1 st iteration fractal broadband antennas.	

4.3	Comparison between measured return loss for 0 th iteration and 1 st iteration fractal broadband antennas	53
4.4	Comparison between simulated and measured returns loss	54
	broadband fractal Koch antenna a) 0^{th} iteration, b) 1^{st}	
	iteration.	
4.5	Simulated and measured radiation patterns for 0 th	57
	iteration broadband fractal Koch antenna, a) E-Plane at	
	2GHz (b) H-Plane at 2 GHz, (c) E-Plane at 5 GHz, d) H-	
	Plane at 5 GHz, (e) E-Plane at 7 GHz and(f) H-Plane at 7	
	GHz.	
4.6	Simulated and measured radiation patterns for 1 st iteration	59
	broadband fractal Koch antenna, a) E-Plane at 2 GHz, b)	
	H-Plane at 2 GHz, c) E-Plane at 5 GHz, d) H-Plane at 5	
	GHz, e) E-Plane at 7GHz and f) H-Plane at 7 GHz.	
4.7	Comparison radiation pattern for 0 th and 1 st iteration	60
	antennas, a) E-Plane at 2 GHz, b) H-Plane at 2 GHz, c) E-	
	Plane at 5 GHz, d) H-Plane at 5 GHz, e) E-Plane at 7GHz	
	and f) H-Plane at 7 GHz.	
4.8	Gain comparison between Horn antenna and broadband	63
	antennas.	
4.9	Current distribution of the 0 th iteration broadband fractal	64
	Koch antenna a) At frequency 1 GHz, b) At frequency 3	
	GHz, c) At frequency 6 GHz.	
4.10	Current distribution of the 1 st iteration broadband fractal	64
	Koch antenna a) At frequency 1 GHz, b) At frequency 3	
	GHz, c) At frequency 6 GHz	
4.11	Fractal Koch antenna for UHF application, a) 0 th	65
	Iteration, b) 1 st Iteration, c) Series Iteration	
4.12	Comparison simulated return loss for 0 th iteration, 1 st	67
	iteration and Series iteration UHF Fractal Koch Antennas	
4.13	Simulated return loss with different flare angle	67
4.14	Comparison measured return loss for 0^{th} iteration, 1^{st}	68
	iteration and series iteration UHF Fractal Koch Antennas.	

4.15	Comparison simulated and measured return loss UHF	69
	Fractal Koch Antennas a) 0 th iteration, b) 1 st iteration, c)	
	Series iteration	
4.16	Simulated and measured radiation patterns for 0 th	71
	iteration UHF fractal Koch antenna, a) E-Plane at 0.8	
	GHz, b) H-Plane at 0.8 GHz, c) E-Plane at 2 GHz, and d)	
	H-Plane at 2 GHz.	
4.17	Simulated and measured radiation patterns for 1 st iteration	73
	UHF fractal Koch antenna, a) E-Plane at 0.8 GHz, b) H-	
	Plane at 0.8 GHz, c) E-Plane at 2 GHz, and d) H-Plane at	
	2 GHz.	
4.18	Simulated and measured radiation patterns for Series	74
	iteration UHF fractal Koch antenna, a) E-Plane at 0.8	
	GHz, b) H-Plane at 0.8 GHz, c) E-Plane at 2 GHz, and d)	
	H-Plane at 2 GHz.	
4.19	Gain comparison between Horn antenna and UHF	76
	antennas	
4.20	Current Distribution of the 0 th iteration antenna a) At	77
	frequency 0.5 GHz, b) At frequency 0.8 GHz, c) At	
	frequency 2 GHz.	
4.21	Current Distribution of 1 st iteration antenna a) At	77
	frequency 0.5 GHz, b) At frequency 0.8 GHz, c) At	
	frequency 2 GHz	
4.22	Current Distribution of Series iteration antenna, a) At	78
	frequency 0.5 GHz, b) At frequency 0.8 GHz, c) At	
	frequency 2 GHz.	
4.23	Fractal Koch Antenna a) 0 th Iteration b) 2 nd Iteration	78
4.24	Simulated return loss for 0 th iteration and 2 nd iteration	79
	antenna	
4.25	Simulated return loss by changing the degree of flare	80
4.26	Measured return loss for straight and second iteration	81
	antenna	

4.27	Simulated and measured return loss Fractal Koch antenna	82
	for DTV application a) 0^{th} iteration, b) 2^{nd} iteration	
4.28	Simulated and measured radiation patterns for 0 th	83
	iteration fractal Koch antenna, a) E-Plane at 0.7 GHz, b)	
	H-Plane at 0.7 GHz, c) E-Plane at 0.8 GHz, and d) H-	
	Plane at 0.8 GHz.	
4.29	Simulated and measured radiation patterns for 2 nd	85
	iteration fractal Koch antenna, a) E-Plane at 0.7 GHz, b)	
	H-Plane at 0.7 GHz, c) E-Plane at 0.8 GHz, and d) H-	
	Plane at 0.8 GHz.	
4.30	Gain comparison between Horn antenna and UHF	87
	antennas	
4.31	2^{nd} Iteration antenna before and after the size reduction a)	88
	Before the cutting, b) After the cutting.	
4.32	Current distribution of 2 nd Iteration antenna before and	89
	after the size reduction a) Before the cutting, b) After the	
	cutting.	
4.33	Return loss graph for trim and without trim edge	89

LIST OF SYMBOLS

đ	!B	-	decibel
8	r	-	Dielectric constant
h	!	-	Substrate height
τ	:	-	Scaling factor
λ	g	-	Guided wavelength
(1	r,θ,φ)	-	Spherical coordinate system
E	E	-	Electric
ŀ	I	-	Magnetic
f_i	u	-	Upper cutoff frequency
fi		-	Lower cutoff frequency
Ν	V	-	Number of elements
đ	ļ	-	distance between elements
θ)	-	phase
λ	0	-	wavelength in free space
l		-	transmission line length
Z	7	-	characteristic impedance
8	eff	-	effective dielectric constant
С		-	velocity of light in free space
f_{r}	• •	-	operating frequency
te	an δ	-	dissipation factor
E	<i>3W%</i>	-	bandwidth in percentage

LIST OF APPENDIXES

APPENDIX

TITLE

PAGE

А	List of Publications	99
В	Log Periodic Koch Antenna Design	122
С	Method to Create Fractal Koch Antenna	125
	Using CST	
D	Measured Radiation Patterns	128
E	3D Simulated Radiation Patterns	136
F	Specification of Horn Antenna	139
G	SMA Connector Specifications	140
Н	FR 4 specification	141
Ι	Hittite Signal generator	143

CHAPTER 1

INTRODUCTION

1.1 Introduction

This thesis proposes the development of fractal Koch antenna design that can be implemented for wireless applications at Ultra High Frequency (UHF) band, Digital TV broadcasting (DTV), Digital Video Broadcasting (DVB) and Wireless Regional Area Network. In the first chapter, the background of the project is discussed while providing the problem statement, objective, scope of the study, project contributions and organization of the thesis.

1.2 Project Background

Antenna design has become one of the most active fields in the communication studies. In the early years when radio frequency was found, simple antenna design was used as a device to transmit electrical energy or radio wave through the air in all direction. This innovative way of communication to replace wired technology to wireless technology was first introduced by Galileo Marconi when he successfully initiated the first wireless telegraph transmission in 1895 [1]. The wireless technology has expanded rapidly not only for commercial but also for military purposes.

In modern telecommunication systems, the requirement for antennas with wider bandwidth and smaller dimensions than conventional are preferred. This has initiated research on antenna in various directions, one of which is by using fractal shaped antenna elements. In recent years, several fractal geometries have been introduced for antenna applications with varying degrees of success in improving antenna characteristics. Some of these geometries have been particularly useful in reducing the size of the antenna, while other designs aim at incorporating multi-band characteristics. A few researches have been made in designing the fractal properties for the antennas.

Several antenna configurations based on fractal geometries have been reported in recent years [2] - [5]. These are low profile antennas with moderate gain and can be made operative at multiple frequency bands and hence are multifunctional. In this work, the antennas with reduced size have been obtained using Koch curve fractal geometry. Furthermore, design equations for these antennas are obtained in terms of its geometrical parameters such as fractal dimension. Antenna properties have also been linked to fractal dimension of the geometry. In order to lay the foundations for the understanding of the behavior of such antennas, the nature of fractal geometries is explained first, before presenting the status of literature on antennas using such geometries [6].

1.3 Problem Statement

The demands for UHF communication systems have increased; low-profile systems have drawn and bring much interest to researchers. In making such lowprofile communication systems, the size of the antenna is critical. Therefore, many techniques such as using higher dielectric substrate, multiple layers and by optimizing the shape of the antennas have been proposed and applied to the microstrip and planar antennas. The application of fractal geometry to conventional antenna structures optimizes the shape of the antennas in order to increase their electrical length, which thus reduces their overall size. Fractal shape antenna elements present various advantages; multiband frequency and reduced antenna size. [7]. It's bring fractal shapes becomes more enticing among researchers due to their capabilities. In applications where spaces are constraints, alternative smaller designs need to be considered. The ability to reduces the antenna size without degrade the overall performances of the antenna bring much interest to the antenna research. Therefore, in this project, fractal Koch antenna for three different applications is introduced. The main task here is to reduce the size of the antennas by using fractal technique. The literature about the fractal types, history and some of the previous work is elaborated in chapter 2.

1.4 Objective

The main objectives of this project are as follows:

- 1) To design, fabricate and analyze the fractal Koch antennas that can be use for Ultra High Frequency (UHF) and broadband applications.
- To reduce the size of the antenna by using fractal Koch technique for first, second and series iterations.
- 3) To compare between simulated and measured result and analyze the input return loss, radiation pattern, gain and current distribution of the antennas.

1.5 Scope of Study

The scope of this research begins with understanding the antenna properties and fractal antenna geometries. The literature and the advantages of fractal antenna have been studied.

The simulation process has been carried out using Computer Simulation Technology (CST) software to analyze the performance of the antennas. After the optimum design is confirmed, the designed structures are fabricated on an inexpensive Flame Retardant-4 (FR4) board, using wet etching technique. The validation work has been carried out in term of return loss, radiation pattern and gain using appropriated equipment such as Network Analyzer, Spectrum Analyzer, Signal Generator and Anechoic Chamber.

Then, the result obtained from simulation and measurement is compared, analyzed and documented.

1.6 Project Contribution

The applications of the fractal Koch antenna can be applied in many wireless applications. The technique to reduce the size of the antenna can be implemented by using fractal shape. In this work, fractal Koch geometry has been applied to the antennas design to reduce the size of the antennas. The 0th, 1st, 2nd and Series iteration antennas have been design for broadband and UHF band applications. The performance of these antennas has been analyzed and observed.

1.7 Organization of the Thesis

The organization of the thesis is divided into five chapters. The first chapter consists of introductions which provide information regarding background of the project, problem statement, objectives, scope of studies, project contribution and organization of the thesis.

The second chapter is the literature review which provides information regarding fractal antenna technologies. Besides, a basic concept such as log periodic concept and some related previous works are shown in this chapter.

Project methodology, in which the method employed in this work, is explained in chapter 3. The design and development of 0^{th} , 1^{st} , Series and 2^{nd} iteration of fractal Koch antenna with different applications is discussed in this

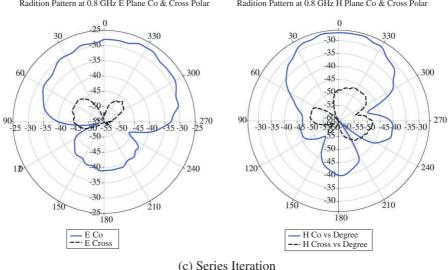


Figure 13. Co and cross polar for *E* and *H* plane LPFKA at 0.8 GHz.

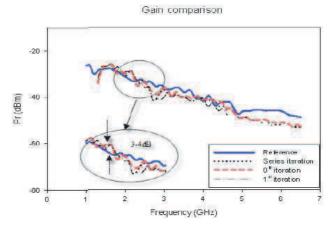


Figure 14. Gain comparison between horn antenna and LPFKA.

Figure 12. The simulated and measured radiation patterns for E-co and H-co correlate well. However, the existing of the back lobes for measured radiation pattern does not much affect the main beam of the antenna especially at $0.8 \,\mathrm{GHz}$ for E-co polar and at $2 \,\mathrm{GHz}$ for Hco polar. The measured radiation patterns show that the antennas are linearly polarized. The differences between co and cross polar determined the polarization of the antennas. In this case, co and

Radition Pattern at 0.8 GHz E Plane Co & Cross Polar

Radition Pattern at 0.8 GHz H Plane Co & Cross Polar

Progress In Electromagnetics Research, PIER 100, 2010

cross polar for both E and H planes are more than $3\,\mathrm{dB}$ as shown in Figure 13.

4.4. Analysis of Gain for Fractal Koch Antenna

The measured gain for UHF Fractal Koch antennas has been compared with the reference antenna. All three prototypes of this antenna exhibit a similar pattern compared to each other. As can be seen, the 0th, 1st and series iteration LPFKA give similar patterns. The antennas have been measured and compared in terms of power received by varying the frequency range and the value of power received in dBm. The antenna has a higher gain when it gives higher values at that particular frequency. However, it might have a lower gain when it is working outside its operating region.

5. CONCLUSION

The Log Periodic Fractal Koch antennas with three different structures such as the 0th, 1st and series iterations have been designed, simulated and fabricated. The simulated and measured results in terms of return loss, radiation pattern and gain have been compared and analyzed. The simulated current distribution of the antennas shows a good correlation between radiating elements and resonant frequencies. Moreover, the size of the antennas has been reduced up to 7% for the 1st iteration and up to 26% for series iteration antenna compared to the 0th iteration. The radiation patterns of all fabricated antennas are similar to the simulated ones. In addition, the gains of the antennas also are similar to that of the fabricated antennas. It shows that by applying the number of iterations to the antenna, the size of the antennas can be reduced. The performances of the antennas are maintained throughout the frequency range of the designed. The comparison between simulated and measured results has been shown and discussed in this paper, and it shows a good agreement for both results.

ACKNOWLEDGMENT

The authors would like to thank the Research Management Centre (RMC) and Department of Radio Communication Engineering (RaCED), Universiti Teknologi Malaysia and Ministry of Science Technology and Innovations (MOSTI) for supporting this research work.

REFERENCES

- 1. Vinoy, K. J., "Fractal shape antenna elements for wide band and multi band wireless applications," Ph.D. Thesis, The Pennsylvania State University, August 2002.
- Cohen, N., "Fractal antenna applications in wireless telecommunications," Professional Program Proc. of Electronics Industries Forum of New England, 1997, IEEE, 43–49, 1997.
- Puente-Baliarda, C., J. Romeu, R. Pous, J. Ramis, and A. Hijazo, "Small but long Koch fractal monopole," *Electron. Lett.*, Vol. 34, 9–10, 1998.
- 4. Kim, L. K., J. G. Yook, and H. K. Park, "Fractal shape small size microstrip patch antenna," *Microwave and Optical Technology Letters*, Vol. 34, No. 1, Jul. 5, 2002.
- Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antenna: A novel antenna miniaturization technique, and applications," *IEEE Antenna's and Propagation Magazine*, Department of Electrical Engineering, University of California, Los Angeles Engr. IV, Los Angeles, California, Vol. 44, No. 1, Feb. 2002.
- 6. Gianvittorio, J., "Fractal antenna: Design, characterization, and application," Master Thesis, University of California, 2000.
- Vinoy, K. J., K. A. Jose, V. K. Varadan, and V. V. Varadan, "Hilbert curve fractal antenna: A small resonant antenna for VHF/UHF applications," *Microwave and Optical Technology Letters*, Vol. 29, No. 4, May 20, 2001.
- Puente, C., J. Romeu, R. Bartoleme, and R. Pous, "Fractal multiband antenna based on Sierpinski gasket," *Electron. Letter.*, Vol. 32, 1–2, 1996.
- 9. Puente-Baliarda, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of the Sierpinski multiband fractal antenna," *IEEE Trans. Ant. Propagat.*, Vol. 46, 517–524, 1998.
- Cohen, N., "Fractal antenna applications in wireless telecommunications," Professional Program Proc. of Electronics Industries Forum of New England, 1997, IEEE, 43–49, 1997.
- Puente-Baliarda, C., J. Romeu, R. Pous, J. Ramis, and A. Hijazo, "Small but long Koch Fractal monopole," *Electron. Lett.*, Vol. 34, 9–10, 1998.
- 12. Kim, L. K., J. G. Yook, and H. K. Park, "Fractal shape small size microstrip patch antenna," *Microwave and Optical Technology Letters*, Vol. 34, No. 1, Jul. 5, 2002.
- 13. Gianvittorio, J., "Fractal antenna: Design, characterization, and

application," Master Thesis, University of California, 2000.

- 14. Johnson, P., "Fractal antenna design for RFID application," Mid-Sweden University, Department of Information Technology and Media, Electronic Design Division, 2006.
- Vinoy, K. J., K. A. Jose, V. K. Varadan, and V. V. Varadan, "Hilbert curve fractal antenna: A small resonant antenna for VHF/UHF applications," *Microwave and Optical Technology Letters*, Vol. 29, No. 4, May 20, 2001.
- Zheng, L. X., X. X. Ming, L. S. Li, and Z. Xiang, "Analysis of patch antenna based on the minkowski fractal," *International Conference on Microwave and Milimeterwave Technology Proceeding, IEEE 2004*, 2004.
- Ramadan, A., K. Y. Kabalan, A. El-Hajj, S. Khoury, and M. Al-Husseini, "A reconfigurable U-koch microstrip antenna for wireless applications," *Progress In Electromagnetics Research*, PIER 93, 355–367, 2009.
- 18. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd edition, John Wiley and Sons, New York, 1997.
- 19. Eldek, A. A., "Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications," *Progress In Electromagnetics Research*, PIER 59, 1–15, 2006.
- Zainud-Deen, S. H., H. A. Malhat, and K. H. Awadalla, "Fractal antenna for passive UHF RFID," *Progress In Electromagnetics Research B*, Vol. 16, 209–228, 2009.
- Saidatul, N. A., A. A. H. Azremi, R. B. Ahmad, P. J. Soh, and F. Malek, "Multiband Fractal Planar Inverted F Antenna (F-PIFA) for mobile phone application," *Progress In Electromagnetics Research B*, Vol. 14, 127–148, 2009.
- 22. Kordzadeh, A. and F. Hojatkashani, "A new reduced size microstrip patch antenna with fractal shaped defects," *Progress In Electromagnetics Research B*, Vol. 11, 29–37, 2009.
- 23. Zheng, L. X., X. X. Ming, L. S. Li, and Z. Xiang, "Analysis of patch antenna based on the minkowski fractal," *International Conference on Microwave and Milimeterwave Technology Proceeding, IEEE 2004*, 2004.
- 24. Werner, D. H. and S. Gangul, "An overview of fractal antenna engineering research," *IEEE Antennas and Propagation Magazine*, Vol. 45, No. 1, Feb. 2003.
- 25. Mirzapour, B. and H. R. Hassani, "Size reduction and bandwidth enhancement of snowflake fractal antenna," *Microwaves, Antennas & Propagation, IET*, 180–187, Mar. 2008.