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ABSTRACT 

 

 

 

 
  

         Composite slab construction using permanent cold-formed steel decking has 

become one of the most economical and industrialized forms of flooring systems in 

modern building structures. Structural performance of the composite slab is affected 

directly by the horizontal shear bond phenomenon at steel-concrete interface layer. 

This study utilizes 3D nonlinear finite element quasi-static analysis technique 

through explicit dynamics procedure to analyze the shear bond damage and fracture 

mechanics of the composite slabs. Cracking of the plain concrete over the 

corrugated steel deck has been modeled considering the mixed modes fracture 

mechanisms by means of concrete damaged plasticity model available in ABAQUS 

software version 6.9. The interface layer damage was simulated with cohesive 

elements presented in ABAQUS software considering three modes of fracture. 

Cohesive fractures properties such as fracture energy and initiation stress have been 

derived from horizontal shear stress versus end slip curves which were extracted 

from bending test of a series of small scale specimens. The proposed model is 

verified through comparison with experimental data which demonstrated that the 

results of the numerical analyses match with valid experimental results. Therefore 

these calibrated and validated models can predict the structural response of steel-

concrete composite slabs. This will reduce the cost of empirical works which in 

accordance with present design specifications are mandatory in order to investigate 

the behavior and load bearing capacity of such structural systems.  
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ABSTRAK 

 

 

 

 

  
     Pembinaan papak rencam dengan menggunakan deck keluli terbentuk sejuk yang 

kekal merupakan salah satu jenis sistem papak yang paling ekonomi bagi struktur 

bangunan moden.  Prestasi struktur bagi papak rencam dipengaruhi secara langsung 

oleh fenomena ikatan ricih mengufuk di antara muka keluli dan konkrit. Dalam 

kajian ini, analisis ‘quasi-static’ unsur terhingga 3D yang menggunakan prosedur 

‘explicit dynamics’ telah dijalankan bagi menilai kerosakan ikatan ricih mengufuk 

dan mekanik retakan pada papak rencam. Retakan pada konkrit di atas dek keluli 

beralun telah dimodelkan dengan mengambil kira mekanik retakan dengan mod 

tergabung. Model kemusnahan plastic yang terdapat dalam perisian ABAQUS telah 

diguna dengan mengambil kira tiga mode retakan. Kemusnahan pada antara muka 

keluli dan konkrit telah dimodel dengan unsur ‘cohesive’.  Sifat retakan ‘cohesive’ 

seperti tenaga retakan dan tegasan pemula telah diterbitkan daripada geraf tegasan 

ricih mengufuk lawan gelangsaran hujung yang diambil daripada ujian lenturan 

bersaiz kecil. Model analisis yang dicadangkan dalam kajian ini disahkan 

kejituannya dengan mebuat perbandingan antara hasil analisis dengan data ujikaji. 

Hasilnya, model analisis ini boleh diguna untuk menilai gerak balas struktur papak 

rencam. Hal ini boleh mengurangkan kerja ujikaji yang dahulunya mesti dilakukan 

untuk menentukan kelakuan sebenar dan kebolehtanggungan beban system papak 

rencam.  
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INTRODUCTION 

 

 

 

1.1 Introduction to Steel-Concrete Composite Slabs  

 

According to the definition made by ASCE (1992) “A composite slab system is 

one comprising of normal weight or lightweight structural concrete placed 

permanently over cold-formed steel deck in which the steel deck performs dual roles 

of acting as a form for the concrete during construction and as positive 

reinforcement for the slab during service”. 

 

Composite flooring system is essentially consisted of one-way spanning 

structural components. The slabs span between the secondary floor beams, whereas 

these secondary beams span transversely between the primary beams.  

 

Cold-formed steel deck composite slab enjoys the optimized interaction and 

superposition  principle of two major engineering materials in an efficient and 

economic way. Thus this effective and interesting method of composite construction 

in which the corrugated steel deck acts also as a shear connexion (shear key)  has 

become common nowadays in construction industry providing several pragmatic 

and economic advantages over other traditional flooringg systems. 
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Figure 1.1: Configuration of a typical steel-concrete composite slab with 

trapezoidal decking (G. Mohan Ganesh et al., 2006). 

 

 

 
 

Figure 1.2: Illustration of an open rib type of composite slab (G. Mohan 

Ganesh et al., 2005). 
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The structural features and privileges of composite slabs over conventional 

systems of reinforced concrete slabs which makes them very attractive to structural 

designers are as follows: 

 

1) Speed and simplicity of construction is considerable in this form of 

construction. This is achievable through separation of professional trades. 

2) Lighter construction than a traditional concrete building is achievable. 

3) Less on site construction is required. 

4) Elimination of scaffolding process is usually possible. 

5) Strict tolerances achieved by using steel members manufactured under 

controlled factory conditions to established quality procedures. 

6) The metal deck acts as positive reinforcement after the concrete sets. 

7) The metal deck serves as a working platform for the workmen, their tools, 

materials, and equipment prior to casting the concrete and as a form to 

support support the wet concrete before  hardening of concrete. 

8) The shape of steel deck leads to a reduced amount of concrete resulting in 

reduced column sizes and smaller foundation loads. 

9) Saving in transportation, handling  and erection processes because decking is 

light and is delivered in pre-cut lengths that are tightly packed into bundles. 

10) Savings in steel weight up to a considerable value in comparison with non-

composite construction is possible. 

11) Structural stability specially in lateral direction improves. 

12) Structural integrity enhances. 

13) Shallower construction is attainable with composite slabs. This means, 

greater stiffness with shallower depth of flooring system is achievable. 

 

14) Ease of  installation of services is favorable in this kind of construction. 

 

Three generic deck types are commonly available, re-entrant (dovetail), 

trapezoidal and so-called deep decking as shown in Figures 1.3 and 1.4. Re-entrant 

and trapezoidal are both ‘shallow’ decking – typically between 45 and 90mm deep 

overall, and are used to span between 3 and 4.5m. Deep decking is suitable for spans 

up to around 9m. 
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Dovetailed rib profiles 

 

 

 
Open rib profiles 

 

 
Figure 1.3: Typical Trapezoidal and Re-entrant deck profiles (First two rows: 

Miquel Ferrer, 2006); (Third row: Thomas Mathew Traver, 2002) 

. 
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Figure 1.4: Examples of trapezoidal deck profiles: (Left side) Up to 60 mm deep; 

(Right side) Greater than 60 mm deep (J W Rackham et al., 

The Metal Cladding & Roofing Manufacturers Association, 2009) 
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A composite form deck has two major functionality which are supporting self 

weight and the weight of the unhardened concrete, and construction activites 

because this system is usually constructed without propping. After strength 

development of concrete up to the designed amount, it will adhere to the steel 

sheeting firmly and this will unite this two totally different material to cooperate 

together in a composite form and to collaborate in load bearing in an efficient way. 

 

It is an established fact that the efficiency of the composite slabs depends on the 

composite action between the steel and the concrete. In order to achieve the required 

composite action and to ensure that steel deck acts as tensile reinforcement, 

longitudinal shear forces have to be transferred between the steel deck and concrete. 

 

In other words, maintaining composite action requires transfer of load between 

the concrete and steel. This load transfer is referred to as bond and is idealized as a 

continuous stress field that develops in the vicinity of the steel-concrete interface. 

 

Apart from horizontal shear forces, the imposed bending action can create 

vertical separation between the steel and the concrete. Therefore, the profiled 

sheeting must resist vertical separation as well as transferring of horizontal shear 

forces at the steel-concrete interfaces. 

 

According to experimental tests, it is known that the shear bond generally breaks 

down when a ‘slip’ (relative displacement between the decking and the concrete) of 

2 to 3 mm has occurred at the ends of the span of normal composite slab sections. 

An initial slip, which is associated with the breakdown of the chemical bond, may 

occur at a lower level of load. The interlock resistance is usually employed by 

means of the performance of the embossments in the deck (which cause the concrete 

to ‘ride-over’ the decking), and the presence of re-entrant parts in the deck profile 

(which prevent the separation of the deck and the concrete). 

 

Therefore the profiled sheeting should be able to transfer longitudinal shear to 

concrete through the interface to ensure composite action of the composite slab. The 

adhesion between the steel profile and concrete is generally not sufficient to create 
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composite action in the slab and thus an efficient connection is achieved with one or 

several of the following methods (Figure 1.5) : 

 

a) Appropriate profiled decking shape (re-entrant or open trough profile), which 

can affect shear transfer by frictional interlock; 

b) Mechanical anchorage provided by local deformations (indentations or 

embossments) on the surface of decking; 

c) Holes or incomplete perforation o the surface of steel sheeting; 

d) End anchorage induced by means of welded studs or other forms of local 

connection between the concrete and the steel decking; 

e) End anchorage by deforming the ribs shape at the end of the steel decking. 

 

 
Figure 1.5: Typical forms of interlock in composite slabs (Eurocode4, 2001; 

Abera Dugassa, 2005) 

 

It must be mentioned that the spacing of the supporting beams, and hence the 

span of slab is dependent on the procedure of construction. If the beam spacing was 

less than 3.5m, then no temporary shoring is vital during costruction period. This 

means that the construction stage governs the design of the steel sheeting. Because 

of the shortness of the slab span, the stresses that will develop in the composite slab 
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after hardening of overtopping concrete are not too much or critical. Therefore, 

trapezoidal metal decking which have low horizontal shear resistance and ductility 

and also have the smallest steel weight per square meter of floor area, are suitable 

for short span slabs. For other flooring layouts which the beams are spaced at larger 

distances, shoring  is necessary to support the steel decking during concreting stage. 

Because of the longer slab span, the final state stress that will develop in composite 

slab is much more greater. This critical stress will govern the design of such long 

composite slabs. In order to establish required high stress transference between steel 

and concrete, the steel deckings with high amount of engagement will be employed. 

Dovetailed profiles which induce frictional engagement of steel and concrete are 

usually utilized in such cases although the give into hand higher steel weight per 

square meter of floor area. But they can properly develop horizontal shear resistance 

which is essential for long span composite slabs. 

 

 

1.2 Problem Statement 

 

  The structural interaction of concrete slab and steel deck materials in an 

optimized manner provides an extremely efficient and economical engineering 

solution for flooring systems. 

 

The rapidly increasing adoption of such flooring systems in practice has resulted 

in an intensification of the supporting research effort for evaluation and 

investigation of their structural performance. 

 

As far as we are concerned about the study of structural and mechanical 

behavior of such a system, the investigation of its major controlling modes of failure 

is inevitable for more actual modeling of performance of composite slabs. 

 

The strength of the composite diaphragms is majorly influenced by one of the 

three limit states, diagonal tension failure of the concrete slab, edge connector 

failure (shear stud damage) or shear transfer mechanism failure which result from 
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separation of interconnected layers and slippage of the these two neighboring layers 

of concrete mass and steel decking.  

 

The shear bond interaction at the interface of steel deck and concrete can be 

separated into three distinctive components, namely, the chemical bonding, 

mechanical interlocking, and friction between the two materials. The first 

component is the type of bond that is developed through a chemical process as the 

concrete cured or hardened. This component of interaction is brittle in nature, and 

once it is broken it can not be restored. The mechanical interlocking attains its 

strength from the interlocking action between the concrete and the steel decking due 

to the presence of embossments or indentations. This action is directly controlled by 

the embossment shape and steel deck thickness. Finally, the presence of the friction 

between the concrete and the steel deck is due to the presence of internal pressure 

between the two materials.  

 

If the connection between the concrete and steel sheet is perfect, that is if 

longitudinal deformations are equal in the steel sheet and in the adjacent concrete, 

the connection provides complete interaction (perfect bobd or perfobond). If a 

relative longitudinal displacement exists between the steel sheet and the adjacent 

concrete, the slab has incomplete interaction. The difference between the steel and 

adjacent concrete longitudinal displacement can be characterized by the relative 

displacement called slip. 

 

It is desirable to take into account the fracture mechanisms of the body of 

concrete considering the first and second modes of failure(opening and shear modes) 

and also the failure mode concerning to shear bond breakage mechanism(slip or 

uplift in steel-concrete contact surface). Investigation of the effect of relative 

displacement between the concrete and steel decking which can bring the composite 

slab to nonlinear response is the major purpose of this study. 

 

It is an established fact that the interaction between the composite interfaces is 

very intricate because stresses and strains in the contact zone between the profiled 

metal sheeting and the concrete are complex and depend on many factors. 
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The analysis and design procedures available nowadays must rely inevitably on 

experimental data results to account for the concrete-steel interaction parameters 

since the bondage between this two totally different layers arises through some 

completely various range of processes which can be classified as mechanical, 

frictional and chemical bond. 

 

Modeling the actual behavior and performance of shear bond considering 

various modes of failure of slab is a pivotal issue and plays a major role in numerical 

study of composite action criterion. 

 

Previous experimental investigations provide data for development, calibration 

and verification of a model to represent load transfer between reinforcing steel and 

concrete. The results of previous analytical investigations provide insight into model 

development and implementation within the framework of the finite element 

method. 

 

 

1.3 Aim of Study 

 

Motivations for conducting this research study are as follows: 

 

a) To develop a numerical model that incorporates the precise discontinuous 

material behavior and allows for the effects of debonding (horizontal slip and 

vertical separation) between the concrete and steel decking. 

b) To establish and demonstrate a reliable, and accurate methodology for 

numerical analysis of steel-concrete composite slabs.  

 

 

1.4 Objectives of Study 

 

 The objectives of the study can be summarized as follows: 

 



 11

a) To develop the nonlinear FE model with damage based mechanics for 

composite slabs under flexural loading using cohesive element to simulate the 

interaction between concrete and steel deck and to simulate the cracking of 

plain concrete considering mixed modes of fracture by means of concrete 

damaged plasticity available in ABAQUS software. 

b) To perform the quasi-static analysis through explicit dynamics procedure for 

the models for simulation and determination of the actual behavior of composite 

slab. 

c) To evaluate mechanisms of damage, step by step in VULCRAFT steel-concrete 

composite slabs when damage initiates and to investigate its propagation 

regime. 

d) To validate the applicability of the proposed model by comparing the predicted 

behaviors with those observed in experimental results obtained by research 

work performed at Virginia Tech (Abdullah,2004). 

 

 

1.5 Scopes of Study 

 

The scopes of works for this research and the restrictions and assumptions are 

categorized as follows: 

 

a) The FE model has been developed in 3-D space. 

b) This study assumes that steel sheeting is plane and smooth surface without 

any indentation or embossment or dimples or welded wire meshing to deck 

or any other mechanical interlocking bonds. 

c) It has been assumed that not any stud shear connector or steel dowel is 

employed in the region of supporting beam hence composite slab span is 

totally simply supported. 

d) Configuration of empirical data used in this study follows exactly the 

experimental works setup carried out by Abdullah (2004). 

e) The analyses are just performed for trapezoidal shape cold-formed steel 

decks manufactured by Vulcraft of Nucor Research and Development, USA. 
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