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 ABSTRACT  

 Edge detection technique has a key role in machine vision and image 

understanding systems. In machine vision motion track and measurement system 

based on discrete feature, the exact feature edge orientation in the image is the 

precondition of the successful completion of the vision measurement task. Edge 

detection is one of the most commonly used operations in image analysis and digital 

image processing. Many studies have been conducted to enhance the edge detection 

algorithms in various domains. In this thesis, a robust edge detection method based 

on Fuzzy Sets and Cellular Learning Automata (CLA) is proposed. The proposed 

method includes two steps: (a) extracting the edges and (b) enhancing them by 

removing unwanted edges and eliminating false edges caused by noise. The 

performance of the proposed edge detector is tested on various test images with 

different sizes. The results are compared with Canny and Sobel edge detection 

methods. Simulation results reveal that the proposed Fuzzy-CLA method can detect 

edges more smoothly in a shorter amount of time compared to the other edge 

detectors.   
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ABSTRAK 

Teknik pengesanan pinggir memainkan peranan yang penting dalam sistem 

visi mesin dan pemahaman imej. Dalam pergerakan menjejaki visi mesin dan sistem 

pengukuran berdasarkan fitur diskret, orientasi tepat bagi pinggir fitur adalah pra-

syarat kepada kesempurnaan bagi tugasan visi pengukuran. Pengesanan pinggir 

adalah salah satu operasi  sepunya yang banyak digunakan dalam operasi 

menganalisa gambar, adan kaedah ini lazim digunakan dalam pemprosesan imej. 

Terdapat banyak kajian setara yang telah dijalankan bagi menambaik kaedah 

mengesan pinggir dalam pelbagai domain. Kajian ini mencadangkan kaedah 

pengesanan pinggir yang tegar berdasarkan Set Kabur dan Pembelajaran Automata 

Selular (PAS). Kaedah cadangan ini meliputi dua langkah: (a) penyarian pinggiran 

dan (b) meningkatkan pinggiran tersari dengan menghapuskan pinggir yang tidak 

diingini dan membuang pinggir palsu yang disebabkan oleh hingar. Prestasi kaedah 

cadangan diuji dengan data ujian bagi imej  dengan pelbagai saiz. Hasil kajian 

dibandingkan dengan kaedah Canny dan kaedah pengesanan pinggir Sobel. 

Keputusan simulasi mempamerkan bahawa kaedah cadangan ini berupaya mengesan 

pinggir dengan sempurna dalam masa yang lebih singkat berbanding dengan kaedah 

pengesanan pinggir yang lain.       
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CHAPTER 1 

INTRODUCTION 

1.1  Introduction 

Vision is the most advanced of our senses, so that images play the single most 

important role in human perception. However, imaging machines cover almost the 

entire EM spectrum, unlike humans who are limited to the visual band of the 

electromagnetic (EM) spectrum, ranging from gamma to radio waves. They can 

operate on images generated by sources that humans are not accustomed to 

associating with images. These include ultrasound, electron microscopy, and 

computer-generated images. Thus, digital image processing encompasses a wide and 

varied field of applications. 

Computer vision is the science and technology of machines that see. As a 

scientific discipline, computer vision is concerned with the theory for building 

artificial systems that obtain information from images. The image data can take many 

forms, such as a video sequence, views from multiple cameras, or multi-dimensional 

data from a medical scanner. 



As a technological discipline, computer vision seeks to apply the theories and 

models of computer vision to the construction of computer vision systems. Examples 

of applications of computer vision systems include systems for: 

 Controlling processes (e.g. an industrial robot or an autonomous vehicle). 

 Detecting events (e.g. for visual surveillance or people counting). 

 Organizing information (e.g. for indexing databases of images and image 

sequences). 

 Modeling objects or environments (e.g. industrial inspection, medical image 

analysis or topographical modeling). 

 Interaction (e.g. as the input to a device for computer-human interaction). 

Computer vision can also be described as a complement (but not necessarily 

the opposite) of biological vision. In biological vision, the visual perception of 

humans and various animals are studied, resulting in models of how these systems 

operate in terms of physiological processes. Computer vision, on the other hand, 

studies and describes artificial vision systems that are implemented in software 

and/or hardware. Interdisciplinary exchange between biological and computer vision 

has proven increasingly fruitful for both fields. 

Sub-domains of computer vision include scene reconstruction, event 

detection, tracking, object recognition, learning, indexing, motion estimation, and 

image restoration. 

The term digital image processing generally refers to processing of a two-

dimensional picture by a digital computer. In a broader context, it implies digital 

processing of any two-dimensional data. A digital image is an array of real or 

complex numbers represented by a finite number of bits.  An image given in the form 

of a transparency, slide, photograph, or chart is first digitized and stored as a matrix 

of binary digits in computer memory. This digitized image can then be processed 

and/or displayed on high-resolution television monitor. For display, the image is 
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stored in a rapid-access buffer memory which refreshes the monitor at 30 frames to 

produce a visibly continuous display. Digital image processing has a broad spectrum 

of applications, such as remote sensing via satellites and other spacecrafts, image 

transmission and storage for business applications, medical processing, radar, sensor, 

and acoustic image processing, robotics, and automated inspection of industrial parts 

[1]. 

Edge detection technique has a key role in machine vision and image 

understanding systems. Particularly, in machine vision motion track and 

measurement system based on discrete feature, the exact feature edge orientation in 

the image is the precondition of the successful completion of the vision measurement 

task. The gray-level difference information between the object and background is 

often applied to orient the detected feature edge of images. However, because in the 

real scenes, images are often affected by noise, unstable or bad illumination, object 

motion, etc. the correct edge detection is too difficult to be completed successfully. 

Especially for the non-uniform, weak illumination and low contrast images, the gray-

level difference between the object and background will possibly be low in some 

place of the image and variant in the whole image [2]. 

1.2 Problem Background 

Edge detection is one of the most commonly used operations in image 

analysis, and there are probably more algorithms in the literature for enhancing and 

detecting edges than any other single subject. The reason for this is that edges form 

the outline of an object. An edge is the boundary between an object and the 

background, and indicates the boundary between overlapping objects. This means 

that if the edges in an image can be identified accurately, all of the objects can be 

located and basic properties such as area, perimeter, and shape can be measured. 
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Since computer vision involves the identification and classification of objects in an 

image, edge detection is an essential tool. 

Edge detection is part of a process called segmentation - the identification of 

regions within an image. Technically, edge detection is the process of locating the 

edge pixels, and edge enhancement will increase the contrast between the edges and 

the background so that the edges become more visible. In practice the terms are used 

interchangeably, since most edge detection programs also set the edge pixel values to 

a specific grey level or color so that they can be easily seen. In addition, edge tracing 

is the process of following the edges, usually collecting the edge pixels into a list. 

This is done in a consistent direction, either clockwise or counter-clockwise around 

the objects [3]. 

It is difficult to design general edge detection algorithms which perform well 

in many contexts and captures of the requirements of subsequent processing stages. 

In this project, the goal is to have an edge detector which can perform well in many 

contexts with the highest performance level possible. 

1.3 Problem Statement 

Most previous edge detection techniques such as the Roberts edge operator 

[4], the Prewitt edge operator [5], and the Sobel edge operator [5] used first-order 

derivative operators. If a pixel falls on the boundary of an object in an image, then its 

neighborhood will be a zone of gray-level transition. The Laplacian operator [2] is a 

second-order derivative operator for functions of two- dimension operators and is 

used to detect edges at the locations of the zero crossing. However, it will produce an 

abrupt zero-crossing at an edge and these zero-crossings may not always correspond 
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to edges. Canny operator [6] is another gradient operator that is used to determine a 

class of optimal filters for different types of edges, for instance, step edges or ridge 

edges. A major point in Canny’s work is that a trade-off between detection and 

localization emerged: as the scale parameter increases, the detection increases and 

localization decreases. The noise energy must be known in order to set the 

appropriate value for the scale parameter. However, it is not an easy task to locally 

measure the noise energy because both noise and signal affect any local measure.  

The Kirsch masks [7], Robinson masks [8], Compass Gradient masks [9], and 

other masks [10] are popular edge-template matching operators. Although the edge 

orientation and magnitude can be estimated rapidly by determining the largest 

response for a set of masks, template mask methods give rise to large angular errors 

and do not give correct values for the gradient. Many edge detectors rely totally on 

gray-level differences for their approximation of the image gradient function either 

directly or by representing these differences in a more analytical form such as the 

Huekel edge detector [11]. 

In most edge detection methods which use fuzzy sets theory, the number of 

noise pixels that are detected as edges is usually very high. It is because the criterion 

for edginess in these methods is mostly only the high difference between the 

maximum and minimum gray levels. However, as mentioned earlier, in very noisy 

environments the same situation arises, and therefore, the number of errors increases. 

In order to solve this problem an additional rule is added to the edginess condition. 

We shall state that the center pixel in an edgy neighborhood must be between the 

minimum and maximum gray levels. 

One of the most important points that must be taken into consideration while 

designing a feature extraction technique which naturally requires edge detection is 

that the more precise the earlier phase of edge detection is, the more easily the 

features can be extracted later. Therefore, in this project after the edges are detected, 

the edge pixels are strengthened and the non-edge pixels are weakened using Cellular 
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Learning Automata and the noises left from the earlier phase are removed. The 

complete process of both phases will be explained in details later on.  

1.4 Project Aim 

The aim of this project is to design and implement a robust and effective 

method for edge detection.  

1.5 Objectives 

Many existing edge detection methods such as Sobel, Perwitt, and Canny take 

advantage of the gradient of images and arithmetic operations. Most of these 

methods consider an edge as a set of pixels where the gray-level has an abrupt 

change in intensity. The mentioned-above edge detectors do not involve the 

neighborhood of an edge in the process of detecting an edge, while in Cellular 

Learning Automata, neighborhood plays a considerable role in edge detection. This 

increases the precision and accuracy of the edge. 

This project is carried out with the following objectives: 

1. To develop an accurate and relatively fast edge detector using fuzzy sets. 

2. To enhance the previously-detected edges with the help of the repeatable 

and neighborhood-considering nature of Cellular Learning Automata. 
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In this study, a hybrid method, which not only reduces the noise pixels after 

edge detection, but also has the minimum number of errors in detecting the noise 

pixels, will be presented. 

1.6 Project Scope 

The scopes of this project are as follows: 

1. Proper fuzzy membership functions will be chosen carefully to decrease 

the noise pixel detection as much as possible. 

2. A Cellular Learning Automata will be used to weaken the non-edge pixels 

and strengthen the edge pixels. 

In a typical edgy neighborhood, an edge is recognized when the difference 

between the maximum and minimum gray levels, dependant on the edge strength, is 

relatively high. However, this can also be the case in noisy environments. Therefore, 

in order to exclude the mentioned-above cases, we state that the gray-level intensity 

of the center pixel in an optimal edgy neighborhood is more or less between the 

minimum and maximum gray levels. 

In the second phase of the method, with the help of Cellular Learning 

Automata, and a set of rules, detected edges of the previous phase are enhanced. In 

this stage, each cell of the image is considered to be a variable structure learning 

automaton, which is related to its neighboring automata by a neighborhood radius of 

1. By rewarding and punishing the edge and non-edge states of each Learning 

Automata respectively, the edges are enhanced and the non-edge pixels are 

weakened. 
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1.7 Significance of the Project 

This project is aimed to propose a robust approach to the edge detection that 

has been the center of the attention for the past decades in digital image processing. 

The method presented in this project takes advantage of a recently-proposed soft 

computing method, namely Fuzzy Sets Theory and Cellular Learning Automata. The 

project can contribute an evaluation of the mentioned soft computing method in the 

edge detection. 

1.8 Organization of Report 

The report for this project consists of four chapters. Chapter 1 presents 

introduction to project, problem background, objective, scope and significant of this 

project. Chapter 2 reviews Digital Image Processing, Fuzzy Sets Theory, and 

Cellular Learning Automata, which plays an important role in the method proposed 

in this project, classical and soft computing methods for edge detection. Chapter 3 

discusses the methodology used in this project. It also explains details of the datasets 

being used. Chapter 4 presents the results of the proposed method and their 

comparison with other methods presented in this study. Finally, chapter 5 concludes 

the study. 

 




