WEB PORTAL FOR SCIENTIFIC COMPUTING LIBRARY

UMI NADIA BINTI ABDUL BASITT

A project report submitted in fulfillment of the requirements for the award of the degree of Master of Science (Information Technology – Management)

Faculty of Computer Science and Information Systems Universiti Teknologi Malaysia

OCTOBER, 2009

ACKNOWLEDGEMENT

This thesis is the end of my long journey in obtaining my Master degree in Information Technology - Management. There are some people who made this journey easier with words of encouragement and more intellectually satisfying by offering different perspectives to look to expand my theories and ideas.

Foremost, I am heartily thankful to my supervisor, Dr. Mohd. Shahizan Othman, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. I would also like to express my sincere gratitude to my co-supervisor, Dr. Norma Alias, for the continuous support of my study and research, for her patience, motivation, enthusiasm, and immense knowledge. I warmly thank my fellow labmates, classmates, and researchers in Institute of Ibnu Sina. They helped me immensely by giving me guidance and friendship. Their helped me in all the time of this project research.

I owe my loving thanks to my family for supporting me spiritually and financially throughout my life. Without their encouragement and understanding it would have been impossible for me to finish this project. Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of this project.

ABSTRACT

Scientific computing or computational science is a collection of tools, techniques and theories required to develop and solve mathematical models in science and engineering on a computer. There are many systems of scientific computing libraries developed nowadays, regardless of whether they are web-based or web application. However, the libraries are complex and not complete. In addition, most science teams collaborate across multiple geographically distributed institutions, therefore, it becomes more difficult to store, share and analyze the scientific data among the team members. By developing this Web Portal for Scientific Computing Library, good criteria of scientific computing library are identified. This project aims to provide sophisticated web portal to store codes, share results, and share knowledge on scientific computing. Furthermore, the scientific computing library focuses on multi-domain applications. The technologies used for this web portal development are ASP.Net as the scripting language with use of Microsoft Visual Studio 2008 and Microsoft SQL Server 2005 as the database application development software. The data set used is sequential algorithm in C and C++ programming language based on numerical simulation of partial differential equation. It is hoped that this project will give benefits to the scientists who utilize the scientific computing for their researches.

ABSTRAK

Komputeran saintifik atau komputasi sains ialah suatu koleksi alat-alat, teknik, dan teori yang diperlukan untuk membangunkan dan menyelesaikan model matematik dalam sains dan kejuruteraan menggunakan computer. Terdapat banyak sistem untuk perpustakaan komputeran saintifik yang dibangunkan hari ini, sama ada dalam bentuk web atau aplikasi web. Walau bagaimanapun, perpustakaan tersebut didapati complex dan tidak lengkap. Kebanyakan kumpulan sains berkolaborasi dengan institusi sehingga merentas sempadan geografi. Oleh itu, ia menjadi sukar untuk menyimpan, berkongsi, dan menganalisa data saintifik antara ahli kumpulan. Dengan membangunkan Portal Web untuk Perpustakaan Komputeran Saintifik ini, kriteria yang bagus untuk perpustakaan komputeran saintifik dikenalpasti. Projek ini menyasarkan untuk menyediakan portal web yang sofistikated untuk menyimpan kod, berkongsi hasil keputusan, dan berkongsi pengetahuan mengenai komputeran saintifik. Tambahan pula, perpustakaan komputeran saintifik ini memfokus kepada pelbagai bidang aplikasi. Teknologi yang digunakan untuk membangunkan portal web ini adalah ASP.Net sebagai bahasa pengaturcaraan dengan penggunaan Microsoft Visual Studio 2008 dan Microsoft SOL Server 2005 sebagai perisian pembangunan aplikasi pangkalan data. Set data yang digunakan adalah algoritma turutan dalam bahasa pengaturcaraan C dan C++ berdasarkan simulasi numerik persamaan pembezaan separa. Projek ini diharap dapat memberi faedah kepada saintis yang menggunakan komputeran saintifik untuk kajian.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
ABSTRAK	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF APPENDICES	xvii

I INTRODUCTION

1.1	Introduction	1
1.2	Problem Background	3
1.3	Problem Statement	4
1.4	Objectives	5
1.5	Scope	5
1.6	Project Importance	7
1.7	Chapter Summary	8

II LITERATURE REVIEW

2.1	Introd	uction	9
2.2	Partial Differential Equation		10
2.3	Scientific Data		
2.4	Metada	ata Management	14
	2.4.1	Types of Metadata	15
	2.4.2	Metadata Schemes	16
		2.4.2.1 Dublin Core Metadata Initiative	17
		2.4.2.2 HTML Meta Tags	22
	2.4.3	Metadata for Scientific Datasets	24
	2.4.4	Storing Metadata	25
2.5	Scient	ific Visualization	26
	2.5.1	Visualization Scheme	28
	2.5.2	Research Opportunities for Visualization	31
		in Scientific Computing	
2.6	Conte	nt Management	32
	2.6.1	Content Management Evolution	33
	2.6.2	Architecture of Content Management	34
	2.6.3	Process of Content Management	36
	2.6.4	Key Benefits of Content Management	40
	2.6.5	Analysis on Previous Studies of Content	41
		Management System	
	2.6.6	Synthesis of Analysis Outcome on	44
		Previous Studies of Content Management	
		System	
2.7	Scien	tific Computing Library on Content	44
	Manag	gement	
	2.7.1	Scientific Computing	45
	2.7.2	Objective of Scientific Computing	45
	2.7.3	Importance of Scientific Computing	46
		Simulation	
	2.7.4	Architecture of Scientific Computing	48
	2.7.5	Key Benefits of Scientific Computing	51

	Library	
	2.7.6 Fields Involved in Scientific Computing	51
2.8	Analysis Comparison of Scientific Computing	52
	Library	
	2.8.1 Analysis on Previous Studies of Scientific	53
	Computing Library	
	2.8.1.1 Synthesis of Analysis Outcome	58
	on Previous Studies of	
	Scientific Computing Library	
	2.8.2 Features Comparison on System of	58
	Scientific Computing Library in Market	
	2.8.2.1 Synthesis of Features	64
	Comparison Outcome on	
	System of Scientific Computing	
	Library in Market	
2.9	Data Sharing of Scientific Computing	65
2.10	Technology for Managing Scientific Computing	66
	Library	
	2.10.1 Web Portal Technology	67
	2.1.10.1 Architecture of Web Portal	68
	2.10.1.2 Knowledge Portal	69
	2.10.1.3 Web Portal for Scientific	70
	Computing Library	
2.11	Chapter Summary	72
RESI	EARCH METHODOLOGY	
3.1	Introduction	73
3.2	Throwaway Prototyping-based Methodology	76
	3.2.1 Planning Phase	77
	3.2.2 Analysis Phase	78
	3.2.3 Design Phase	79
	3.2.4 Implementation Phase	80

III

3.3	Justification for Choosing Prototyping as Research	81
	Methodology	
3.4	System Requirement	83
	3.4.1 Hardware Requirement	83
	3.4.2 Software Requirement	84
3.5	Project Workplan	85
3.6	Chapter Summary	86
ANA	LYSIS AND DESIGN	
4.1	Introduction	87
4.2	User Requirements	88
	4.2.1 Functional Requirements	88
	4.2.2 Non-functional Requirements	91
4.3	System Design	91
	4.3.1 Architecture of Numerical Simulation of	92
	Portal for Scientific Computing Library	
	4.3.2 Conceptual Model of Portal for Scientific	94
	Computing Library	
	4.3.3 Architecture of Web Portal for Scientific	96
	Computing Library	
4.4	Process Design	97
	4.4.1 Use Case Diagram	97
	4.4.1.2 Use Case Description	98
	4.4.2 Conceptual Diagram of Web Portal for	100
	Scientific Computing Library	
	4.4.3 Flowchart Diagram	105
	4.4.4 Activity Diagram	106
	4.4.5 Sequence Diagram	108
	4.4.6 Class Diagram	108
4.5	Physical Design	110
	4.5.1 Database Design	110
	4.5.1.2 Data Dictionary	110

IV

	4.6	Findings of Data	115
		4.6.1 Code Identification	116
		4.6.2 Validation of Output	120
	4.7	Chapter Summary	123
V	IMP	LEMENTATION AND TESTING	
	5.1	Introduction	124
	5.2	System Implementation	125
		5.2.1 Coding Approach	125
		5.2.1.1 Authentication	126
		5.2.1.2 Field Validation	127
		5.2.1.3 Master Page Approach	127
		5.2.2 Module of Web Portal for Scientific	129
		Computing Library	
	5.3	System Evaluation and Testing	131
		5.3.1 Black-Box Testing	122
		5.3.2 Integration Testing	134
		5.3.3 User Acceptance Testing	135
		5.3.3.1 System Usability Testing	135
		5.3.3.2 User Inclination Testing	139
	5.4	Chapter Summary	142
VI	ORG	GANIZATIONAL STRATEGY	
	6.1	Introduction	143
	6.2	Implementation Strategy	134
	6.3	Change Management	145
	6.4	Installation of Infrastructure Process	147
	6.5	User Training	148
	6.6	Expected Organizational Benefits	149
		6.6.1 Impact Towards Organization	149
		6.6.2 Impact Towards User	150
	6.7	Contingency Plan	151

6.8	Chapter Summary	
-----	-----------------	--

VII DISCUSSION AND CONCLUSION

7.1	Introduction	154
7.2	Project Achievement	155
7.3	Challenge and Constraint	155
7.4	Aspiration	156
7.5	Lesson Learnt	156
7.6	Future Work for System Improvement	157
7.7	Summary	157

REFERENCES	159
Appendices A - D	168

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Dublin Core Metadata Element Set version 1.1	18
2.2	Required attributes for HTML meta tags	22
2.3	Optional attributes for HTML meta tags	22
2.4	Standard attributes for HTML meta tags	23
2.5	Analysis on Previous Studies of Content Management System	42
2.6	Analysis on Previous Studies of Scientific Computing Library	54
2.7	Features Comparison on System of Scientific Computing	59
	Library in Market	
3.1	Criteria for selecting a methodology (Dennis et al, 2005)	81
4.1	Comparison analysis of existing scientific computing libraries	89
	with Web Portal for Scientific Computing Library	
4.2	Functional requirements of Web Portal for Scientific	90
	Computing Library	
4.3	Non-functional requirements of Web Portal for Scientific	91
	Computing Library	
4.4	Use Case description of Web Portal for Scientific Computing	99
	Library	
4.5	List of tables in database	111
4.6	Data dictionary for Category table	111
4.7	Data dictionary for Subcategory table	111
4.8	Data dictionary for CodeSample table	111

4.9	Data dictionary for CodeSampleLanguage table	112
4.10	Data dictionary for Entry table	112
4.11	Data dictionary for EntryComments table	113
4.12	Data dictionary for EntryTag table	113
4.13	Data dictionary for Files table	113
4.14	Data dictionary for Status table	113
4.15	Data dictionary for Forums table	114
4.16	Data dictionary for Messages table	114
4.17	Data dictionary for Threads table	114
4.18	Data dictionary for Topics table	114
4.19	Data dictionary for WebUser table	115
4.20	Data dictionary for EntryRating table	115
4.21	Sequence of iteration process for Gauss-Seidel method	120
4.22	Sequence of iteration process for Jacobi method	121
4.23	Outcome comparison of GS and Jacobi method	122
5.1	Black-box testing for user module	132
5.2	Black-box testing for scientific algorithm provider module	133
5.3	Black-box testing for scientific librarian module	133
5.4	Integration testing of Web Portal for Scientific Computing	134
	Library	
5.5	Time (in seconds) required to complete the testing	137
5.6	The result of system inclination testing for Web Portal for	140
	Scientific Computing Library	
6.1	System conversion strategies	144
6.2	Comparison of the system conversion strategies	145
6.3	Stakeholder change management of Web Portal for Scientific	146
	Computing Library	
6.4	Installation of infrastructure	147
6.5	Training design of Web Portal for Scientific Computing	148
	Library	

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	World Internet users by world region	2
1.2	Research framework	6
2.1	Framework of literature review	10
2.2	Homepage of DCMI (http://www.dublincore.org)	20
2.3	Example of encoding of Dublin Core metadata in HTML for	21
	homepage of DCMI	
2.4	Example of HTML meta tags for a homepage of website	23
	(http://web.utm.my/fsksm/staf/shahizan/)	
2.5	Example of 1D visual for brain tumor growth of untreated	28
	patient	
2.6	Example of 2D visual for brain tumor growth	29
2.7	Example of 3D visual of brain tumor area	30
2.8	Content management architecture (Chu et al, 2005)	35
2.9	Conventional content authoring process (Gaurav Kathuria,	37
	2006)	
2.10	Automated workflow by using a Content Management System	38
	(Gaurav Kathuria, 2006)	
2.11	Model of computational modeling (Boisvert et al, 2005)	48
2.12	Architecture for scientific computing (Bader, 2003)	49
2.13	Procedure of numerical simulation (Liu and Liu, 2003)	50
2.14	Statistics of overall scientific computing usage by application	52
	field on 2008 (HPCx Service Annual Report 2008)	

2.15	Basic architecture of portals (Winkler, 2001)	69
2.16	Example of web-reproducible (Donoho and Grimes, 2001)	72
3.1	Research workflow	75
3.2	Throwaway prototyping-based methodology (Dennis et al,	77
	2005)	
4.1	Architecture of Numerical Simulation of Web Portal for	93
	Scientific Computing Library	
4.2	Overall conceptual model of Web Portal for Scientific	95
	Computing Library	
4.3	Architecture of Web Portal for Scientific Computing Library	96
4.4	Use Case diagram of Web Portal for Scientific Computing	98
	Library	
4.5	Overall conceptual diagram of Web Portal for Scientific	100
	Computing Library	
4.6	Conceptual diagram of code contribution module	101
4.7	Conceptual diagram of browse code module	102
4.8	Conceptual diagram of forum module	103
4.9	Conceptual diagram of scientific librarian module	104
4.10	Flowchart diagram for consumer and scientific algorithm	105
	provider	
4.11	Flowchart diagram for scientific librarian	106
4.12	Activity diagram of Web Portal for Scientific Computing	107
	Library	
4.13	Sequence diagram of Use Case of code contribution	108
4.14	Class diagram of Web Portal for Scientific Computing Library	109
4.15	Code of declaration	116
4.16	Code of problem statement	117
4.17	Dimensional output identification	118
4.18	Output of GS method	119
4.19	Value of tolerance	120
4.20	Value of iteration	121
5.1	Forms authentication process in Web Portal for Scientific	126

	Computing Library	
5.2	Example of user interface in Web Portal for Scientific	128
	Computing Library PSCL	
5.3	User interface of code metadata insertion	129
5.4	User interface of code categorization and submission	130
5.5	User interface of file upload and tag insertion	131
5.6	Graph of percentage usability problems found versus number	136
	of tester	
5.7	Time required to complete the testing according to testing	138
	criteria	
5.8	Pie chart of testing result on the Web Portal for Scientific	141
	Computing Library usage	
6.1	Database backup schedule for Web Portal for Scientific	152
	Computing Library	
6.2	Database backup process for Web Portal for Scientific	152
	Computing	

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Gantt Chart of Project 1	169
Gantt Chart of Project 2	170
Example of data stored in web portal	171
User manual of Web Portal for Scientific Computing	173
Library	
List of personnel involved in Web Portal for Scientific	190
Computing Library	
	Gantt Chart of Project 2 Example of data stored in web portal User manual of Web Portal for Scientific Computing Library List of personnel involved in Web Portal for Scientific

CHAPTER I

INTRODUCTION

1.8 Introduction

People nowadays are unquestionably dependent on computers and the Internet that connect them. The emergence of Internet has affected the way people live. The growth of Internet exceeds according to recent statistics reported in Internet World Stats for year 2008 on world Internet users, there is more than 1.596 billion people use Internet. From that number, Asia region users rank highest with 650.4 million of Internet users (refer to Figure 1.1). Malaysian Communications and Multimedia Commission (MCMC) published statistics on Malaysia's internet penetration in their report on year 2008 that 14.9 million people which are equivalent to 59% of the Malaysia population are Internet users.

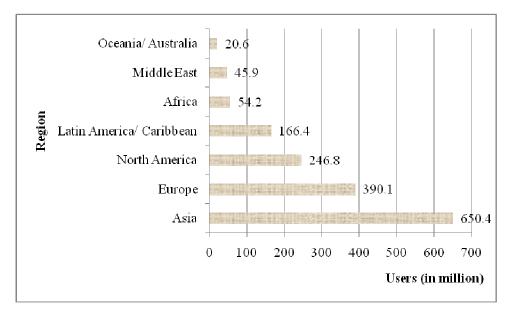


Figure 1.1 World Internet users by world region (Internet World Stats, 2009)

Advances in new information technologies and development of the Internet and World Wide Web (WWW) in the 1990s have changed the computing environment for both individuals and businesses. Since its birth in the 1990s, people have been witnessed to widespread use of the WWW for commercial purposes (Li and Dasgupta, 2005). Variety of web applications are also includes scientific applications.

According to Borgman *et al.* (2004), few repositories offer the tools and services that scientists appear to desire, such as the ability to store data for personal analysis and use, and tools to monitor and interpret data in the field so that changes can be made to experiments in progress. The majority of scientific researchers save all of their data and they reuse those data when applicable to future research. However, their available tools support analysis of data much better than they do preservation and sharing. As a result, scientists often store data with minimal documentation and do little toward preservation other than to back up files. These approaches are largely local and do not adequately support future access and use. Therefore, an approach of Web Portal for Scientific Computing Library (PSCL) will be developed to overcome the current problem.

A few studies have investigated and surveyed web-based scientific computing library research in the recent past. These studies include proposing collaboration tool to support and facilitate data sharing (Chin and Lansing, 2004; Drummond and Marques, 2005), discuss on management of computing services and resources, and also building and executing complex application (Dozsa *et al.*, 2006; Suzumura *et al.*, 2001), aims on repository concept for scientific computing (Lazar *et al.*, 2007; Brezany and Winslett, 1999; Mitra *et al.*, 2007), discuss of sharing scientific data (Chin and Lansing, 2004; Mitra *et al.*, 2007), and discuss on user environment for problem solving (Akzhalova and Aizhulov, 2007; Vazhkudai *et al.*, 2007).

1.9 Problem Background

Scientific computing library is a collection of tools, techniques and theories required to develop and solve mathematical models in science and engineering on a computer (Steeb *et al.*, 2004). Usually, it is used as predictive analysis tools. Among organizations or people that use or need this scientific computing are programmers at corporations, research laboratories and academic institutions. The core of scientific computing is designing, writing, testing, debugging and modifying numerical software for application to a vast range of areas, from graphics, meteorology and chemistry to engineering, biology and finance (Oliveira and Stewart, 2006).

From the observation that has been done on existing scientific computing libraries, it is found that the libraries are quite complex to use for the beginners and the libraries content is not complete (refer to subtopic 2.5.3). Knowledge resources are not centralized and the amount of distributed knowledge sources available can constitute an obstacle for finding and retrieving the relevant knowledge. Moreover, this critical mass of scientific computing is also a factor which contributes to the storage problem. As a result, the users waste time searching for the necessary scientific computing to perform work task efficiently (Razmerita, 2004).

According to Vazhkudai (2007), traditionally, scientists have conducted their experiments or raw data collection at various facilities, and then leave their data sets in

hand for analysis back at their home institutions. Most science teams collaborate across multiple geographically distributed institutions. Therefore, it becomes difficult for each user to store and analyze a given experiment's data storage and management infrastructure is imperative for the full production scale of experiments to ensure flexible and efficient accessibility and the proper integrity of metadata management and tracking. Even the majority of users, especially at academic institutions are given an integrated software analysis infrastructure; they would often be confined to run analyses just on local desktop computers. Therefore, access to computational resources is required to properly conduct more sophisticated data analyses, or any associated simulation / modeling of experimental samples.

1.10 Problem Statement

This research focuses on developing a PSCL based on four domains which are chemistry, biology, mathematics, and computer science. Comparison of existing system on scientific computing library in market and comparison of previous studies on scientific computing library were done.

The following research question is addressed to solve the problem: Could PSCL stores and manages data in multiple formats and multi-domain applications?.

This research is conducted to address the issues by utilizing content management system using web portal technology. The system proposed allows solving different scientific problems at any time through the internet technologies. It offers an attractive alternative to expensive supercomputers and parallel computer systems for highperformance computing.

1.11 Objectives

This project aims to achieve the following objectives:

- a) To investigate scientific computing library as a content management system and the way it can be managed online.
- b) To study the criteria of existing scientific computing library in market.
- c) To gather and analyze scientific computing material for the repository.
- d) To design and develop a prototype web-based application to support scientific computing library that can manage scientific algorithm.

1.12 Scope

The scopes of this project are:

- a) The study focuses on scientific computing for real case problem in Institute of Ibnu Sina (IIS), Universiti Teknologi Malaysia (UTM).
- b) The data set focuses on sequential algorithm in C and C++ programming language which is based on numerical simulation of Partial Differential Equation (PDE) for any physical problem statement.
- c) The prototype is done for UTM and focuses on the proposed model.
- d) The project develops a prototype web-based application for managing scientific algorithm with three modules which are users, scientific algorithm providers, and scientific librarian.

The shaded area in Figure 1.2 shows scope of research that is done in this project. This research framework acts as a guideline for the author to do the research. This scope will be discussed in detail for the later chapters.

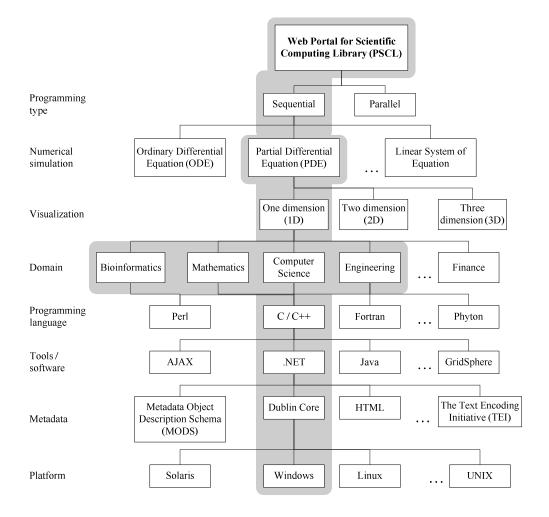


Figure 1.2 Research framework

1.13 **Project Importance**

Ideally, users would like all resources to be virtualized and not to have to deal with storage or transfer components and issues. Therefore, the importance of the PSCL is to enable widely accessible scientific computing, anytime and anywhere, without worrying about the physical storage or data transfer. It is hope to shorten time for researchers to search a huge amount of scientific computing and thus, can improve their experiments. PSCL also enables:

- a) Scientists to easily store, archive, and publish data to the community.
- b) Data and basic knowledge sharing among scientists.
- c) Scientists to search and retrieve information that they require.
- d) Scientists to share their insights with others without geographically constrained.
- e) Utilization of mathematical simulation to support the target market and target user.

Due to the growing complexity of the web, portals have become essential to the Internet users. Portals allow easy access to information by integrating heterogeneous applications or data sources in consistent way. It gives users a personalized and restricted view of domain information (Rovan, 2008).

This scientific computing library will be developed in order to:

- a) Achieve accuracy, reliability, and stability towards the exact solution in multidiscipline industry.
- b) Help the target market.
- c) Minimize the absolute error between approximation solution and exact solution.
- d) Solve actual problem in industry.

The PSCL will be developed with hope to give better understanding about sharing of scientific data among users. It also hopes to give general knowledge on simulation of the scientific data in order to get the result.

1.14 Chapter Summary

This chapter gives general idea on the project of PSCL based on research of repository of scientific data. Problem background describes current problem in managing scientific computing. Problem statement is the main question that needs to be addressed. Objectives are elements that need to be achieved at the end of this project, while scope is the project boundary that has been identified. Project importance explains on the benefits gained by the parties involved in this project. It is hoped that this project will be very beneficial to everyone and can contributes to the future of research and development.

REFERENCES

- Aihara, K., Yamada, T., Kando, N., Fujisawa, S., Uehara, Y., Baba, T., Nagata, S., Tojo, T., Awaji, T., and Adachi, J. (2006). Owlery: A Flexible Content Management System for Growing Metadata of Cultural Heritage Objects and Its Educational Use in the CEAX Project. In Sugimoto, S. *Digital Libraries: Achievements, Challenges and Opportunities*. Berlin: Springer Berlin / Heidelberg. 22-31.
- Akzhalova, A. Z. and Aizhulov, D. Y. (2007). Web Portal to Make Large-Scale Scientific Computations Based on Grid Computing and MPI. In Wyrzykowski, R. *Parallel Processing and Applied Mathematics*. Berlin: Springer Berlin / Heidelberg.
- Alexander, W. and Yang, W. (2006). Scientific Visualization Today. *Journal of Computing Sciences in College (JCSC)*. 21 (5): 189-190.
- Antoch, J. (2008). Environment for statistical computing. Computer Science Review. 2 (2): 113-122.
- Bader, M. (2003). Introduction to Scientific Computing. (2009, February, 5).
- Balay, S., Buschelman, K., Dalcin, S., Eijkhout, V., Gropp, W., Karpeev, D., Kaushik,
 D., Knepley, M., McInnes, L. C., Smith, B., and Hong, Z. (2008). *Portable, Extensible Toolkit for Scientific Computation (PETSc).*http://www.mcs.anl.gov/petsc/petsc-as (2009, February, 23).
- Bancroft, G. V., Merritt, F. J., Plessel, T. C., Kelaita, P.G., McCabe, R. K., and Globus, A. (1990) FAST: A multi-processed environment for visualization of computational fluid dynamics. *Proceedings of IEEE Visualization 1990*. October 23-26. U.S.A.: IEEE Computer Society Press. 14-27, 461-462.
- Bennett, S., McRobb, S., and Farmer, R. (2006). Object-Oriented Systems Analysis and Design Using UML. 3rd ed. U.S.A.: McGraw-Hill Companies, Inc.

Boiko, B. (2001). Content Management Bible. 2nd ed. U.S.A.: Wiley Publishing, Inc.

- Boisvert, R. F., Cools, R. and Einarsson, B. (2005). Assessment of Accuracy and Reliability. In Einarsson, B. Accuracy and Reliability in Scientific Computing. United States of America: Society for Industrial and Applied Mathematics (SIAM). 14.
- Bollig, E. F., Jensen, P. A., Lyness, M. D., Nacar, M. A., da Silveira, R. C., Kigelman, D., Erlebacher, G., Pierce, M., Yuen, D. A., da Silva, R. S. (2007). VLAB: Web services, portlets, and workflows for enabling cyber-infrastructure in computational mineral physics. *Physics of the Earth and Planetary Interiors*. 163 (1-4): 333-346.
- Borgman, C. L., Wallis, J. C., Mayernik, M. S., and Pepe, A. (2007). Drowning in Data: Digital Library Architecture to Support Scientific Use of Embedded Sensor Networks. *Joint Conference on Digital Libraries (JCDL) 2007*. June 18–23. U.S.A: Association for Computing Machinery (ACM). 269-277.
- Brezany, P. and Winslett, M. (1999). Advanced Data Repository Support for Java Scientific Programming. *Proceedings of the 7th International Conference on High-Performance Computing and Networking*. April 12–14. U.K.: Springer-Verlag. 1127 – 1136.
- Butler, G. F., Kramer, W. T. C., Shoshani, A., Agarwal, D. A., Draney, B. R., Jin, G., and Hules, J. A. (2003). Deep Scientific Computing Requires Deep Data. *IBM Journal of Research and Development*. 48 (2): 209-232.
- Caro, A., Calero, C., Caballero, I., and Piattini, M. (2006). Defining a Quality Model for Portal Data. *Proceedings of the 6th International Conference on Web Engineering* (*ICWE*) 2006. July 11-14. U.S.A.: Association for Computing Machinery (ACM). 115-116.
- Chin, G. and Lansing C. S. (2004). Capturing and Supporting Contexts for Scientific Data Sharing via the Biological Sciences Collaboratory. *Proceedings of the 2004* ACM Conference on Computer Supported Cooperative Work (CSCW) 2004. November 6-10. U.S.A.: Association for Computing Machinery (ACM).
- Chu, H., Chen, M., and Chen, Yn. (2007). A Semantic-based Approach to Content Abstraction and Annotation for Content Management. *Expert Systems with Applications*. 36 (2009): 2360-2376.

- Chu, W. C., Hong-Xin, L., and Juei-Nan, C. (2005). Context-Sensitive Content Representation for Mobile Learning. In Xing-Yi, Lin. Advances in Web-Based Learning – ICWL 2005. Berlin: Springer Berlin / Heidelberg. 349-354.
- CM3 Content Manager (1997). *Key Benefits of Content Management*. http://www.cm3cms.com/company/articles/key benefits.html (2009, February 7).
- Daigle, S. L. and Cuocco, P. M. (2002). Portal Technology Opportunities, Obstacles, and Options: A View from the California State University. In Katz, R. N. Web Portals and Higher Education Technologies to Make IT Personal. U.S.A.: Jossey-Bass, A Wiley Company. 109-123.
- Delannoy, O. and Emad, N. (2006). YML / LAKeWeb Portal: Web based research portal for linear algebra application. *High Performance Computing Symposium* (HPC 2006). April 2-6. France: Versailles University.
- Dennis, A., Wixom, B. H., and Tegarden, D. (2005). Systems Analysis and Design with UML Version 2.0.: An Object-Oriented Approach. 2nd ed. U.S.A.: John Wiley & Sons, Inc.
- DeRose, P., Warren, S., Fei, C., AnHai, D., and Raghu Ramakrishnan. (2007). Building Structured Web Community Portals: A Top Down, Compositional, and Incremental Approach. *International Conference on Very Large Data Bases (VLDB) 2007*. September 23-28. U.S.A.: VLDB Endowment. 399-410.
- Dewitz, S. D. (1996). Systems Analysis and Design and the Transition to Objects. U.S.A.: McGraw-Hill Companies, Inc.
- Donoho, D. and Grimes, C. (2001). A New Paradigm for Scientific Computing. http://www.ima.umn.edu/talks/workshops/4-9-13.2001/grimes/slides0413.pdf (2009, March 14).
- Dozsa, G., Kacsuk, P., Nemeth, C. (2006). Grid Application Development on the Basis of Web Portal Technology. In Dongarra, J., Madsen, K., Wasniewski, J. Applied Parallel Computing. Berlin: Springer Berlin / Heidelberg. 472-480.
- Drummond, L. A. and Marques, O. A. (2005). An Overview of the Advanced Computational Software (ACTS) Collection. *Transactions on Mathematical Software (TOMS)*. 31 (3): 282–301.
- Dublin Core Metadata Initiative (2009). *Dublin Core Metadata Element Set, Version* 1.1. http://www.dublincore.org/documents/dces/ (2009, March 18).

- Foddy, W. (1993). Constructing Questions for Interviews and Questionnaires: Theory and Practice in Social Research. Cambridge: Cambridge University Press.
- Ford, B. and Sayers D. K. (1976). Developing a Single Numerical Algorithms Library for Different Machine Ranges. *Transactions on Mathematical Software (TOMS)*. 2 (2): 115-131.
- Fraternali, P. and Paolini, P. (2000). Model-driven Development of Web Applications: the AutoWeb system. ACM Transactions on Information Systems (TOIS). 18 (4): 323 382.
- Gammel (1991). *Matpack C++ Numerics and Graphics Library*. http://www.matpack.de (2009, February, 6).
- Garcia, R., Gimeno, J. M., Perdrix, F., Gil1, R., Oliva, M., and Lytras, M. D. (2008).
 The Rhizomer Semantic Content Management System. *Proceedings of the 1st World Summit on The Knowledge Society: Emerging Technologies and Information Systems for the Knowledge Society*. Berlin: Springer Berlin / Heidelberg. 385-394.
- Kathuria, G. (2006). Web Content Management with Documentum: Set up, Design, Develop, and Deploy Documentum Applications. Birmingham, U.K.: Packt Publishing Ltd. 7.
- Gertz, M. and Ludascher, B. (2006). Scientific Data and Workflow Management. 10th International Conference on Extending Database Technology (EDBT). March 26-30.
- Gilbane, F. (2000). What is Content Management? The Gilbane Report. 8 (8).
- Gray, J., Liu, D. T., Nieto-Santisteban, M., Szalay, A. S., DeWitt, D., and Heber, G. (2005). Scientific Data Management in the Coming Decade. *ACM SIGMOD Record*. U.S.A.: Association for Computing Machinery (ACM). 34 (4): 34-41.
- Greenberg, J. and Carrier, S. (2008). Metadata for Scientific Datasets (MeS) Workshop. *International Conference on Dublin Core and Metadata Applications*. September 22-26. U.K.: Emerald Group Publishing Limited. 4-5.
- Gu, Y. T, Liu, G. R. (2003). A Boundary Radial Point Interpolation Method (BRPIM) for 2-D Structural Analyses. *Structural Engineering And Mechanics*. 15 (5): 535-550.
- Hackos, J. T. (2002). Content Management for Dynamic Web Delivery. U.S.A.: John Wiley & Sons, Inc.

- Han, X. and Liu, G. R. (2003). Computational Inverse Techniques For Material Characterization Of Functionally Graded Materials. *AIAA Journal*. 41 (2): 288 - 295.
- Heath, M. T. (2002). *Scientific Computing an Introductory Survey*. 2nd ed. New York: McGraw-Hill.
- Heroux, M., Baker, C., Bartlett, R., Bochev, P., Boggs, P., Boman, E., Chevalier, C., Coffey, T., Day, D., Devine, K., Dohrmann, C., Gay, D., Guillen, E., Hetmaniuk, U., Hoekstra, R., Hooper, R., Howle, V., Hu, J., Kolda, T., Knepper, S., Kotulski, J., Lehoucq, R., Long, K., Nusbaum, K., Pawlowski, R., Phipps, E., Riesen, L. A., Sala, M., Salinger, A., Siefert, C., Thornquist, H., Tuminaro, R., Willenbring, J., and Williams, A. (2003). *The Trilinos Project*. http://trilinos.sandia.gov (2009, February, 23).
- HPCx Consortium (2008). HPCx Service Annual Report for 2008. http://www.hpcx.ac.uk/projects/reports/annual/HPCXAnnual2008_Summary.pdf (2009, March 18).
- http://www.sapdesignguild.org/editions/edition3/portal_definition.asp (2009, February, 23).
- Hultquist, J. P. and Raible, E. L. (1992). SuperGlue: A programming environment for scientific visualization. *Proceedings of IEEE Visualization 1992*. October 19-23. U.S.A.: IEEE Computer Society Press. 243-250.
- Internet World Stats (2009). World Internet Usage Statistics News and World Population Stats. http://www.internetworldstats.com/stats.htm (2009, March 14).
- Jianwei, L., Wei-keng, L., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham, R. Siegel, A., Gallagher, B., and Zingale, M. (2003). Parallel netCDF: A High-Performance Scientific I/O Interface. *Conference on Supercomputing 2003*. November 15-21. U.S.A.: IEEE Computer Society. 39.
- Kandaswamy, G., Fang, L., Huang, Y., Shirasuna, S., Marru, S., and Gannon, D. (2006). Building web services for scientific grid applications. *IBM Journal of Research and Development*. 50 (2/3): 249-260.
- Kandaswamy, G., Fang, L., Huang, Y., and Shirasuna, S. (2006). Building Web Services for Scientific Grid Applications. *IBM Journal of Research and Development*. 50 (2/3): 249-260.

- Kartchner, C. (1998). Content Management Systems: Getting from Concept to Reality. *Journal of Electronic Publishing*. 3 (4).
- Lang, U., Lang, R., and Ruhle, R. (1991). Integration of Visualization and Scientific Calculation in a Software System. *Proceedings of the 2nd Conference on Visualization 1991*. U.S.A.: IEEE Computer Society Press. 268-274.
- Lazar, Z. I., Kovacs, L. I., and Mathe, Z. (2007). COMODI: Architecture for a Component-Based Scientific Computing System. In Lazar, Z. I., Kovacs, L. I., and Mathe, Z. Applied Parallel Computing. State of the Art in Scientific Computing. Berlin: Springer Berlin / Heidelberg. 280-288.
- Li, X. and Dasgupta, S. (2005). User Satisfaction with Web Portals: An Empirical Study. In Yuan, Gao. Web Systems Design and Online Consumer Behavior. U.S.A: Idea Group Publishing.
- Liu, G. R. and Liu, M. B. (2003). Smoothed Particle Hydrodynamics: A Meshfree Particle Method. Singapore: World Scientific Publishing Co.
- Louis, K. S., Jones, L. M., and Campbell, E. G. (2002). Sharing in Science. *American Scientist.* 90 (4): 304 -307.
- Louis, K. S., Jones, L. M., and Campbell, E. G. 2002. Sharing in Science. *American Scientist.* 90 (4): 304-307.
- Malaysian Communications and Multimedia Commission (2008). Report on Malaysia's Internet Penetration. http://www.skmm.gov.my/facts_figures/stats/index.asp. (2009, March 14).
- Mann, B., Williams, R., Atkinson, M., Brodlie, K., Storkey, A., and Williams, C. (2002). *Scientific Data Mining, Integration, and Visualization*. UK e-Science Technical Report Series. October 24-25. Edinburgh: e-Science Institute.
- McCormick, B., DeFanti, T. A., and Brown, M. D. (1987). Visualization in Scientific Computing. *Computer Graphics*. 21 (6):15-21.
- Mickus-Miceli, K. D. and Domik, G. O. (1992). An Enriched Visualization Framework for Multidisciplinary Data Analysis. *Symposium on Intelligent Scientific Computation, American Association for Artificial Intelligence (AAAI)*. October 23-25. U.S.A.: AAAI Press.
- Mohd. Shahizan Othman (2009). *Mohd. Shahizan Othman.* http://web.utm.my/fsksm/staf/shahizan/ (2009, March 30).

- National Information Standards Organization (2004). Understanding Metadata. U.S.A.: NISO Press.
- National Library of Australia. Preservation Services Branch (2009). *Metadata*. http://www.nla.gov.au/padi/topics/30.html (2009, March 15).
- Nickols, F. (2003). Prototyping Systems Development in Record Time. *Journal of Systems Management.* 44 (9).
- Nielsen, J. and Landauer, T. K. (1993). A mathematical model of the finding of usability problems. Proceedings of ACM INTERCHI '93 Conference. April 24-29. 206-213.
- Nonaka, I. (1994). A Dynamic Theory of Organizational Knowledge Creation. *Organization Science*. 5 (1):14–37.
- Numerical Analysis Group members (2007). HSL. http://www.cse.scitech.ac.uk/nag/hsl (2009, February, 3).
- Oakes, G. (2006). Introduction to Content Management Systems: Spend Your TimeManagingInformation,NotTechnology.http://www.freesoftwaremagazine.com/articles/cmsintro (2009, February, 10).
- Oliveira, S. and Stewart, D. E. (2006). *Writing Scientific Software: A Guide to Good Style*. U.K.: Cambridge University Press.
- Parr, C. S., Espinosa, R., Dewey, T., Hammond, G., and Myers, P. (2005). Building a Biodiversity Content Management System for Science, Education, and Outreach. *Data Science Journal*. 4: 1-11.
- Peltier, S. T., Ellisman, M. H. (2003). The Biomedical Informatics Research Network. In Foster, I. and Kesselman, C. *The Grid: Blueprint for a New Computing Infrastructure*. U.S.A.: Morgan Kaufmann.
- Pinchover, Y. and Rubinstein, J. (2005). An Introduction to Partial Differential Equations. U.S.A.: Cambridge University Press. 1-2.
- Mitra, P., Giles, C. L., Sun, B., and Ying, L. (2007). ChemXSeer: A Digital Library and Data Repository for Chemical Kinetics. *CyberInfrastructure: Information Management in eScience (CIMS) 2007.* November 9. U.S.A.: Association for Computing Machinery (ACM). 7-10/
- Razmerita, L. (2004). Ontology-Based User Modeling for Knowledge Management Systems. In Angehrn, A. and Maedche, A. User Modeling 2003. Berlin: Springer Berlin / Heidelberg. 148.

- Rovan, L. (2008). *Realizing Semantic Web Portal Using Available Semantic Web Technologies and Tools*. 7th International Semantic Web Conference (ISWC2008).
- Schwab, M. (2000). Making scientific computations reproducible. *Computing in Science and Engineering*. U.S.A.: IEEE Computer Society. 2 (6): 61-67.
- Shelly, G. B., Cashman, T. J., and Rosenblatt, H.J. (2006). Systems Analysis and Design.
 6th ed. U.S.A.: Thomson Course Technology.
- Shortliffe, E. H., Barnett, O., Cimino, J. J., Greenes, R. A., and Patel, V. L. (1996). InterMed: An Internet-Based Medical Collaboratory. *Proceedings of INET 1996, the Annual Meeting of the Internet Society*. Pennsylvania: CiteSeerX.
- Siemens, G. (2003). *Content Management: Our Organized Future*. http://www.elearnspace.org/Articles/contentmanagement.htm (2009, February, 7).
- Simpson, D. L. (2005). Content for One: Developing a Personal Content Management System. SIGUCCS Conference on User Services 2005. November 6–9. U.S.A.: Association for Computing Machinery (ACM). 338-342.
- Skidmore, J. L., Sottile, M. J., Cuny, J. E., and Malony A. D. (1998). A Prototype Notebook-Based Environment for Computational Tools. *Conference on Supercomputing 1998*. November 7-13. U.S.A.: IEEE Computer Society. 1-15.
- Venugopal, S., Buyya, R., and Ramamohanarao, K. (2006). A Taxonomy of Data Grids for Distributed Data Sharing, Management, and Processing. ACM Computing Surveys. 38 (3).
- Staab, S. (2001). Knowledge Portals. Proceedings of the workshop on Human Language Technology and Knowledge Management. U.S.A.: Association for Computational Linguistics.
- Stavroulakis, I. P. and Tersian, S. A. (2004). Partial Differential Equations: An Introductionwith Mathematica and MAPLE. 2nd ed. Singapore: World Scientific Publishing Co. Re. Ltd. 1.
- Steeb, W. (2004). Problems & Solutions In Scientific Computing With C++ And Java Simulations. Singapore: World Scientific Publishing Co. Inc.
- Strauss, W. A. Partial Differential Equations: An Introduction. U.S.A.: John Wiley & Sons, Inc. 1-2.

- Suzumura, T., Matsuoka, S., and Nakada, H. (2001). A Jini-based Computing Portal System. *Conference on Supercomputing 2001*. November 10-16. U.S.A.: Association for Computing Machinery (ACM). 24.
- Tanase, D., Bruce, M., Stuart-Moore, J., and Joiner, D. A. (2006). Scaffolding the Infrastructure of the Computational Science Digital Library. *Joint Conference on Digital Libraries (JCDL)*. U.S.A.: Association for Computing Machinery (ACM). 256-257.
- Tveito, A. and Winther, R. (1998). *Introduction to Partial Differential Equations: A Computational Approach*. New York: Springer-Verlag. 1-2.
- Unidata Program Center (1997). Network Common Data Format (NetCDF). http://www.unidata.ucar.edu/software/netcdf/ (2009, March 18).
- Varathan, K., Soundararajan, E., and Somasekharan, M. (2006). Content Management System: A Case Study of IGCAR Library.
- Vazhkudai, S. S., Kohl, J. A., and Schwidder, J. (2007). A Java-based Science Portal for Neutron Scattering Experiments. *Principles and Practice of Programming in Java* (*PPPJ*) 2007. September 5–7. U.S.A.: Association for Computing Machinery (ACM). 21-30.
- Visual Numerics Inc. (2009). *IMSL Numerical Libraries*. http://www.vni.com/products/imsl (2009, February 4).
- Vliet, H. V. and Porskamp, P. (2000). *Methodology: An Ocean to Cross*. https://doc.freeband.nl/dsweb/Get/Document-

9806/GigaCEMethodologyanOceantoCross.pdf (2009, March 9).

- W3Schools (2009). *HTML Meta Tag.* http://www.w3schools.com/tags/tag_meta.asp (2009, March 31).
- White, M. (2005). The Content Management Handbook. London: Facet Publishing. 4.
- Winkler, R. (2001). Portals the All-in-one Web Supersites: Features, Functions, Definitions, Taxonomy.
- Wulf, W. 1993. The Collaboratory Opportunity. Science. 261 (5123): 854-855.
- LiMin, F. (2007). *Neural Networks in Computer Intelligence*. U.S.A.: McGraw-Hill Companies, Inc.