A CHANGE IMPACT ANALYSIS APPROACH USING VISUALIZATION METHOD

RITA NOREMI BT MOHAMAD

UNIVERSITI TEKNOLOGI MALAYSIA

A CHANGE IMPACT ANALYSIS APPROACH USING VISUALIZATION METHOD

RITA NOREMI BT MOHAMAD

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science (Computer Science)

Faculty of Computer Science and Information Systems Universiti Teknologi Malaysia

JANUARY 2010

ALHAMDULLILAH

I dedicated this thesis to my parents, Ayah and Achik My sister, Angah My brother, Along My step sister, Maisara My nephews and nieces

I would also like to thank my friends, Dahlia and Siti Hafizah Nor.

ACKNOWLEDGEMENT

I would like to take this opportunity to thank my supervisor, Assoc. Prof. Dr Suhaimi Bin Ibrahim and Dato' Prof. Dr Norbik Bashah bin Idris for their continuous encouragement, advice and inspiration throughout this research. I would also like to offer my heartiest gratitude to my friends Dahlia Din and Siti Hafizah Nor Abd Razak, who have helped me in prototype development.

I also would like to thank; Konsortium Jaya Sdn Bhd that has allowed me to perform experiments at their office. Last but not least, my deep appreciation also goes to post-graduate students of Center for Advanced Software Engineering (CASE), Universiti Teknologi Malaysia, Kuala Lumpur for their participations in the controlled experiment.

ABSTRACT

A software needs to be maintained whenever new requirements arise. A maintainer is responsible to change the code to ensure the software is more operational based on the changes. It is a fact that the change in some parts of the code will affect other parts within the same code that need to be changed and this requires the maintainer's experience to understand the behavior of code implementation. However, it is difficult for new maintainers to understand the component dependencies within the code and it is worse when the current documentation is not updated and becomes obsolete. Hence, the only trustworthy source is the most recent version of the code that new maintainers need to master which requires familiarity of the software itself prior to any changes. This is unfortunately tedious and time consuming. Therefore, to reduce the burden, this research extended and enhanced Configuration Artifact Traceability Tool for Impact Analysis (CATIA) to improve understanding in visualization. A Change Impact Analysis (CIA) approach using visualization method is a proposed model to assist maintainers to understand and visualize the traceability of potential change impact. The visualization method was developed based on inheritance, friend, composition, calls and aggregation of program structure to support software change request and program understanding. A prototype tool called CIA-V was developed to support Object Oriented Programming written in C++ to implement potential change impact using visualization method. The model was then tested in controlled experiment using selected case study to prove traceability effectiveness of potential change impact via visualization method.

ABSTRAK

Perisian perlu diselenggarakan apabila keperluan baru diutarakan. Penyelenggara bertanggungjawab meminda kod sumber berdasarkan pada pindaan. Pindaan satu kod sumber mungkin memberi kesan kepada bahagian kod yang lain. Ini memerlukan pengalaman penyelenggara untuk memahami perlaksanaan kod sumber. Perkara ini sukar bagi penyelenggara baru memahami kebergantungan komponen di antara kod sumber dan paling kritikal apabila dokumentasi perisian tidak dikemaskini. Justeru itu, sumber yang boleh dipercayai ialah kod sumber terkini yang perlu dikuasai oleh penyelanggara baru bagi tujuan pemahaman kod sumber sebelum pindaan dilaksanakan. Ini meremehkan dan memerlukan masa yang mengurangkan bebanan, penyelidik telah menambah panjang. Bagi dan meningkatkan fungsi CATIA untuk memperbaiki pemahaman dalam visualisasi. Satu pendekatan CIA menggunakan kaedah visualisasi adalah model yang dicadangkan bagi membantu penyelenggara perisian memahami dan menvisualisasikan jejakan impak pindaan berpotensi. Pendekatan visualisasi dibangunkan berdasarkan pada pewarisan, kawan, komposisi, panggilan dan aggregasi terhadap struktur program bagi menyokong permintaan pindaan perisian dan pemahaman program. Satu prototaip dipanggil CIA-V telah dibangunkan bagi menyokong bahasa aturcara berorientasikan objek ditulis dalam C++ untuk melaksanakan kaedah visualisasi impak pindaan berpotensi. Model tersebut kemudiannya diuji dalam ujikaji terkawal menggunakan kajian kes untuk membuktikan keberkesanan jejakan impak pindaan berpotensi melalui kaedah visualisasi.

TABLE OF CONTENTS

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
TABLE OF CONTENTS	vii
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF ACRONYMS AND SYMBOLS	xviii
LIST OF APPENDICES	xix

TITLE

1 INTRODUCTION

CHAPTER

1.1	Introduction	1
1.2	Background of the Research Problem	1
1.3	Statement of the Problem	4
1.4	Objectives of the Study	4
1.5	Scope of Work	5
1.6	Importance of the Study	5
1.7	Thesis Outline	6
1.8	Summary	8

PAGE

2 LITERATURE REVIEWS

2.1	Introduction 9				
2.2	Softw	Software maintenance			
	2.2.1	Problem in Software Maintenance			
	2.2.2	Software maintenance Categories	13		
2.3	Progra	am Understanding	14		
	2.3.1	Program Understanding Support Mechanism	16		
		2.3.1.1 Unaided Browsing	16		
		2.3.1.2 Leveraging Corporate Knowledge and	17		
		Experience			
		2.3.1.3 Computer Aided Technique	17		
2.4	Rever	se Engineering	18		
	2.4.1	Reverse Engineering Concept and Definition	18		
	2.4.2	Reverse Engineering Challenge	20		
	2.4.3	Program Understanding in Reverse Engineering			
	Automating Approaches				
2.5	Chang	ge Impact Analysis	23		
	2.5.1	Change Process	24		
	2.5.2	Change Impact Analysis Definition	24		
	2.5.3	Change Impact Analysis Model	26		
	2.5.4	Ripple-effect Model	27		
	2.5.5	Typical Change Impact Analysis Process	29		
		2.5.5.1 Difficulties of Change Impact Analysis	31		
	2.5.6	Change Impact Analysis in Object Oriented System	31		
2.6	Softw	are Visualization Method	33		
	2.6.1	Type of Information Requirement in Visualization	36		
	2.6.2	Current Tools in Software Visualization Method	38		
		2.6.2.1 Rigi	38		
		2.6.2.2 PBS (Portable Bookshelf)	39		
		2.6.2.3 CATIA	40		

		2.6.2.4	SNiFF++	41
		2.6.2.5	CodeSurfer	42
		2.6.2.6	CC-Rider	43
	2.6.3	Software	e Visualization Method Used	44
		2.6.3.1	Rigi	45
		2.6.3.2	PBS	46
		2.6.3.3	CATIA	47
		2.6.3.4	SNiFF++	48
		2.6.3.5	CodeSurfer	49
		2.6.3.6	CC-Rider	51
	2.6.4	Features	Provided	52
		2.6.4.1	Taxonomy of Level Information Abstraction	52
			of the Tools	
		2.6.4.2	Drawback of the Features	54
		2.6.4.3	Strengths of the Features	55
2.7	The Co	omparativ	e Evaluation of Current Tools	55
2.8	Propos	ed Solution	on	56
2.9	Summ	ary		57

3 RESEARCH METHODOLOGY

3.1	Introduction				58
3.2	Operat	tional Fra	ional Framework		
	3.2.1	Phase 1:	Formulation	Formulation of Research Problem	
		3.2.1.1	Preliminary	reliminary Study	
		3.2.1.2	Literature R	Reviews	60
			3.2.1.2.1	Understanding the Need for	61
				Change Request Process	
			3.2.1.2.2	Understanding Object Oriented	61
				Programming Concept	

			3.2.1.2.3	Understanding Change Impact	62
				Analysis	
			3.2.1.2.4	Understanding Visualization	62
				Method	
		3.2.1.3	Analysis C	urrent Approach and Existing	63
			Tools		
		3.2.1.4	Research P	roposal	63
	3.2.2	Phase 2:	Prototype D	Development	64
		3.2.2.1	CIA Using	CIA Using Visualization (CIA-V) Method	
			Model Des	ign	
		3.2.2.2	CIA-V Prot	totype Development	65
	3.2.3	Phase 3:	Implementation and Evaluation		65
		3.2.3.1	Supporting Tools Development		66
		3.2.3.2	Choose Cas	se Study	66
		3.2.3.3	Experiment	tal	67
		3.2.3.4	Validation		67
	3.2.4	Phase 4:	Research Re	eport	69
3.3	Resear	ch Assun	nption		69
3.4	Summ	ummary 70			70

4 CHANGE IMPACT ANALYSIS APPROACH USING VISUALIZATION METHOD

4.1	Introd	uction		71
4.2	.2 Overview of Change Impact Analysis Using Visualization			72
	Metho	d		
4.3	CIA-V	in Object	Oriented	72
	4.3.1	Object O	riented Concept	73
		4.3.1.1	Classes Relationship in Object Oriented	74
	4.3.2	Change I	mpact Analysis	75

		4.3.2.1	Dependencies	75
		4.3.2.2	Change Impacts Granularity Level	76
	4.3.3	Relation	ship and Dependencies in Change Impact	77
	4.3.4	Visualiz	ation Technique	81
		4.3.4.1	CIA-V Graphical Representation Model	81
4.4	4.4 A Proposed Change Impact Analysis Using Visualization			82
	Metho	od		
	4.4.1	Phase 1	: TokenAnalyzer Tool	83
	4.4.2	Phase 1 : CATIA Model		
	4.4.3	Phase 2	: CIA-V Model	85
4.5	Summ	ary		86

5 DESIGN AND IMPLEMENTATION OF CIA-V

5.1	Introduction			
5.2	CIA-V Design			
	5.2.1	CIA-V A	Architecture	88
		5.2.1.1	Change Request	90
		5.2.1.2	Components Repository	90
		5.2.1.3	Extract Process	90
		5.2.1.4	CIA-V System	91
	5.2.2	CIA-V U	Jse Case	92
	5.2.3	CIA-V (Class Interactions	96
5.3	CIA-V Implementation and User Interfaces			
5.4	4 Other Supporting Tools			109
	5.4.1	TokenA	nalyzer	110
	5.4.2	CATIA		110
5.5	5 Summary			110

6 EVALUATION OF CIA-V

6.1	Introduction 11				
6.2	Case Study				
	6.2.1	Outlines of Case Study	112		
	6.2.2	OBA Project Briefing	113		
6.3	Contro	olled Experimental	114		
	6.3.1	Subject and Environment	115		
	6.3.2	Questionnaires	115		
	6.3.3	Experimental Procedures	116		
	6.3.4	Possible Threats and Validity	117		
6.4	4 Experimental Results				
	6.4.1	User Evaluation	118		
6.5	Analy	sis of Findings	128		
	6.5.1	Qualitative Evaluation	128		
6.6	5 Summary				

7 CONCLUSION AND FUTURE WORK

7.1	Introduction	132
7.2	Contribution	132
7.3	Research Limitation and Future Works	133
7.4	Summary	134

REFERENCES	136
Appendices A - B	140-163

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Class relationships	26
2.2 2.3	The taxanomy of level of information abstraction taxonomy of level of information abstraction for the tools	37 53
2.4	Existing Features of current tools	56
3.1	Usefulness of tool	68
3.2	Usability of tool	68
4.1	Change Impact dependency	77
4.2	Program Relationship in C++	80
4.3	Impact Analysis and graphical representation	82
6.1	Cross tabulation of current jobs versus frequencies	119
6.2	Cross tabulation of current jobs versus group distribution	119
6.3	Cross tabulation of experience in development versus frequencies	120
6.4	Cross tabulation of experience in development versus group distribution	120
6.5	Cross tabulation of experience in maintenance versu	is 120

frequencies

6.6	Cross tabulation of experience in maintenance versus group distribution	121
6.7	Cross tabulation of knowledge and understanding in workproduct versus frequencies	121
6.8	Cross tabulation of knowledge and understanding in workproduct versus group distribution	122
6.9	Cross tabulation of assist by maintenance tools versus frequencies	122
6.10	Cross tabulation of maintenance tools versus group distribution	122
6.11	Cross tabulation of most prefer task versus frequencies	123
6.12	Cross tabulation of most prefer task group distribution	123
6.13	Mean of Usefulness of tools	126
6.14	Mean of scores for change impact analysis using visualization features	126
6.15	The taxanomy of level of information abstraction of the experiment tools.	129
6.16	Existing features of software change impact using visualization Systems	129

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Software Maintenance Process	10
2.2	Ripple-effect Model	28
2.3	Typical Change Impact Analysis Process	30
2.4	Stasko's Taxonomy	35
2.5	View produced by Rigi via RigiEdit	39
2.6	A software landscape by PBS	39
2.7	Primary Artifacts Screen	40
2.8	Class hierarchy view	41
2.9	Cross reference	41
2.10	CodeSurfer Project Viewer	42
2.11	MDI style application	44
2.12	A graph consist nodes and arcs	44
2.13	Multiple, individual window	45
2.14	Fisheye views of nested graphs called SH	46
2.15	Web-based software landscape view	47

2.16	Sample output of the impacted artifacts	48
2.17	Column-by-column tree view	49
2.18	The sample program and its system dependence graph	50
2.19	CC-RIDER architecture	51
3.1	Operational Framework	59
4.1	Overview of Change Impact Using Visualization Model	72
4.2	Class and Objects	73
4.3	Classes relationship	74
4.4	Change impact granularity level	76
4.5	CIA-V Approach	83
4.6	Output of CATIA	84
4.7	CIA-V Model	85
5.1	CIA-V Architecture	89
5.2	Use Case Diagram of CIA-V System	92
5.3	CIA-V Class Diagram	97
5.4	CIA-V Sequence diagrams	98
5.5	Visualization process algorithm flowchart	102
5.6	CIA-V Introduction screen	104
5.7	First user interface of CIA-V	105
5.8	Primary artifacts at method level	105
5.9	Visualization viewer	106

5.10	Source code viewer	107
5.11	Drill Down Mtd-getState()	107
5.12	Relationship Total Report	108
5.13	Impact Summary Report	108
6.1	Usefulness of tool (percentage values based on 4: Useful)	124
6.2	Usefulness of tool (percentage values based on 5: Very Useful)	124
6.3	Usefulness of tool (percentage values based on 3: Neither Useless Nor Useful)	125
6.4	The usability criteria as ranked by the respondents	127

LIST OF ACRONYMS AND SYMBOLS

AIS	-	Actual Impact Set
ANOVA	-	Analysis of Variance
CASE	-	Computer Aided Software Engineering
CATIA	-	Configuration Artifact Traceability for Change Impact
		Analysis
CIA	-	Change Impact Analysis
CIA-V	-	Change Impact Analysis using Visualization
IA	-	Impact Analysis
LOC	-	Line of Code
UML	-	Unified Modeling Language
SDLC	-	Software Development Live Cycle
RE	-	Reverse Engineering
OOP	-	Object Oriented Programming
OBA	-	Automobile Board Auto Cruise
PCR	-	Problem Change Report
PIS	-	Primary Impact Set
SIS	-	Secondary Impact Set

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Questionnaire on Program Understanding in Change Impact Analysis using Software visualization usability tools	140
В	Manual and description	149

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter introduces the research work called *A change impact analysis approach using visualization method*. The discussion in this chapter includes research background, problem statements, objectives and the importance of the study. We then describe the scope of work and thesis's structure followed by the chapter summary.

1.2 Background of the Research Problem

All software will undergo some changes in it is life cycle. The changes must be adequately managed in order to maintain the software's efficiency and relevance. A software manager needs to prepare plan schedule and scope of changes in order to estimate the maintenance cost before the changes are implemented.

Regularly, the management of software changes falls under the responsibilities of software experts because they understood the software better. Unfortunately, this practise is only suitable for medium and small scale softwares. Legacy software which is usually large requires more storage to handle software artifacts that might be increasing over time.

Many software engineers agree that implementing software changes without understanding the internal consequences may lead to higher cost on software release version, incomplete software design and unreliable software products (Lehman and Ramil, 2002). For instance, date change phenomenon that occurred around the year 1990's to 2000 is a good example about the lack of understanding on change impact software (Ibrahim, 2006).

In technical context, software changes require suitable and effective techniques to study every impact that might occur against the software if changes are implemented. In this research, a change impact analysis tool will be used with visualization method to assist development team to understand the program better. Change Impact Analysis (CIA) provides high leverage strength in understanding and implementing software changes. It is because CIA renders depth examination over code or software that might be affected prior to changes.

The developer team that specializes in impact analysis usually concerns analysis relationship or dependencies between artifacts that exist in softwares. There are two approaches of impact analysis as described in literature reviews. The first approach is referred to as the problem in programming code level. This level focuses on program dependencies such as data and control dependencies. Hence, program dependencies refer more to programming code. The other approach focuses on the artifact in software life cycle itself, especially during requirement and design phases, code components and test cases; and other artifacts' traceability relationship and these approaches are static impact analysis techniques. For run-time information, dynamic impact analysis technique was used to determine change impact (Xiaoxia Ren *et al.*, 2005).

Visualization method is used to describe software artifacts' location in CIA. Visualization will show potential impact prior to changes. This method describes the potential relationship between artifacts. The visualization could help management and developer team to determine the action in time scheduling, cost estimation and human resource decision-making. Visualization could be made available through static program structure and dynamic behaviour. Static program structure can be analyzed based on programming code and dynamic behaviour, which are done through execution. This research is focused on static program structure based on programming code. The software structure visualization is useful to analyse software system, and it can be helpful in finding interactions or relationship between components in programming code.

Program or software understanding is a method to understand the software aided by maintenance system tools. There are several software tools available in the market, such as the CodeSurfer and Rigi, used as program understanding tools (Anderson and Zarins, 2005). Both of those tools use visualization method as a support for program understanding. There are others who claim that their tools can validate and check consistency of software. Some visualization features are directly linked to navigation and cross-reference that will be discussed in the next chapter. However, only very few tools on change impact analysis are used to visualize software traceability such as Rigi and CodeSurfer.

1.3 Statement of the Problem

This study focuses on program understanding which is aided by CIA in using visualization method as mentioned in section 1.2. The main question is, "*How can a software maintainers be estimated to better understand the software and estimate the potential impact of the changes through visualization*"

The sub questions of the main research question are as follow:

- i. How to use visualization method to support program understanding of change impact?
- ii. What is the suitable visualization method which can be used to apply in CIA based on object-oriented programming?

1.4 Objectives of the Study

The problem statement serves as a premise to establish a set of specific objectives that will constitute major milestones of this research.

The objectives of this research are listed as follow:

- 1. To build an effective model that could support CIA approach using visualization method to enhance program understanding and trace potential impact easily.
- 2. To develop a prototype as a supporting tool in order to support the proposed model and approach for verification of concept.
- 3. To demonstrate the practicality of the software CIA using visualization method to support program understanding for traces potential impact.

1.5 Scope of Work

Scope of work in this research includes the following:

- 1. A specific focus on change impact analysis approach using visualization method that could enhance program understanding and trace potential impact.
- 2. For program understanding focus is made on object-oriented programming.
- The software only applies to C++ programming language and UML class diagram.
- 4. The research is limited to small legacy system only.

1.6 Importance of the Study

Many studies were done to investigate the proportional software maintenance cost, in other words, the cost ratio of new development versus maintenance. The total cost of system maintenance is estimated to comprise at least 50% of total life cycle costs (Niessink and Van Vliet, 2000). Hence, to solve this problem, the developer team needs to study a mechanism or model that could analyze change impact to trace potential impact using visualization method to support program understanding. There are some benefits when using CIA approach using visualization method (Lee, 1998):

- 1. To help the maintenance team to enhance their program understanding in source code program.
- 2. To help the maintenance team to identify software work products affected by software changes easily via diagram. Such analysis not only permits evaluation of the consequences of planned changes, but it also allows trade-offs between suggested software change approaches to be considered.
- Greatly reduces the risks of embarking on a costly change because the cost of unexpected problems generally increases due to late discovery.

- 4. Can be used for planning changes, making changes, accommodating certain types of software changes, and tracing through the effects of changes.
- 5. Can be used as a measure of the cost of a change. The more the change causes other changes, the higher the cost is. Carrying out this analysis before a change is made will allow an assessment of the cost of the change and help management choose tradeoffs between alternative changes. It also allows managers and engineers to evaluate the appropriateness of a proposed modification. If a change that is proposed has the possibility of impacting large, disjoint sections of a program, the change might need to be re-examined to determine whether a safer change is possible.
- 6. Can be used to drive regression testing, i.e., to determine the parts of a program that need to be re-tested after a change is made. Regression test is a software maintenance activity that refers to any repetition of tests (usually after software or data changes) intended to show that the software's behaviour is unchanged except as required by the change to the software or data. To save work load, regression testing should retest only those parts that are impacted by the changes.
- Can also be used to indicate the vulnerability of critical sections of code. If a procedure that provides critical functionality is dependent on many different parts of a program, its functionality was susceptible to changes made in these parts.

1.7 Thesis Outline

This thesis covers several discussions on specific issues associated to change impact analysis using visualization method and to present understanding on how this new research is carried out. The rest of the thesis is organized in the following outline. **Chapter 2**: It discusses the literature review of software maintenance, change impact analysis and visualization methods. A few areas of interest are identified from which all the related issues, works and approaches are highlighted. This chapter also discusses some techniques of visualization method. The discussion on some existing tools that exist in the industry is also included in this chapter. This leads to the improvement opportunities that form a basis to develop newly proposed software of change impact analysis approach by using visualization method.

Chapter 3: It provides a research methodology that describes the research design and formulation of research problems and validation considerations. This chapter leads to an overview of data gathering and analysis. It is followed by research assumptions.

Chapter 4: This chapter discusses the detailed model of the proposed change impact analysis approach using visualization method. A set of relationship and visualization models are described. It is followed by some approaches and mechanisms to achieve the model specifications.

Chapter 5: It presents the design and functionality of some developed tools to support the software change impact analysis approach using visualization method. This includes the implementation of the design and component tools.

Chapter 6: The software change impact analysis approach using visualization method is evaluated for its effectiveness, usability and accuracy. The evaluation criteria is based on user controlled experiment. This research performs evaluation based on qualitative results that are collected based on user perception and comparative study made on the existing models and approaches.

Chapter 7: The description on research achievements, contributions and conclusion of the thesis are presented in this chapter. This is followed by the research limitations and suggestions for future work.

1.8 Summary

This research is focused on program visualization method that support change impact analysis to enhance program understanding and trace potential impact easily. This research also focused on object-oriented programming as the target legacy system to implement visualization method. Hence, a model is built to implement change impact analysis approach using visualization method and adapt it into the prototype as a validation tool for the proposed model.