
A CHANGE IMPACT ANALYSIS APPROACH USING VISUALIZATION

METHOD

RITA NOREMI BT MOHAMAD

UNIVERSITI TEKNOLOGI MALAYSIA

A CHANGE IMPACT ANALYSIS APPROACH USING VISUALIZATION

METHOD

RITA NOREMI BT MOHAMAD

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computer Science and Information Systems

Universiti Teknologi Malaysia

JANUARY 2010

 iii

ALHAMDULLILAH

I dedicated this thesis to

my parents, Ayah and Achik

My sister, Angah

My brother, Along

My step sister, Maisara

My nephews and nieces

I would also like to thank

my friends, Dahlia and Siti Hafizah Nor.

 iv

ACKNOWLEDGEMENT

I would like to take this opportunity to thank my supervisor, Assoc. Prof. Dr

Suhaimi Bin Ibrahim and Dato’ Prof. Dr Norbik Bashah bin Idris for their continuous

encouragement, advice and inspiration throughout this research. I would also like to

offer my heartiest gratitude to my friends Dahlia Din and Siti Hafizah Nor Abd

Razak, who have helped me in prototype development.

I also would like to thank; Konsortium Jaya Sdn Bhd that has allowed me to

perform experiments at their office. Last but not least, my deep appreciation also

goes to post-graduate students of Center for Advanced Software Engineering

(CASE), Universiti Teknologi Malaysia, Kuala Lumpur for their participations in the

controlled experiment.

 v

ABSTRACT

A software needs to be maintained whenever new requirements arise. A

maintainer is responsible to change the code to ensure the software is more

operational based on the changes. It is a fact that the change in some parts of the

code will affect other parts within the same code that need to be changed and this

requires the maintainer’s experience to understand the behavior of code

implementation. However, it is difficult for new maintainers to understand the

component dependencies within the code and it is worse when the current

documentation is not updated and becomes obsolete. Hence, the only trustworthy

source is the most recent version of the code that new maintainers need to master

which requires familiarity of the software itself prior to any changes. This is

unfortunately tedious and time consuming. Therefore, to reduce the burden, this

research extended and enhanced Configuration Artifact Traceability Tool for Impact

Analysis (CATIA) to improve understanding in visualization. A Change Impact

Analysis (CIA) approach using visualization method is a proposed model to assist

maintainers to understand and visualize the traceability of potential change impact.

The visualization method was developed based on inheritance, friend, composition,

calls and aggregation of program structure to support software change request and

program understanding. A prototype tool called CIA-V was developed to support

Object Oriented Programming written in C++ to implement potential change impact

using visualization method. The model was then tested in controlled experiment

using selected case study to prove traceability effectiveness of potential change

impact via visualization method.

 vi

ABSTRAK

Perisian perlu diselenggarakan apabila keperluan baru diutarakan.

Penyelenggara bertanggungjawab meminda kod sumber berdasarkan pada pindaan.

Pindaan satu kod sumber mungkin memberi kesan kepada bahagian kod yang lain.

Ini memerlukan pengalaman penyelenggara untuk memahami perlaksanaan kod

sumber. Perkara ini sukar bagi penyelenggara baru memahami kebergantungan

komponen di antara kod sumber dan paling kritikal apabila dokumentasi perisian

tidak dikemaskini. Justeru itu, sumber yang boleh dipercayai ialah kod sumber

terkini yang perlu dikuasai oleh penyelanggara baru bagi tujuan pemahaman kod

sumber sebelum pindaan dilaksanakan. Ini meremehkan dan memerlukan masa yang

panjang. Bagi mengurangkan bebanan, penyelidik telah menambah dan

meningkatkan fungsi CATIA untuk memperbaiki pemahaman dalam visualisasi. Satu

pendekatan CIA menggunakan kaedah visualisasi adalah model yang dicadangkan

bagi membantu penyelenggara perisian memahami dan menvisualisasikan jejakan

impak pindaan berpotensi. Pendekatan visualisasi dibangunkan berdasarkan pada

pewarisan, kawan, komposisi, panggilan dan aggregasi terhadap struktur program

bagi menyokong permintaan pindaan perisian dan pemahaman program. Satu

prototaip dipanggil CIA-V telah dibangunkan bagi menyokong bahasa aturcara

berorientasikan objek ditulis dalam C++ untuk melaksanakan kaedah visualisasi

impak pindaan berpotensi. Model tersebut kemudiannya diuji dalam ujikaji terkawal

menggunakan kajian kes untuk membuktikan keberkesanan jejakan impak pindaan

berpotensi melalui kaedah visualisasi.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION

 DEDICATION

 ACKNOWLEDGEMENT

 ABSTRACT

 TABLE OF CONTENTS

 LIST OF TABLES

 LIST OF FIGURES

 LIST OF ACRONYMS AND SYMBOLS

 LIST OF APPENDICES

ii

iii

iv

v

vii

xiii

xv

xviii

xix

1 INTRODUCTION

 1.1 Introduction 1

 1.2 Background of the Research Problem 1

 1.3 Statement of the Problem 4

 1.4 Objectives of the Study 4

 1.5 Scope of Work 5

 1.6 Importance of the Study 5

 1.7 Thesis Outline 6

 1.8 Summary 8

 viii

2 LITERATURE REVIEWS

 2.1 Introduction 9

 2.2 Software maintenance 12

 2.2.1 Problem in Software Maintenance 13

 2.2.2 Software maintenance Categories 13

 2.3 Program Understanding 14

 2.3.1 Program Understanding Support Mechanism 16

 2.3.1.1 Unaided Browsing 16

 2.3.1.2 Leveraging Corporate Knowledge and

Experience

17

 2.3.1.3 Computer Aided Technique 17

 2.4 Reverse Engineering 18

 2.4.1 Reverse Engineering Concept and Definition 18

 2.4.2 Reverse Engineering Challenge 20

 2.4.3 Program Understanding in Reverse Engineering

Automating Approaches

22

 2.5 Change Impact Analysis 23

 2.5.1 Change Process 24

 2.5.2 Change Impact Analysis Definition 24

 2.5.3 Change Impact Analysis Model 26

 2.5.4 Ripple-effect Model 27

 2.5.5 Typical Change Impact Analysis Process 29

 2.5.5.1 Difficulties of Change Impact Analysis 31

 2.5.6 Change Impact Analysis in Object Oriented System 31

 2.6 Software Visualization Method 33

 2.6.1 Type of Information Requirement in Visualization 36

 2.6.2 Current Tools in Software Visualization Method 38

 2.6.2.1 Rigi 38

 2.6.2.2 PBS (Portable Bookshelf) 39

 2.6.2.3 CATIA 40

 ix

 2.6.2.4 SNiFF++ 41

 2.6.2.5 CodeSurfer 42

 2.6.2.6 CC-Rider 43

 2.6.3 Software Visualization Method Used 44

 2.6.3.1 Rigi 45

 2.6.3.2 PBS 46

 2.6.3.3 CATIA 47

 2.6.3.4 SNiFF++ 48

 2.6.3.5 CodeSurfer 49

 2.6.3.6 CC-Rider 51

 2.6.4 Features Provided 52

 2.6.4.1 Taxonomy of Level Information Abstraction

of the Tools

52

 2.6.4.2 Drawback of the Features 54

 2.6.4.3 Strengths of the Features 55

 2.7 The Comparative Evaluation of Current Tools 55

 2.8 Proposed Solution 56

 2.9 Summary 57

3 RESEARCH METHODOLOGY

 3.1 Introduction 58

 3.2 Operational Framework 59

 3.2.1 Phase 1: Formulation of Research Problem 60

 3.2.1.1 Preliminary Study 60

 3.2.1.2 Literature Reviews 60

 3.2.1.2.1 Understanding the Need for

Change Request Process

61

 3.2.1.2.2 Understanding Object Oriented

Programming Concept

61

 x

 3.2.1.2.3 Understanding Change Impact

Analysis

62

 3.2.1.2.4 Understanding Visualization

Method

62

 3.2.1.3 Analysis Current Approach and Existing

Tools

63

 3.2.1.4 Research Proposal 63

 3.2.2 Phase 2: Prototype Development 64

 3.2.2.1 CIA Using Visualization (CIA-V) Method

Model Design

64

 3.2.2.2 CIA-V Prototype Development 65

 3.2.3 Phase 3: Implementation and Evaluation 65

 3.2.3.1 Supporting Tools Development 66

 3.2.3.2 Choose Case Study 66

 3.2.3.3 Experimental 67

 3.2.3.4 Validation 67

 3.2.4 Phase 4: Research Report 69

 3.3 Research Assumption 69

 3.4 Summary 70

4 CHANGE IMPACT ANALYSIS APPROACH USING

VISUALIZATION METHOD

 4.1 Introduction 71

 4.2 Overview of Change Impact Analysis Using Visualization

Method

72

 4.3 CIA-V in Object Oriented 72

 4.3.1 Object Oriented Concept 73

 4.3.1.1 Classes Relationship in Object Oriented 74

 4.3.2 Change Impact Analysis 75

 xi

 4.3.2.1 Dependencies 75

 4.3.2.2 Change Impacts Granularity Level 76

 4.3.3 Relationship and Dependencies in Change Impact 77

 4.3.4 Visualization Technique 81

 4.3.4.1 CIA-V Graphical Representation Model 81

 4.4 A Proposed Change Impact Analysis Using Visualization

Method

82

 4.4.1 Phase 1 : TokenAnalyzer Tool 83

 4.4.2 Phase 1 : CATIA Model 84

 4.4.3 Phase 2 : CIA-V Model 85

 4.5 Summary 86

5 DESIGN AND IMPLEMENTATION OF CIA-V

 5.1 Introduction 87

 5.2 CIA-V Design 88

 5.2.1 CIA-V Architecture 88

 5.2.1.1 Change Request 90

 5.2.1.2 Components Repository 90

 5.2.1.3 Extract Process 90

 5.2.1.4 CIA-V System 91

 5.2.2 CIA-V Use Case 92

 5.2.3 CIA-V Class Interactions 96

 5.3 CIA-V Implementation and User Interfaces 104

 5.4 Other Supporting Tools 109

 5.4.1 TokenAnalyzer 110

 5.4.2 CATIA 110

 5.5 Summary 110

 xii

6 EVALUATION OF CIA-V

 6.1 Introduction 111

 6.2 Case Study 112

 6.2.1 Outlines of Case Study 112

 6.2.2 OBA Project Briefing 113

 6.3 Controlled Experimental 114

 6.3.1 Subject and Environment 115

 6.3.2 Questionnaires 115

 6.3.3 Experimental Procedures 116

 6.3.4 Possible Threats and Validity 117

 6.4 Experimental Results 118

 6.4.1 User Evaluation 118

 6.5 Analysis of Findings 128

 6.5.1 Qualitative Evaluation 128

 6.6 Summary 131

7 CONCLUSION AND FUTURE WORK

 7.1 Introduction 132

 7.2 Contribution 132

 7.3 Research Limitation and Future Works 133

 7.4 Summary 134

REFERENCES 136

Appendices A - B 140-163

 xiii

LIST OF TABLES

TABLE NO. TITLE

PAGE

2.1 Class relationships

26

2.2 The taxanomy of level of information abstraction 37
2.3 taxonomy of level of information abstraction for the

tools

53

2.4 Existing Features of current tools

56

3.1 Usefulness of tool

68

3.2 Usability of tool

68

4.1 Change Impact dependency

77

4.2 Program Relationship in C++

80

4.3 Impact Analysis and graphical representation

82

6.1 Cross tabulation of current jobs versus frequencies

119

6.2 Cross tabulation of current jobs versus group
distribution

119

6.3 Cross tabulation of experience in development
versus frequencies

120

6.4 Cross tabulation of experience in development
versus group distribution

120

6.5 Cross tabulation of experience in maintenance versus 120

 xiv

frequencies

6.6 Cross tabulation of experience in maintenance versus
group distribution

121

6.7 Cross tabulation of knowledge and understanding in
workproduct versus frequencies

121

6.8 Cross tabulation of knowledge and understanding in
workproduct versus group distribution

122

6.9 Cross tabulation of assist by maintenance tools
versus frequencies

122

6.10 Cross tabulation of maintenance tools versus group
distribution

122

6.11 Cross tabulation of most prefer task versus
frequencies

123

6.12 Cross tabulation of most prefer task group
distribution

123

6.13 Mean of Usefulness of tools

126

6.14 Mean of scores for change impact analysis using
visualization features

126

6.15 The taxanomy of level of information abstraction of
the experiment tools.

129

6.16 Existing features of software change impact using
visualization Systems

129

 xv

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

2.1 Software Maintenance Process

10

2.2 Ripple-effect Model

28

2.3 Typical Change Impact Analysis Process

30

2.4 Stasko’s Taxonomy

35

2.5 View produced by Rigi via RigiEdit

39

2.6 A software landscape by PBS

39

2.7 Primary Artifacts Screen

40

2.8 Class hierarchy view

41

2.9 Cross reference

41

2.10 CodeSurfer Project Viewer

42

2.11 MDI style application

44

2.12 A graph consist nodes and arcs

44

2.13 Multiple, individual window

45

2.14 Fisheye views of nested graphs called SH

46

2.15 Web-based software landscape view

47

 xvi

2.16 Sample output of the impacted artifacts

48

2.17 Column-by-column tree view

49

2.18 The sample program and its system dependence
graph

50

2.19 CC-RIDER architecture

51

3.1 Operational Framework

59

4.1 Overview of Change Impact Using Visualization
Model

72

4.2 Class and Objects

73

4.3 Classes relationship

74

4.4 Change impact granularity level

76

4.5 CIA-V Approach

83

4.6 Output of CATIA

84

4.7 CIA-V Model

85

5.1 CIA-V Architecture

89

5.2 Use Case Diagram of CIA-V System

92

5.3 CIA-V Class Diagram

97

5.4 CIA-V Sequence diagrams

98

5.5 Visualization process algorithm flowchart

102

5.6 CIA-V Introduction screen

104

5.7 First user interface of CIA-V

105

5.8 Primary artifacts at method level

105

5.9 Visualization viewer

106

 xvii

5.10 Source code viewer

107

5.11 Drill Down Mtd-getState()

107

5.12 Relationship Total Report

108

5.13 Impact Summary Report

108

6.1 Usefulness of tool (percentage values based on 4:
Useful)

124

6.2 Usefulness of tool (percentage values based on 5:
Very Useful)

124

6.3 Usefulness of tool (percentage values based on 3:
Neither Useless Nor Useful)

125

6.4 The usability criteria as ranked by the respondents 127

 xviii

LIST OF ACRONYMS AND SYMBOLS

AIS - Actual Impact Set

ANOVA - Analysis of Variance

CASE - Computer Aided Software Engineering

CATIA - Configuration Artifact Traceability for Change Impact

Analysis

CIA - Change Impact Analysis

CIA-V - Change Impact Analysis using Visualization

IA - Impact Analysis

LOC - Line of Code

UML - Unified Modeling Language

SDLC - Software Development Live Cycle

RE - Reverse Engineering

OOP - Object Oriented Programming

OBA - Automobile Board Auto Cruise

PCR - Problem Change Report

PIS - Primary Impact Set

SIS - Secondary Impact Set

 xix

LIST OF APPENDICES

APPENDIX TITLE

 PAGE

A Questionnaire on Program Understanding in
Change Impact Analysis using
Software visualization usability tools

 140

B Manual and description 149

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter introduces the research work called A change impact analysis

approach using visualization method. The discussion in this chapter includes

research background, problem statements, objectives and the importance of the

study. We then describe the scope of work and thesis’s structure followed by the

chapter summary.

1.2 Background of the Research Problem

All software will undergo some changes in it is life cycle. The changes must

be adequately managed in order to maintain the software’s efficiency and relevance.

 2

A software manager needs to prepare plan schedule and scope of changes in order to

estimate the maintenance cost before the changes are implemented.

Regularly, the management of software changes falls under the

responsibilities of software experts because they understood the software better.

Unfortunately, this practise is only suitable for medium and small scale softwares.

Legacy software which is usually large requires more storage to handle software

artifacts that might be increasing over time.

Many software engineers agree that implementing software changes without

understanding the internal consequences may lead to higher cost on software release

version, incomplete software design and unreliable software products (Lehman and

Ramil, 2002). For instance, date change phenomenon that occurred around the year

1990’s to 2000 is a good example about the lack of understanding on change impact

software (Ibrahim, 2006).

 In technical context, software changes require suitable and effective

techniques to study every impact that might occur against the software if changes are

implemented. In this research, a change impact analysis tool will be used with

visualization method to assist development team to understand the program better.

Change Impact Analysis (CIA) provides high leverage strength in understanding and

implementing software changes. It is because CIA renders depth examination over

code or software that might be affected prior to changes.

 The developer team that specializes in impact analysis usually concerns

analysis relationship or dependencies between artifacts that exist in softwares. There

are two approaches of impact analysis as described in literature reviews. The first

approach is referred to as the problem in programming code level. This level focuses

on program dependencies such as data and control dependencies. Hence, program

dependencies refer more to programming code. The other approach focuses on the

 3

artifact in software life cycle itself, especially during requirement and design phases,

code components and test cases; and other artifacts’ traceability relationship and

these approaches are static impact analysis techniques. For run-time information,

dynamic impact analysis technique was used to determine change impact (Xiaoxia

Ren et al., 2005).

Visualization method is used to describe software artifacts’ location in CIA.

Visualization will show potential impact prior to changes. This method describes the

potential relationship between artifacts. The visualization could help management

and developer team to determine the action in time scheduling, cost estimation and

human resource decision-making. Visualization could be made available through

static program structure and dynamic behaviour. Static program structure can be

analyzed based on programming code and dynamic behaviour, which are done

through execution. This research is focused on static program structure based on

programming code. The software structure visualization is useful to analyse software

system, and it can be helpful in finding interactions or relationship between

components in programming code.

Program or software understanding is a method to understand the software

aided by maintenance system tools. There are several software tools available in the

market, such as the CodeSurfer and Rigi, used as program understanding tools

(Anderson and Zarins, 2005). Both of those tools use visualization method as a

support for program understanding. There are others who claim that their tools can

validate and check consistency of software. Some visualization features are directly

linked to navigation and cross-reference that will be discussed in the next chapter.

However, only very few tools on change impact analysis are used to visualize

software traceability such as Rigi and CodeSurfer.

 4

1.3 Statement of the Problem

This study focuses on program understanding which is aided by CIA in using

visualization method as mentioned in section 1.2. The main question is, “How can a

software maintainers be estimated to better understand the software and estimate the

potential impact of the changes through visualization”

The sub questions of the main research question are as follow:

i. How to use visualization method to support program understanding of

change impact?

ii. What is the suitable visualization method which can be used to apply in

CIA based on object-oriented programming?

1.4 Objectives of the Study

The problem statement serves as a premise to establish a set of specific

objectives that will constitute major milestones of this research.

The objectives of this research are listed as follow:

1. To build an effective model that could support CIA approach using

visualization method to enhance program understanding and trace potential

impact easily.

2. To develop a prototype as a supporting tool in order to support the proposed

model and approach for verification of concept.

3. To demonstrate the practicality of the software CIA using visualization

method to support program understanding for traces potential impact.

 5

1.5 Scope of Work

Scope of work in this research includes the following:

1. A specific focus on change impact analysis approach using visualization

method that could enhance program understanding and trace potential impact.

2. For program understanding focus is made on object-oriented programming.

3. The software only applies to C++ programming language and UML class

diagram.

4. The research is limited to small legacy system only.

1.6 Importance of the Study

Many studies were done to investigate the proportional software maintenance

cost, in other words, the cost ratio of new development versus maintenance. The total

cost of system maintenance is estimated to comprise at least 50% of total life cycle

costs (Niessink and Van Vliet, 2000). Hence, to solve this problem, the developer

team needs to study a mechanism or model that could analyze change impact to trace

potential impact using visualization method to support program understanding. There

are some benefits when using CIA approach using visualization method (Lee, 1998):

1. To help the maintenance team to enhance their program understanding in

source code program.

2. To help the maintenance team to identify software work products affected by

software changes easily via diagram. Such analysis not only permits

evaluation of the consequences of planned changes, but it also allows trade-

offs between suggested software change approaches to be considered.

3. Greatly reduces the risks of embarking on a costly change because the cost of

unexpected problems generally increases due to late discovery.

 6

4. Can be used for planning changes, making changes, accommodating certain

types of software changes, and tracing through the effects of changes.

5. Can be used as a measure of the cost of a change. The more the change

causes other changes, the higher the cost is. Carrying out this analysis before

a change is made will allow an assessment of the cost of the change and help

management choose tradeoffs between alternative changes. It also allows

managers and engineers to evaluate the appropriateness of a proposed

modification. If a change that is proposed has the possibility of impacting

large, disjoint sections of a program, the change might need to be re-

examined to determine whether a safer change is possible.

6. Can be used to drive regression testing, i.e., to determine the parts of a

program that need to be re-tested after a change is made. Regression test is a

software maintenance activity that refers to any repetition of tests (usually

after software or data changes) intended to show that the software’s

behaviour is unchanged except as required by the change to the software or

data. To save work load, regression testing should retest only those parts that

are impacted by the changes.

7. Can also be used to indicate the vulnerability of critical sections of code. If a

procedure that provides critical functionality is dependent on many different

parts of a program, its functionality was susceptible to changes made in these

parts.

1.7 Thesis Outline

This thesis covers several discussions on specific issues associated to change

impact analysis using visualization method and to present understanding on how this

new research is carried out. The rest of the thesis is organized in the following

outline.

 7

Chapter 2: It discusses the literature review of software maintenance, change

impact analysis and visualization methods. A few areas of interest are identified

from which all the related issues, works and approaches are highlighted. This

chapter also discusses some techniques of visualization method. The discussion

on some existing tools that exist in the industry is also included in this chapter.

This leads to the improvement opportunities that form a basis to develop newly

proposed software of change impact analysis approach by using visualization

method.

Chapter 3: It provides a research methodology that describes the research design

and formulation of research problems and validation considerations. This chapter

leads to an overview of data gathering and analysis. It is followed by research

assumptions.

Chapter 4: This chapter discusses the detailed model of the proposed change

impact analysis approach using visualization method. A set of relationship and

visualization models are described. It is followed by some approaches and

mechanisms to achieve the model specifications.

Chapter 5: It presents the design and functionality of some developed tools to

support the software change impact analysis approach using visualization

method. This includes the implementation of the design and component tools.

Chapter 6: The software change impact analysis approach using visualization

method is evaluated for its effectiveness, usability and accuracy. The evaluation

criteria is based on user controlled experiment. This research performs evaluation

based on qualitative results that are collected based on user perception and

comparative study made on the existing models and approaches.

 8

Chapter 7: The description on research achievements, contributions and

conclusion of the thesis are presented in this chapter. This is followed by the

research limitations and suggestions for future work.

1.8 Summary

This research is focused on program visualization method that support change

impact analysis to enhance program understanding and trace potential impact easily.

This research also focused on object-oriented programming as the target legacy

system to implement visualization method. Hence, a model is built to implement

change impact analysis approach using visualization method and adapt it into the

prototype as a validation tool for the proposed model.

