

ENHANCEMENT OF RAPID OBJECT PROCESS FOR EMBEDDED SYSTEM

(ROPES) TO SUPPORT PATTERN ORIENTED DEVELOPMENT

MOHD ADHAM BIN ISA

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computer Science and Information Systems

University of Technology Malaysia

OCTOBER 2009

ACKNOWLEDGEMENT

In preparing this project report, I wish to express my sincere appreciation to my

supervisor Dr. Dayang Norhayati Binti Abang Jawawi for the guidance, advice and

encouragement during my studying. The support and suggestion that Dr. Dayang gives

inspired me to going through in this project.

I would like to thanks to Software Engineering Lab members in Universiti

Teknologi Malaysia for their helps and supports.

Finally my special thanks to my parent for their love and care especially my

beloved wife Mastura Md. Hassan and my beautiful daughter Elya Darwisyah for their

support and cheering me up at those difficult time.

ABSTRACT

The complexity of Embedded Real Time (ERT) software development represents

a challenging of analysing, designing and building ERT software. From this standpoint,

the complexity of ERT software development means a challenging to adapt all ERT

software requirements such as timing and resource constraints into its software lifecycle.

Against these claims, a wide range of software development methodologies have been

devised such as patterns. Patterns codify an effective solution for recurring problems that

allows software engineers to reuse. By applying patterns into ERT software

development, the complexity of ERT software development can be decreased and at the

same time promote high degree of reuse through software patterns. In this project, the

integrated Rapid Object Process for Embedded System (ROPES) and Pattern-oriented

Analysis and Design (POAD) methodology has been developed to represent a promising

way to build ERT software with software patterns reuse. To make the integrated

methodology more compelling and confirm the rules of patterns oriented modelling, the

integrated ROPES and POAD metamodel has been developed. The aim of the integrated

metamodel is to conform the correctness of the integrated methodology modelling rules

in term of pattern uses. In addition, the integrated ROPES and POAD software process

also has been built as the continuity to describe concrete integrated software

development process. To verify the correctness of the integrated metamodel, the

mapping process of Meta-Object Facility (MOF) using graph theory has been conducted.

The results of implementing the integrated metamodel and software process for

Feedback Control System (FCS) shows that the complexity of ERT software

development has been decreased besides promote software patterns reuse.

ABSTRAK

Pembangunan perisian Sistem Masa Nyata Terbenam (ERT) yang kompleks

menunjukkan keunikan menganalisa, merekabentuk dan membina perisian ERT.

Daripada ciri-ciri ini, pembangunan perisian ERT yang kompleks bermakna cabaran

untuk merealisasikan semua keperluan perisian ERT seperti masa and kekekangan

sumber keatas proses kitaran pembangunan perisiannya. Berpandukan kenyataan

tersebut, pelbagai metodologi pembangunan perisian telah diubah atau dinaiktaraf

sebagai contoh adalah corak. Corak memberikan penyelesaian yang efektif bagi

penyelesain masalah yang berulang serta membolehkan jurutera perisian menggunakan

semula kaedah ini bagi menyelesaikan masalah lain. Dengan mengaplikasikan

penggunaan corak keatas pembangunan perisian ERT, kerumitan prosesnya dapat

dikurangkan selain menggalakkan penggunaan semula corak. Di dalam projek ini,

gabungan Rapid Object Process for Embedded System (ROPES) dan Pattern-oriented

Analysis and Design (POAD) metodologi telah dibangunkan. Untuk menjadikan

gabungan kedua-dua metodologi ini lebih kukuh dan mengikut peraturan pembangunan

perisian berasaskan corak, gabungan metamodel telah dihasilkan. Matlamat utamanya

adalah untuk memastikan rekabentuk perisian ERT mengikut corak. Selain itu,

pembangunan proses perisian juga telah dibangunkan. Untuk memastikan gabungan

metamodel tepat, proses teori graf bersama Meta-Object Facility (MOF) telah dilakukan.

Hasil keputusan keatas pelaksanaan gabungan metamodel dan proses pembangunan

perisian menunjukan kerumitan pembangunan perisian ERT telah dikurangkan dan

penggunaan semula corak keatas rekabentuk perisian telah ditingkatkan.

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION OF THESIS STATUS

 SUPERVISOR DECLARATION

 TITLE PAGE i

 STUDENT DECLARATION ii

 ACKNOWLEDGEMENT iii

 ABSTRACT iv

 TABLE OF CONTENT vi

 LIST OF TABLE xi

 LIST OF FIGURE xii

 LIST OF ABBREVATION xv

 LIST OF APPENDIX xvi

1 PROJECT OVERVIEW

 1.1 Introduction 1

 1.2 Problem Background 4

 1.3 Problem Statement 6

 1.4 Project Aim 7

 1.5 Objectives 7

 1.6 Scopes 8

 1.7 Significance of the project 8

 1.8 Thesis Outline 9

2 LITERATURE REVIEW

 2.1 Introduction 10

 2.2 Component Based Software Engineering (CBSE) 11

 2.2.1 Software Component Model 11

 2.3 Component Oriented Development 13

 2.4 Pattern Oriented Development 16

 2.4.1 Software Pattern 17

 2.4.1.1 Analysis Pattern 18

 2.4.1.2 Design Pattern 19

 2.4.1.3 Programming Pattern 19

 2.4.2 Pattern Oriented Methodology 20

 2.4.2.1 Pattern Oriented Analysis and

Design (POAD)

21

 2.4.2.2 Pattern Driven Modelling and

Analysis (PDMA)

25

 2.4.2.3 Metamodel POAD+PECOS 26

 2.4.2.4 Design Pattern + CBSD 28

 2.4.2.5 Comparative Evaluation 29

 2.5 Embedded Real Time (ERT) System 30

 2.5.1 ERT System Methodology 31

 2.5.1.1 ROPES 32

 2.5.1.2 OCTOPUS/UML 34

 2.5.1.3 COMET 36

 2.5.1.4 MARMOT 38

 2.5.1.5 DESS 40

 2.5.1.6 Comparative Evaluation 43

 2.6 Discussion 45

3 RESEARCH METHODOLOGY

 3.1 Introduction 47

 3.2 The Software Engineering Research 48

 3.3 Research Framework and Process 49

 3.3.1 Problem Formulation 51

 3.3.2 Literature Review 51

 3.3.3 Integrated Metamodel POAD and ROPES 52

 3.3.4 Define and Design Software Process 53

 3.4 Feedback Control System (FCS) 54

 3.5 Summary 56

4 INTEGRATED ROPES AND POAD METAMODEL

 4.1 Introduction 57

 4.2 Metamodel 58

 4.2.1 UML Specification 59

 4.3 POAD Metamodel 60

 4.4 ROPES Metamodel 63

 4.5 Integrated POAD and ROPES Metamodel 66

 4.5.1 Mapping POAD to ROPES 66

 4.5.1.1 Mapping POAD Metamodel to

ROPES Metamodel

67

 4.5.1.2 Validation of the Integrated

ROPES and POAD Metamodel

72

 4.5.1.3 Mapping ROPES Process to

POAD Process

77

 4.5.1.4 Initial Result of POAD + ROPES

Development Process

79

 4.5.2 Summary 82

5 THE INTEGRATED ROPES AND POAD

SOFTWARE PROCESS

 5.1 Introduction 84

 5.2 Software Process Engineering Process (SPEM) 85

 5.3 The Process Model 86

 5.3.1 Method Content 88

 5.3.1.1 Role Definition 89

 5.3.1.2 Work Product Definition 91

 5.3.1.3 Task Definition 93

 5.3.2 Process Content 94

 5.3.2.1 Analysis Process 97

 5.3.2.2 Design Process 102

 5.4 Discussion On The Proposed Software Process 107

 5.5 Comparative Evaluation on Pattern Oriented

Development

108

6 ANALYSIS AND DESIGN OF FEEDBACK

CONTROL SYSTEM

 6.1 Introduction 111

 6.2 Analysis Phase 111

 6.2.1 Requirement Analysis 112

 6.2.1.1 Main Use Case 113

 6.2.1.2 Use Case Behaviour 114

 6.2.1.3 Use Case Text 114

 6.2.1.4 Sequence Diagram 117

 6.2.1.5 Statechart 118

 6.2.1.6 Pattern Selection 120

 6.2.2 System Analysis 122

 6.2.3 Object Analysis 123

 6.2.3.1 Object Structural 124

 6.2.3.2 Object Behaviour 126

 6.2.4 Analysis Result Summary 128

 6.3 Design Phase 129

 6.3.1 Architectural Design 129

 6.3.1.1 Component View 130

 6.3.1.2 Deployment View 131

 6.3.1.3 Pattern Level Diagram 132

 6.3.1.4 Pattern Level with Interface

Diagram

134

 6.3.2 Mechanistic Design 135

 6.3.2.1 Design Pattern Internal Class 135

 6.3.2.2 Refined Class Diagram 138

 6.3.2.3 Sequence Diagram 141

 6.3.2.4 Statechart Diagram 142

 6.3.3 Detailed Design 145

 6.3.4 Design Result Summary 146

 6.4 Summary and Discussion 147

7 DISCUSSION AND FUTURE WORK

 7.1 Introduction 149

 7.2 Summary 150

 7.3 Project Contribution 151

 7.4 Future Work 152

REFERENCES 154

Appendix A 158-176

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Comparative of Pattern-Oriented Methodology 29

2.2 Comparative Evaluation of ERT System

Development Methodology

44

3.1 Summary of research process 54

4.1 Metamodelling four-layer architecture 59

4.2 POAD Artefacts produced vs UML Meta model 61

4.3 Artefacts produced in ROPES Methodology 64

4.4 Mapping POAD to ROPES Metamodel 68

4.5 ROPES and POAD Development Phase Mapping 78

5.1 Comparative Evaluation on Pattern Oriented

Development Methodology

109

6.1 Pattern Selection Analysis 121

6.2 Subsystem Tasks 123

6.3 FCS Transaction Objects 124

6.4 Subsystem Objects 125

6.5 Patterns Package 132

6.6 Pattern Internal Classes 136

6.7 Refined FCS Class Diagrams Summary 139

6.8 Statechart Diagram 143

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 The CBSD Process (Sommerville, 2004) 14

2.2 V development process (Crnkovic, 2003) 15

2.3 Y development process (Fernando, 2005) 16

2.4 POAD Development Phase (Yacoub and Ammar,

2004)

22

2.5 Process in Analysis Phase (Yacoub and Ammar,

2004)

22

2.6 Process in Design Phase (Yacoub and Ammar, 2004) 23

2.7 Process in Design Refinement Phase (Yacoub and

Ammar, 2004)

24

2.8 Software Process for Integrated POAD and PECOS

(Jawawi, 2005)

27

2.9 CBSD Process Using Design Pattern (Yau and Dong,

2000)

28

2.10 ROPES Development Phases (Douglass, 1999) 33

2.11 Octopus/UML System Development Pattern 35

2.12 COMET System Development (Gomaa, 2001) 37

2.13 MARMOT Development Process and Component

Meta model (Christian et. all., 2007)

39

2.14 DESS Workflow Vs (Stefan et. all., 2001) 41

2.15 Realization Workflow (Stefan et. al., 2001) 42

2.16 Validation and Verification Workflow (Stefan et. al.,

2001)

42

2.17 Requirement Management Workflow (Stefan et. al.,

2001)

43

3.1 Research Framework 50

3.2 Block diagram for feedback control system 55

4.1 POAD Meta model 62

4.2 Enhancement of POAD Meta model (Jawawi, 2006) 63

4.3 ROPES Meta model 65

4.4 ROPES + POAD Metamodel 71

4.5 MOF Graph 73

4.6 Graph for The integrated ROPES and POAD

metamodel

74

4.7 Equation (3) and (4) Mapping 77

4.8 ROPES + POAD Development Process 80

5.1 Process Model Framework 86

5.2 Details of Process Content and Method Content

Elements

88

5.3 Roles Definition for ROPES+POAD Process Model 90

5.4 Analysis Work Product Definition for

ROPES+POAD Process Model

91

5.5 Design Work Product Definition for ROPES+POAD

Process Model

92

5.6 Task Definition for ROPES+POAD Process Model 93

5.7 Process of Flow of the Integrated ROPES and POAD

Software Process

96

5.8 Analysis Process for ROPES+POAD Process Model 97

5.9 Requirement Analysis Task Use Step 98

5.10 Pattern Selection: Pattern Selection Process Step 99

5.11 System Analysis Task Use Step 100

5.12 Object Analysis Task Use Step 101

5.13 Design Process for ROPES+POAD Process Model 102

5.14 Architectural Design Task Use Step 103

5.15 Design Pattern Modification Process Flow 104

5.16 Mechanistic Design Task Use Step Process 105

5.17 Design Pattern Internal Class Process Flow 105

5.18 Detailed Design Task Use Step Process 106

6.1 FCS Use Case 113

6.2 UC-00 115

6.3 Configure Use Case Sequence Diagram 117

6.4 Error Calculation Statechart 119

6.5 Collect Data Statechart 120

6.6 FCS Subsystem Composition 122

6.7 Subsystem Diagram 126

6.8 FFStrategy Object Statechart 127

6.9 Component View in FCS 130

6.10 Deployment View of FCS 131

6.11 Pattern Level Diagram in ErrorCalculation

Subsystem

133

6.12 Pattern Level Diagram with Interface for

ErrorCalculation Subsystem

134

6.13 FCS Class Diagram with Patterns 137

6.14 FCS Refined Class Diagram 141

6.15 Error Calculation Sequence Diagram 142

6.16 Plant Class Statechart 144

6.17 Plant Statechart Simulation Result 145

LIST OF ABBREVIATIONS

CBSE Component Based Software Engineering

CBSD Component Based Software Development

COMET Concurrent Object Modelling and Architectural Design Method

DESS Software Development Process for Real Time Embedded Software

System

EJB Enterprise Java Bean

ERT Embedded Real Time

FCS Feedback Control System

MARMOT Method for Component-based Real Time Object Oriented

Development and Testing

MOF Meta Object Facility

OOA Object Oriented Analysis

OOD Object Oriented Design

OCL Object Constraint Language

OMG Object Management Group

PDMA Pattern Driven Modelling and Analysis

PECOS Pervasive Component System

POAD Pattern Oriented Analysis and Design

POSA Pattern Oriented Software Architecture

ROPES Rapid Object Process for Embedded System

SOF Special Octopus Feature

SPEM Software Process Engineering Modelling

UML Unified Modelling Language

LIST OF APPENDIX

APPENDIX TITLE PAGE

A Analysis and Design of FCS 158

CHAPTER 1

PROJECT OVERVIEW

1.1 Introduction

The necessity of the complex systems was felt with the demand from the large

scale company or requirement. For the last fifty years, software systems have become

more complex and larger. Following the traditional approaches which is developed a

system from scratch eventually resulted the problems like failure to meet customer

requirements, budget constraint and extend deadline. Then, in order to overcome those

problems, it was realized that the software reusability is the essential factors that

contributing of minimizing the existing problems. Software reusability allows parts of

software component to be renewed or replaced by existing components. Thus, software

reusability helps software developers to concentrate on adding more complex system

functionalities rather than focusing on developing basic components. Here the concept

of software reusability was constructed which eventually creating the software

development methodology called Component Based Software Engineering (CBSE).

Component Based Software Engineering (CBSE) is the methodology that

ensuring the improvement of the software quality, increasing software productivity,

effective management for complex software and wider range of usability (Crnkovic,

2003). CBSE main principles are building the systems from the existing and selecting

components within the suitable software architecture. The software components are

composed together with the specific glue code and composition technique. Szyperski

(2002) defines a component is a unit of composition with specified interfaces and

explicit context dependencies only. A software component can be deployed

independently and is subjected to compose by a third party. Thus, a component must

have interface and hiding information that enable to be composed each other. JavaBeans,

EJB, COM, Koala, PECOS (Nierstransz et al., 2002) and ADLs (Clements, 1996) are the

examples of component technologies. In addition, a component is designed to solve

particular problems and resembles like a pattern that forces the developers to use

predefined process or design to be used in software development process.

A pattern was introduced into the software development process as a means of

manipulating hard-earned experience from the previous problems (Kotonya Hutchinson,

2005). Yacoub and Ammar (2004) defines a pattern as problems that frequently occurs

in software development and then defines the explicit solution that it can be reused while

Fernandez and Yuan (2000) defines a pattern is a recurring combination of meaningful

units that occur in some context. Then, a pattern is enabling software engineer to capture

the software requirements from early phases. Patterns can be divided into analysis

pattern, design pattern and programming pattern. Analysis pattern occurs at the early

phases and known as a group of concepts that representing a common construction in

business modelling (Fowler, 1997). Design pattern is more matured than analysis

pattern (Sesera, 2000). Design pattern is a design solution to a frequently recurring

design problem in a given application domain (Yacoub et al., 2000).

There are many software development methodology based on patterns were

introduced such as POAD, PDMA, and Design pattern + CBSD. These methodologies

use software patterns as its core specification. POAD is one of the methodologies that

develop a system from the analysis phases until design phases by using software

patterns. Thus, POAD is a structural approach of software development rather than

behaviour approach (Yacoub and Ammar, 2004). In addition, POAD methodology leads

into the bridging the gaps between software abstraction into software designs by

combining software patterns artefacts into pattern-oriented software development. By

the existing of various software patterns, there is a growing demand of searching a new

and cost effective of software development paradigm. Then, one of the most promising

solutions today is the pattern-oriented development.

A pattern-oriented development is an approach to deal with the complexity of

software development. The complexity of the software development usually comes from

the extra requirements such as timing and resource constraints. By applying pattern-

oriented development in the software development process, the skeleton of the software

can be perceived up-front by using knowledge of previously patterns. Moreover, it will

give the traceability of software artefacts from the analysis to design. Moreover, there

are a few advantages of using pattern in software development. The advantages are 1)

the reuse experienced, 2)the development of standards types of solution, and 3)a

normalized mechanism for abstracting form multiple example and method for

categorizing problems (Kotonya and Hutchinson, 2005). The effectiveness of

minimizing the complexity of software development can be realized by composing

software patterns into the software development process.

The complexity of software development process is known as the most critical

stage in the process of building software. Indeed, this is due to the complexity of the

embedded real-time software requirements as a solution for ever more demanding

applications required. ERT software requirements such as timing and resource

constraints represent a promising point of the complexity of ERT software product. Most

of the embedded systems are characterized as real time systems, which consist of real

time properties such as response time and worse case execution time (Crnkovic, 2005).

Consequently, the complexity of the demanding ERT requirements will be likely is

resulted the complexity of ERT software development.

The motivation of using software patterns in ERT software developments is

twofold. Firstly, despite ERT software are being touted as a complex software due to its

requirements, the most compelling form of ERT software would be to show how

adopting software patterns can decrease the complexity of ERT software development to

some standard of software process. This is clearly the major issue which this project

seeks to address. Secondly, because of the implementation of software patterns can

decrease the complexity of ERT software development to some degree that will have the

major impact of the degree reuse of software patterns. To some extent, the high degree

reuse of software patterns will decrease the complexity of the ERT software

development. Moreover, this is envisioned that CBSE will be the suitable solution to

inspire software reuse into ERT system with consideration of reusable, interoperable, up

gradable and reliable features. Thus, patterns are promoting the precise planning and

systematic software development process by using software pattern into ERT system

development

1.2 Problem Background

Nowadays, the use of software in the different domains is highly demanded such

as web application, windows environment as well as embedded real time system (ERT).

ERT system is a system that combines both hardware and software. The hardware

component of the system tries to persuade the timing constraints while software reduces

the overall cost and design flexibility (Jawawi, 2003). The interoperating of those

elements affects the complexity of the software development. ERT software

developments are crucial since the combination both hardware and software can lead

into the complexity of the process. All of this events must have a systematic process in

order to reduce the time and cost of development.

The design pattern is the defined solution of the hard-earned experience from the

previous software development (Kotonya and Hutchinson, 2005). Thus, the component

based is mechanism of software development which are the component is composed

together in order to build the real time system (Zhang and Yunsheng, 2007). The uses of

pattern and component together could reduce the complexity of the software process.

This is because of the use of pattern for the whole process glued together with the

component could reduce the time and cost of software development.

There a several methodologies that have been introduced focusing on component

based and pattern in the software developments. Pattern oriented analysis and design

(POAD) is a methodology that constraint on the uses of components and patterns from

the analysis stages until the design (Yacoub and Ammar, 2004). However, this

methodology only addresses to the general domain and does not specific for the ERT

system. Rapid object-oriented process for embedded system (ROPES) focusing on the

ERT software developments and capturing both system structural and behavioural

elements (Douglass, 1999). However, ROPES does not address the use of patterns

systematically in software development process. The patterns are occurs only at the

design stages as well as does not have the systematic approaches in term of selecting and

adopting the patterns. By considering the advantages and disadvantages of both

methodologies, the combination of POAD and ROPES that focuses on ERT software

development could reduce the complexity of ERT software development and at the same

time, can ensure the high degree reuse of software patterns.

1.3 Problem Statement

POAD methodology defined the process of analysis and design by using the

selected pattern and consistently defined the pattern for the whole process. ROPES

methodology defined the complex step of software development for ERT but there are

no systematic approaches of using the pattern for each process. To promote the

relevance of pattern-oriented for analysis and design level for the ERT domain, the

consideration falls into ROPES and POAD methodologies. Instead of developing the

new methodologies from the scratch, the hybrid methodologies for ROPES and POAD

can ensure the use of pattern subject to the ERT domain. Therefore, this project will

define the Metamodel and software process for the integrated ROPES and POAD. An

integrated Metamodel for both methodologies represents the abstractions and semantics

in system modelling in order to apply the use of patterns in ERT software development

process and then constructed it in software process in order to get well-defined software

development process. However, there are some problems need to be considered before

the integrated POAD and ROPES metamodel can be realized. The problem arises are

mapping process between both models, defining new development process for integrated

metamodel and selecting a tool for supporting the integrated metamodel. All of this

problems need to be solved in order to get suitable integrated metamodel and software

process.

Therefore, this study proposes the integrated ROPES and POAD methodology to

enable pattern oriented development for ERT domain. Hence, it may decrease the

complexity of ERT software development and promote high degree of reuse in software

patterns.

1.4 Project Aim

The aim of the project is to integrate POAD and ROPES methodologies. The

motivation is to propose the use of patterns by using POAD methodology into the ERT

software development in order to discover the weaknesses of the ROPES methodology.

Indeed, ROPES weaknesses compromise non-systematic use of patterns in its software

development lifecycle. Therefore, the integrated ROPES and POAD metamodel is

proposed and consequently defines the software process for the integrated metamodel.

To show the applicability of the proposed integrated methodology, the implementation

of analysis and design into selected case study of small scale ERT system will be

implemented by using selected modelling tool.

1.5 Objectives

The objectives of the study are:

i. To study and propose the metamodel for integrated POAD and

 ROPES methodologies.

ii. To define the software process for integrated POAD and ROPES

 Metamodel using Software Process Engineering Metamodel

 (SPEM).

iii. To demonstrate the applicability of the proposed process by using the

 I-Logix Rhapsody tool into selected case study.

1.6 Scopes

The scopes of the study are:

i. The analysis and design of Pattern oriented analysis and design

 (POAD) methodology.

ii. The analysis and design of Rapid Oriented Process for Embedded

 System (ROPES) methodology will only consider to demonstrates the

 pattern level analysis and modelling into the case study.

iii. The implementation only for small scale of embedded real time

 (ERT) system.

iv. The I-Logix Rhapsody tool is selected to support the integrated

POAD and ROPES metamodel realization because I-Logix Rhapsody

tool support UML 2.0. Focusing on application engineering and assume

the components are already exists.

1.7 Significance of the project

The significance of this project is to promote the software pattern reuse in ERT

software development. The study concentrates on a deep understanding of POAD and

ROPES methodologies. Based on that knowledge, the integrated Metamodel will be

introduced that supports the use of pattern on ROPES methodology. By providing the

proposed Metamodel, the software process can be defined. The advantages that can be

derived from this study are to motivate the use of pattern besides to enhance the ERT

software development process in order to maximize the quality and minimize the cost of

development.

1.8 Thesis Outline

Chapter 2 discusses the pattern-oriented development methodologies and ERT

software development methodologies. The relationship between those methodologies

with the uses of pattern and component in software development are reviewed.

In Chapter 3, the research methodology is conducted in achieving the project

objectives and scopes. One case study is used that involving small scale ERT system.

Chapter 4 defines the construction of the integated ROPES and POAD

metamodel and validation process of the proposed metamodel by using Meta-Object

Facility (MOF) and graph theory.

Chapter 5 describes the definition of the integrated ROPES and POAD software

process into the formal form to enrich the systematic way of system development

process.

Chapter 6 purposes are to prove the applicability of the integrated ROPES and

POAD metamodel and software process. The proven process of proposed software

process heavily relied on case study. The Feedback Control System was selected to be

used for the proven process.

REFERENCES

Angelov, C., Sierszecki, K., & Marian, N. (2008). Component-Based Design of

Embedded Software: An Analysis of Design Issues. In Lecture Notes in Computer

Science (pp. 1-11). Berlin: Springer Berlin / Heidelberg.

Baelen, S. V., Gorinsik, J., & Wills, A. (2001). The DESS Methodology. Deliverable

D.1 Version 01 - Public .

Buschman, F., Meunier, R., Rohnert, H., & Sommerlab, P. (1996). Pattern Oriented

Software Architecture:A System of Patterns. John Wiley and Sons.

Bunse, C., Gross, H. G., & Peper, C. (2008). Embedded System Construction –

Evaluation of Model-Driven and Component-Based Development Approaches.

MODELS`08 Workshop ESMDE .

Clements, P. (1996). A Survey of Architecture Description Languages. In Proceedings

of the Eighth International Workshop on Software Specification and Design (pp. 16-

25). Paderborn, Germany: ACM.

Coad, P. (1997). Object Models:Strategies, Patterns and Applications. Yourdon Press.

Crankovic, I. (2003). Component based Software Engineering- New Challenges in

Software Development. 25th International Conference on Information Technology

Interfaces, (pp. 9-18).

Crnkovic, I. (2005). Component-based Software Engineering for Embedded Systems.

ICSE’05 ACM .

Crnkovic, I., Stig, L., & Michel, C. (2005). Component Based Development Process and

Component Lifecycle. Journal of Computing and Information technology , 321-327.

Demicheil, L., Yalcinalp, L., & Krishnan, S. (2001). Enterprise JavaBeans Specification

Version 2.0.

Domiczi, E., Farfarakis, R., & Jürgen, Z. (2000). Octopus/UML Artifact Reference

Version 1.3.

Domiczi, E., Rallis, F., & Jürgen, Z. (2000). Release of Octopus/UML. Nokia Research

Center .

Dong, J., Alencar, P. S., & Cowan, D. D. (2004). A behavioral analysis and verification

approach to pattern-based design composition. Software and Systems Modeling ,

262-272.

Douglass, B. P. (1999). Doing Hard Time : Developing Real-Time System Using UML

Objects, Framework and Patterns. Addison-Wesley.

Felix, L., & Narashima, B. (2003). Object-Oriented Analysis using Patterns: A Review

and Research Opportunities.

Fernandez, E. B., & Yuan, X. (2000). Semantic Analysis Patterns.

Fernando, L. C. (2005). A New Component Based Life Cycle Model. Journal of

Computer science , 76-82.

Finkelstein, A. (2000). The Future of Software Engineering. Proceedings of 22nd

International Conference on Software Engineering , ACM Press.

Fowler, M. (1997). Analysis Patterns, Reusable Object Models. Addison Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns, Elements of

Reusable Object Oriented Software. Addison-Wesley.

Garlan, D., & Shaw, M. (1996). Software Architecture: Perspectives on an Emerging

Discipline. Prentice Hall.

Gomaa, H. (2001). Designing Concurrent, Distributed and Real Time Applications with

UML. Addison-Wesley.

Harb, D., Bouhours, C., & Leblanc, H. (2009). Using an Ontology to Suggest Software

Design Patterns Integration. In MODELS 2008 Workshops, LNCS 5421 (pp. 318-

331). Berlin: Springer-Verlag Berlin Heidelberg.

Heinenam, G., & Councill, W. (2001). Component Based Software Engineering.

Addison-Wesley.

Jawawi, D. (2006). A Framework for Component-Based Reuse for Autonomous Mobile

Robot Software. PhD Thesis: Universiti Teknologi Malaysia.

Jawawi, D. (2003). Embedded Real Time System:Technical Report. Universiti Teknologi

Malaysia.

Jawawi, D., Mohamad, R., Deris, S., & Mamat, R. (2005). Transforming Pattern-

Oriented Models into Component-Based Models for Embedded Real Time Software

Development. MySEC'05 .

Jerry, O. (2007). Pattern Oriented Analysis and Design Theory.

Konrad, S., & Cheng, B. H. (2005). Real-time Specification Patterns. Proceedings of the

27th International Conference of Software Engineering (ICSE05) .

Kotonya, G., & Hutchinson, J. (2005). Pattern and Component Oriented System

Development. Proceeding of the 2005 31st EUROMICRO Conference on Software

Engineering and Advanced Applications .

Lau, K. K., & Wang, Z. (2005). A Taxonomy of Software Component Models.

Proceeding of the 2005 31st EUROMICRO Conference on Software Engineering

and Advanced Applications .

Luigi, L., & Bianco, V. d. (2000). Software Development Process for Real-Time

Embedded Software Systems (DESS). Deliverable D5.2/D5.3/D5.4 DESS process

modeling:methodology and support .

Meyer, B. (2003). The grand Challenge of Trusted Components. Proceedings ICSE 2003

IEEE , 660-667.

Natale, M. D. (2008). Design and Development of Component-Based Embedded

Systems for Automotive Applications. In Lecture Notes in Computer Science,

Reliable Software Technologies – Ada-Europe 2008 (pp. 15-29). Berlin: Springer

Berlin / Heidelberg.

Nicola, J., Mayfield, M., & Abney, M. (2001). Streamlined Object Modelling: Patterns,

Rules and Implementation. Upper Saddle River, N.J: Prentice Hall.

Nierstrasz, O., Grenssler, T., & Schonhage, B. (2002). Components for Embedded

Software. The PECOS Approach CASES .

OMG. (2007). UML Superstructure Specification. http://www.omg.org.

http://www.omg.org/

Rajasree, M. S., Jithendra, P., Reddy, K., & Janakiram, D. (2001). Pattern Oriented

Software Development: Moving Seamlessly from Requirements to Architecture.

Riehle, D., & Zullighoven, H. (1996). Understanding and Using Patterns in Software

Development. Theory and Practice of Object System , Vol, 2(1) 13-33.

Sesera, L. (2000). Analysis Pattern. SOFSEM'2000 Lecture Notes in Computer Science

Series

Sesera, L. (2001). Hierarchical Patterns:A Way to Organize Analysis Patterns.

SYSTEMATICS, CYBERNATICS AND INFORMATICS , Volume 3.

Sommerville, L. (2004). Software Engineering 7th Edition. Addison-Wesley.

Staines, A. S. (2007). A Comparison of Software Analysis and Design Methods for Real

Time Systems. Proceedings of World Academy of Science, Engineering and

Technology, (p. Volume 21).

Szyperski, C. (2002). Component Software: Beyong Object Oriented Programming.

Addison-Wesley.

Tichy, M. (2006). Pattern-Based Synthesis of Fault-Tolerance Embedded Systems.

SIGSOFT’06/FSE14 ACM .

Wan Zulkifeli, W. R. (2008). Kajian Penggunaan Corak Rekabentuk Masa Nyata

Dalam Pembangunan Sistem Masa Nyata Berasaskan Metodologi Pattern Oriented

Analysis and Design (POAD) dan Rapid Object Process for Embedded System

(ROPES). Malaysia.

Yacoub, S. M., Xue, H., & Ammar, H. H. (2000). Automating the Development of

Pattern Oriented Designs for Application Specific Software Systems. Proceeding

IEEE .

Yacoub, S., & Ammar, H. H. (2004). Pattern Oriented Analysis and Design:Composing

Patterns to Design Software System. Addison Wesley.

Yau, S., & Dong, N. (2000). Integration in Component based Software Development

Using Design Pattern. Proceeding IEEE .

Zhang, J. Z., & Yunsheng. (2007). Component-oriented Modeling and Design of

Hierarchical Hybrid Control System. IEEE International Conference on Control

and Automation Guangzhou, CHINA .

