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ABSTRACT 

 

 

 

 

 

The complexity of Embedded Real Time (ERT) software development represents 

a challenging of analysing, designing and building ERT software. From this standpoint, 

the complexity of ERT software development means a challenging to adapt all ERT 

software requirements such as timing and resource constraints into its software lifecycle. 

Against these claims, a wide range of software development methodologies have been 

devised such as patterns. Patterns codify an effective solution for recurring problems that 

allows software engineers to reuse. By applying patterns into ERT software 

development, the complexity of ERT software development can be decreased and at the 

same time promote high degree of reuse through software patterns. In this project, the 

integrated Rapid Object Process for Embedded System (ROPES) and Pattern-oriented 

Analysis and Design (POAD) methodology has been developed to represent a promising 

way to build ERT software with software patterns reuse. To make the integrated 

methodology more compelling and confirm the rules of patterns oriented modelling, the 

integrated ROPES and POAD metamodel has been developed. The aim of the integrated 

metamodel is to conform the correctness of the integrated methodology modelling rules 

in term of pattern uses. In addition, the integrated ROPES and POAD software process 

also has been built as the continuity to describe concrete integrated software 

development process. To verify the correctness of the integrated metamodel, the 

mapping process of Meta-Object Facility (MOF) using graph theory has been conducted. 

The results of implementing the integrated metamodel and software process for 

Feedback Control System (FCS) shows that the complexity of ERT software 

development has been decreased besides promote software patterns reuse. 



 

 

 

 

 

ABSTRAK 

 

 

 

 

 

Pembangunan perisian Sistem Masa Nyata Terbenam (ERT) yang kompleks 

menunjukkan keunikan menganalisa, merekabentuk dan membina perisian ERT. 

Daripada ciri-ciri ini, pembangunan perisian ERT yang kompleks bermakna cabaran 

untuk merealisasikan semua keperluan perisian ERT seperti masa and kekekangan 

sumber keatas proses kitaran pembangunan perisiannya. Berpandukan kenyataan 

tersebut, pelbagai metodologi pembangunan perisian telah diubah atau dinaiktaraf 

sebagai contoh adalah corak. Corak memberikan penyelesaian yang efektif bagi 

penyelesain masalah yang berulang serta membolehkan jurutera perisian menggunakan 

semula kaedah ini bagi menyelesaikan masalah lain. Dengan mengaplikasikan 

penggunaan corak keatas pembangunan perisian ERT, kerumitan prosesnya dapat 

dikurangkan selain menggalakkan penggunaan semula corak. Di dalam projek ini, 

gabungan Rapid Object Process for Embedded System (ROPES) dan Pattern-oriented 

Analysis and Design (POAD) metodologi telah dibangunkan. Untuk menjadikan 

gabungan kedua-dua metodologi ini lebih kukuh dan mengikut peraturan pembangunan 

perisian berasaskan corak, gabungan metamodel telah dihasilkan. Matlamat utamanya 

adalah untuk memastikan rekabentuk perisian ERT mengikut corak. Selain itu, 

pembangunan proses perisian juga telah dibangunkan. Untuk memastikan gabungan 

metamodel tepat, proses teori graf bersama Meta-Object Facility (MOF) telah dilakukan. 

Hasil keputusan keatas pelaksanaan gabungan metamodel dan proses pembangunan 

perisian menunjukan kerumitan pembangunan perisian ERT telah dikurangkan dan 

penggunaan semula corak keatas rekabentuk perisian telah ditingkatkan. 
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CHAPTER 1 

 

 

 

 

 

PROJECT OVERVIEW 

 

 

 

 

 

1.1 Introduction 

 

 

The necessity of the complex systems was felt with the demand from the large 

scale company or requirement. For the last fifty years, software systems have become 

more complex and larger. Following the traditional approaches which is developed a 

system from scratch eventually resulted the problems like failure to meet customer 

requirements, budget constraint and extend deadline. Then, in order to overcome those 

problems, it was realized that the software reusability is the essential factors that 

contributing of minimizing the existing problems. Software reusability allows parts of 

software component to be renewed or replaced by existing components. Thus, software 

reusability helps software developers to concentrate on adding more complex system 

functionalities rather than focusing on developing basic components.  Here the concept 

of software reusability was constructed which eventually creating the software 

development methodology called Component Based Software Engineering (CBSE). 

 



Component Based Software Engineering (CBSE) is the methodology that 

ensuring the improvement of the software quality, increasing software productivity, 

effective management for complex software and wider range of usability (Crnkovic, 

2003). CBSE main principles are building the systems from the existing and selecting 

components within the suitable software architecture. The software components are 

composed together with the specific glue code and composition technique. Szyperski 

(2002) defines a component is a unit of composition with specified interfaces and 

explicit context dependencies only. A software component can be deployed 

independently and is subjected to compose by a third party. Thus, a component must 

have interface and hiding information that enable to be composed each other. JavaBeans, 

EJB, COM, Koala, PECOS (Nierstransz et al., 2002) and ADLs (Clements, 1996) are the 

examples of component technologies. In addition, a component is designed to solve 

particular problems and resembles like a pattern that forces the developers to use 

predefined process or design to be used in software development process.  

 

 

A pattern was introduced into the software development process as a means of 

manipulating hard-earned experience from the previous problems (Kotonya Hutchinson, 

2005). Yacoub and Ammar (2004) defines a pattern as  problems that frequently occurs 

in software development and then defines the explicit solution that it can be reused while 

Fernandez and Yuan (2000) defines a pattern is a recurring combination of meaningful 

units that occur in some context. Then, a pattern is enabling software engineer to capture 

the software requirements from early phases. Patterns can be divided into analysis 

pattern, design pattern and programming pattern.  Analysis pattern occurs at the early 

phases and known as a group of concepts that representing a common construction in 

business modelling (Fowler, 1997).  Design pattern is more matured than analysis 

pattern (Sesera, 2000). Design pattern is a design solution to a frequently recurring 

design problem in a given application domain (Yacoub et al., 2000).  

 

 



There are many software development methodology based on patterns were 

introduced such as POAD, PDMA, and Design pattern + CBSD. These methodologies 

use software patterns as its core specification. POAD is one of the methodologies that 

develop a system from the analysis phases until design phases by using software 

patterns. Thus, POAD is a structural approach of software development rather than 

behaviour approach (Yacoub and Ammar, 2004). In addition, POAD methodology leads 

into the bridging the gaps between software abstraction into software designs by 

combining software patterns artefacts into pattern-oriented software development. By 

the existing of various software patterns, there is a growing demand of searching a new 

and cost effective of software development paradigm. Then, one of the most promising 

solutions today is the pattern-oriented development.  

 

 

A pattern-oriented development is an approach to deal with the complexity of 

software development. The complexity of the software development usually comes from 

the extra requirements such as timing and resource constraints. By applying pattern-

oriented development in the software development process, the skeleton of the software 

can be perceived up-front by using knowledge of previously patterns. Moreover, it will 

give the traceability of software artefacts from the analysis to design. Moreover, there 

are a few advantages of using pattern in software development. The advantages are 1) 

the reuse experienced, 2)the development of standards types of solution, and 3)a 

normalized mechanism for abstracting form multiple example and method for 

categorizing problems (Kotonya and Hutchinson, 2005). The effectiveness of 

minimizing the complexity of software development can be realized by composing 

software patterns into the software development process. 

 

 

The complexity of software development process is known as the most critical 

stage in the process of building software. Indeed, this is due to the complexity of the 

embedded real-time software requirements as a solution for ever more demanding 

applications required. ERT software requirements such as timing and resource 



constraints represent a promising point of the complexity of ERT software product. Most 

of the embedded systems are characterized as real time systems, which consist of real 

time properties such as response time and worse case execution time (Crnkovic, 2005). 

Consequently, the complexity of the demanding ERT requirements will be likely is 

resulted the complexity of ERT software development.  

 

 

The motivation of using software patterns in ERT software developments is 

twofold. Firstly, despite ERT software are being touted as a complex software due to its 

requirements, the most compelling form of ERT software would be to show how 

adopting software patterns can decrease the complexity of ERT software development to 

some standard of software process. This is clearly the major issue which this project 

seeks to address. Secondly, because of the implementation of software patterns can 

decrease the complexity of ERT software development to some degree that will have the 

major impact of the degree reuse of software patterns. To some extent, the high degree 

reuse of software patterns will decrease the complexity of the ERT software 

development. Moreover, this is envisioned that CBSE will be the suitable solution to 

inspire software reuse into ERT system with consideration of reusable, interoperable, up 

gradable and reliable features. Thus, patterns are promoting the precise planning and 

systematic software development process by using software pattern into ERT system 

development 

 

 

 

 

 

1.2 Problem Background 

 

 

Nowadays, the use of software in the different domains is highly demanded such 

as web application, windows environment as well as embedded real time system (ERT). 



ERT system is a system that combines both hardware and software. The hardware 

component of the system tries to persuade the timing constraints while software reduces 

the overall cost and design flexibility (Jawawi, 2003). The interoperating of those 

elements affects the complexity of the software development. ERT software 

developments are crucial since the combination both hardware and software can lead 

into the complexity of the process. All of this events must have a systematic process in 

order to reduce the time and cost of development.  

 

 

The design pattern is the defined solution of the hard-earned experience from the 

previous software development (Kotonya and Hutchinson, 2005). Thus, the component 

based is mechanism of software development which are the component is composed 

together in order to build the real time system (Zhang and Yunsheng, 2007). The uses of 

pattern and component together could reduce the complexity of the software process. 

This is because of the use of pattern for the whole process glued together with the 

component could reduce the time and cost of software development. 

 

 

There a several methodologies that have been introduced focusing on component 

based and pattern in the software developments. Pattern oriented analysis and design 

(POAD) is a methodology that constraint on the uses of components and patterns from 

the analysis stages until the design (Yacoub and Ammar, 2004). However, this 

methodology only addresses to the general domain and does not specific for the ERT 

system. Rapid object-oriented process for embedded system (ROPES) focusing on the 

ERT software developments and capturing both system structural and behavioural 

elements (Douglass, 1999). However, ROPES does not address the use of patterns 

systematically in software development process. The patterns are occurs only at the 

design stages as well as does not have the systematic approaches in term of selecting and 

adopting the patterns. By considering the advantages and disadvantages of both 

methodologies, the combination of POAD and ROPES that focuses on ERT software 



development could reduce the complexity of ERT software development and at the same 

time, can ensure the high degree reuse of software patterns.  

 

 

 

 

 

1.3 Problem Statement 

 

 

POAD methodology defined the process of analysis and design by using the 

selected pattern and consistently defined the pattern for the whole process. ROPES 

methodology defined the complex step of software development for ERT but there are 

no systematic approaches of using the pattern for each process. To promote the 

relevance of pattern-oriented for analysis and design level for the ERT domain, the 

consideration falls into ROPES and POAD methodologies. Instead of developing the 

new methodologies from the scratch, the hybrid methodologies for ROPES and POAD 

can ensure the use of pattern subject to the ERT domain. Therefore, this project will 

define the Metamodel and software process for the integrated ROPES and POAD. An 

integrated Metamodel for both methodologies represents the abstractions and semantics 

in system modelling in order to apply the use of patterns in ERT software development 

process and then constructed it in software process in order to get well-defined software 

development process. However, there are some problems need to be considered before 

the integrated POAD and ROPES metamodel can be realized. The problem arises are 

mapping process between both models, defining new development process for integrated 

metamodel and selecting a tool for supporting the integrated metamodel. All of this 

problems need to be solved in order to get suitable integrated metamodel and software 

process. 

  

 



Therefore, this study proposes the integrated ROPES and POAD methodology to 

enable pattern oriented development for ERT domain. Hence, it may decrease the 

complexity of ERT software development and promote high degree of reuse in software 

patterns.  

 

 

 

 

 

1.4 Project Aim 

 

 

The aim of the project is to integrate POAD and ROPES methodologies. The 

motivation is to propose the use of patterns by using POAD methodology into the ERT 

software development in order to discover the weaknesses of the ROPES methodology. 

Indeed, ROPES weaknesses compromise non-systematic use of patterns in its software 

development lifecycle. Therefore, the integrated ROPES and POAD metamodel is 

proposed and consequently defines the software process for the integrated metamodel. 

To show the applicability of the proposed integrated methodology, the implementation 

of analysis and design into selected case study of small scale ERT system will be 

implemented by using selected modelling tool.  

 

 

 

 

 

1.5 Objectives 

 

 

The objectives of the study are: 

 



i. To study and propose the metamodel for integrated POAD and  

                         ROPES methodologies. 

ii. To define the software process for integrated POAD and ROPES   

            Metamodel using Software Process Engineering Metamodel  

                        (SPEM). 

iii. To demonstrate the applicability of the proposed process by using the   

            I-Logix Rhapsody tool into selected case study. 

 

 

 

 

 

1.6 Scopes 

 

 

The scopes of the study are: 

 

i. The analysis and design of Pattern oriented analysis and design     

                         (POAD) methodology. 

ii. The analysis and design of Rapid Oriented Process for Embedded  

             System (ROPES) methodology will only consider to demonstrates the   

                         pattern level analysis and modelling into the case study. 

iii. The implementation only for small scale of embedded real time  

             (ERT) system. 

iv. The I-Logix Rhapsody tool is selected to support the integrated  

POAD and ROPES metamodel realization because I-Logix Rhapsody 

tool support UML 2.0. Focusing on application engineering and assume 

the components are already exists. 

 

 

 



1.7 Significance of the project 

 

 

The significance of this project is to promote the software pattern reuse in ERT 

software development. The study concentrates on a deep understanding of POAD and 

ROPES methodologies. Based on that knowledge, the integrated Metamodel will be 

introduced that supports the use of pattern on ROPES methodology. By providing the 

proposed Metamodel, the software process can be defined. The advantages that can be 

derived from this study are to motivate the use of pattern besides to enhance the ERT 

software development process in order to maximize the quality and minimize the cost of 

development.  

 

 

 

 

 

1.8 Thesis Outline 

 

 

Chapter 2 discusses the pattern-oriented development methodologies and ERT 

software development methodologies. The relationship between those methodologies 

with the uses of pattern and component in software development are reviewed. 

 

 

In Chapter 3, the research methodology is conducted in achieving the project 

objectives and scopes. One case study is used that involving small scale ERT system. 

 

 

Chapter 4 defines the construction of the integated ROPES and POAD 

metamodel and validation process of the proposed metamodel by using Meta-Object 

Facility (MOF) and graph theory. 



 

 

Chapter 5 describes the definition of the integrated ROPES and POAD software 

process into the formal form to enrich the systematic way of system development 

process. 

 

 

Chapter 6 purposes are to prove the applicability of the integrated ROPES and 

POAD metamodel and software process. The proven process of proposed software 

process heavily relied on case study. The Feedback Control System was selected to be 

used for the proven process.  
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