FURTHER DEVELOPMENT OF SHIP ADDED RESISTANCES IN HEAD WAVES

IWAN ZAMIL BIN MUSTAFFA KAMAL

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Marine Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2009

ABSTRACT

This paper presents the result of analysis of ship added resistances in head waves for 100 m product tanker model no 7698 by using experiment techniques and also theoritical predictions. The study was carried out with two main objetives; firstly to evaluate the difference and accuracy of added resistance prediction of the tanker between theoritical and model experiment. Secondly is to develop a computer program for the theoritical prediction calculation of added resistances in waves using FORTRAN 77. The paper begins with the literature review on ship added resistances in waves and focusing on the theoritical prediction namely the strip theory. This strip theory is used to determine the hydrodynamic coefficients and also the ship motions and finally this coefficients are used to predict the added resistance of a ship in waves. Meanwhile the program will be used to calculate the added resistance using momentum and energy method. Alternatively, a hydrodynamic software, namely Seakeeper® is used to obtain the result as to compared it with the experiment results. In addition, the relationship of the ship generated waves with the added resistances are studied as to see how one can link with the energy dissipated by the ship waves with the added resistances. Finally the paper declares the effectiveness and accuracy of each method used in the prediction of added resistances in waves.

ABSTRAK

Tesis ini mengemukakan keputusan kajian analisa rintangan tambahan kapal didalam gelombang seragam dari arah hadapan kapal. Kapal yang digunakan didalam ujikaji ini adalah kapal tangki produk model 7698. Ujikaji ini dijalankan secara ujikaji model mengunakan tangki tunda dan juga mengunakan kaedah-kaedah ramalan rintangan yang sedia ada. Kajian ini mengandungi dua (2) objektif utama; pertama ialah untuk mengkaji dan menilai sejauh mana ketepatan dan beza antara kaedah ramalan dengan ujikaji model. Kedua adalah untuk membangunkan dan menciptakan satu program komputer yang akan digunakan untuk mengira rintangan tambahan didalam gelombang mengunakan bahasa FORTRAN 77. Tesis ini dimulakan dengan pendekatan ilmiah tentang rintangan tambahan didalam gelombang dan menfokuskan ke arah kaedah-kaedah ramalan terutamanya kaedah yang dikenali sebagai 'strip theory'. Kaedah ' strip theory' ini akan digunakan untuk menentukan pekali-pekali hidrodinamik dan juga gerakan kapal dan dimana akhirnya pekali-pekali ini akan digunakan untuk menentukan rintangan tambahan didalam gelombang. Manakala program yang akan dibangunkan akan mengunakan kaedah momentum dan tenaga. Sebagai alternatif, satu perisian komputer hidrodinamik iaitu dikenali sebagai Seakeeper® akan digunakan untuk menghasilkan keputusan rintangan tambahan kapal yang akan dibandingkan kelak dengan keputusan ujikaji model. Sebagai tambahan, hubungkait diantara gelombang hasilan kapal dengan rintangan tambahan kapal akan dikaji untuk melihat kaitan diantara keduanya. Akhirnya, tesis ini akan melaporkan keberkesanan dan ketepatan setiap kaedah yang digunakan didalam ramalan rintangan tambahan kapal didalam gelombang.

TABLE OF CONTENTS

CHAPTER	TITLE`	PAGE
	SUPERVISOR'S DECLARATION	i
	TITLE PAGE	ii
	DECLARATION	iii
	DEDICATION	iv
	ACKNOWLEDGEMENT	V
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF FIGURES	xii
	LIST OF TABLES	xvi
	LIST OF NOMENCLATURE	xvii
	LIST OF APPENDICES	XX
1	INTRODUCTION	1
	1.1 Background of Study	1
	1.2 Problem Statement	2
	1.3 Objectives of the Research	2
	1.4 Scope of the Research	3
	1.5 Research Flow Chart	3

LITE	RATUR	E REVIEW	6
2.1	Regular	Waves	6
2.2	The Vel	ocity Potential	9
2.3	Pressure	e Contours and the Surface Profile	10
2.4	Energy	in a Regular Wave	15
2.5	Encount	ter Frequency and Heading	17
2.6	Axes an	d Ship Motion Definitions	19
2.7	Simplifi	ed Equations of Ship Motion	23
2.8	Added I in Wave	Resistance and Involuntary Speed Loss	19
2.9	Simple	Theory for Added Resistance	24
2.10	U	lar Waves Kroukovsky's and Jacob's Strip	32
	Theory		
MET	HODOI	LOGY	34
3.1	Introduc	ction	34
3.2	Experim	nent apparatus and facility	34
	3.2.1	Towing Carriage	34
	3.2.2	Wave Generator	39
	3.2.3	Data acquisition and analysis system	40
		(D.A.A.S.)	
	3.2.4	Model Test Preparation	42
	3.2.5	Model Test Particulars	43
3.3	Experim	nents Setup	45
3.4	Experin	nent Condition	48

2

3

3.5	Theoret	tical Prediction	4
	3.5.1	Added Resistance in Regular Waves – Momentum and Energy method	4
	3.5.2	Strip Theory	5
	3.5.2	Calculation of the Coupled Heaving and Pitching Motions by Strip	5
		Theory3.5.2.1Basic Force Equation	5
		3.5.2.2 Applied Force Equation	۷
		3.5.2.3 Motion Equation	6
		3.5.2.4 Solutions of Equation of	(
3.6	Compu	Motions tational Software method – Seakeeper®	(
	3.6.1	Coordinate System	(
	3.6.2	Computational Methods	,
	3.6.3	Limitations and Guidelines of Seakeeper®	,
		3.6.3.1 Underlying Assumptions	-
тоу	VING TA	ANK EXPERIMENTS	7
4.1	Model	Experiments	,
4.2	Blockag	ge Correction	,

5 COMPUTATIONAL SOFTWARE ANALYSIS 81

4

	5.1	Obtaining added resistance values from	81
		Seakeeper ®	
	5.2	Added Resistance Computations in	91
		Seakeeper®	
6	PRO	GRAM DEVELOPMENT USING	94
	FOR	FRAN 77	
	6.1	Program Development	94
	6.2	Mathematical formulation used in the program	98
	6.3	Simpson Rules in the Program	98
	6.4	Input and Output Results	106
7	RESU	JLTS AND DISCUSSIONS	111
	7.1	Added resistance in waves results from experimental works	112
	7.2	Comparison of Added Resistance between	117
		Experiment and Theoretical Results	
	7.3	Ship Generated Waves Results	126
8	CON	CLUSIONS	131
	8.1	Recommendations	134
REFERENCES	5		135
Appendices A	- M		138 - 311

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Research Project Flow Chart	4
2.1	Regular Waves	7
2.2	Constant pressure contour beneath a regular wave	11
2.3	Constant pressure contours beneath a 100 m wave: depth 100m	13
2.4	Regular waves pictured in space and time	14
2.5	Kinetic energy in a regular wave	16
2.6	Heading definitions	18
2.7	Axes and ship motion definitions	20
2.8	Definition of added resistance in waves	24
2.9	Added resistance response curve for a fast cargo ship in regular waves	27
3.1	Towing Tank Basin	35
3.2	Towing Carriage	35
3.3	UTM Marine Technology Laboratory Layout Plan	36
3.4	A tanker model locked to gimbals during towing	39
3.5	Wave generator flap	40
3.6	Data Acquisition and Analysis System	42
3.7	Bodyplan of the Product Tanker	44

3.8	The arrangement of air struts and towing guide with ship	46
3.9	model The block diagram of Data Acquisition Analysis System	47
	(DAAS)	
3.10	Representation of underwater hull section shapes by an	54
3.11	infinite cylinder Seakeeper® User Coordinate System and view Windows	69
	are the same as for Maxsurf®	
3.12	Wave direction is measured relative to the vessel track	70
	and is given the symbol μ . Thus following waves are at μ	
	= 0° ; starboard beam seas are 90°; head seas 180° and	
	port beam seas 270°.	
4.1	Towing Tank and Model Dimensions	75
4.2	Sample of results obtained from DAAS for total	78
	resistance of the model for certain speed.	
4.3	Experiment results for five Froude number before	79
	correction	
5.1	Bodyplan of the Product Tanker 7698	82
5.2	Size surfaces window	83
5.3	Frame of reference window	84
5.4	Finished Section, Buttocks and Waterline plotted in	85
	Maxsurf® viewed in Perspective, Profile, Plan and Body	
5.5	Input data window	86
5.6	Measure hull window	87
5.7	Mappings for model 7698	87
5.8	Input Data window for Vessel Type	88
5.9	Mass distribution window	89
5.7	wiass distribution willow	09

5.10	Damping factors window	90
5.11	Environment window	90
5.12	Analysis method window	92
5.13	Graph window showing the added resistances result in Seakeeper®	93
6.1	Program displaying the data for selecting the added mass	97
	coefficient and amplitude ratio	
6.2	The cross section showing the waterlines and the axes of	98
6.3	z and y. The distance y_1 , y_2 and y_3 shown from the axis to the	100
6.4	curves. The breadth y_1 , y_2 , y_3 , $y4$, y_5 and y_n at each section from	101
6.5	1, 2, 3, 4, 5 n. The breadth y_1 , y_2 , y_3 , y_4 at each section at an equal	103
6.6	interval, <i>h</i> . Example of using Simpson's first rule and second rule for	104
6.7	9 and 7 ordinates. An example of an input data created in Notepad based on	108
7.1	7698 Tanker offset data. Experiment results of Added resistances for five Froude	113
7.2	number after correction Theoretical results from Seakeeper® using Gerritsma and	114
	Beukelman I	
7.3	Theoretical results from Seakeeper® using Gerritsma and	115
7.4	Beukelman II Theoretical results from Seakeeper® using Salvesen	116
7.5	method Theoretical results using Joosen method	117
7.6	Comparison of experimental and theoretical added	118
7.7	resistance at Froude number 0.166 Comparison of experimental and theoretical added	119
	resistance at Froude number 0.21	

7.8	Comparison of experimental and theoretical added	120
7.9	resistance at Froude number 0.25 Comparison of experimental and theoretical added	121
7.10	resistance at Froude number 0.27 Comparison of experimental and theoretical added	122
7.11	resistance at Froude number 0.28 The wave profile in time histories for wave length 1.688	126
7.12	m and speed 0.9096 m/s The energy dissipated by ship waves at speed 0.9096 m/s	127
7.13	The energy dissipated by ship waves at speed 1.092 m/s	127
7.14	The energy dissipated by ship waves at speed 1.274 m/s	128
7.15	The energy dissipated by ship waves at speed 1.455 m/s	128
7.16	The energy dissipated by ship waves at speed 1.5464 m/s	129

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Salient characteristics of waves	8
2.2	Three linear displacements notation, units and position	21
2.3	Three angular rotations notations, units and positions	21
2.4	Three locations for axes for rolls, pitches and yaws	22
3.1	Model no. 7698 Main Particulars	44
6.8	Comparison result between FORTRAN 77 and	105
7.1	Microsoft Excel. Corrected Froude number	113
8.1	Percentage difference of added resistance value	133
8.2	between experimental and theoretical Peak value occurring for theoretical and experiments	133

LIST OF NOMENCLATURE

Symbols

$A_{_{yy}}$	- Coefficient of added mass moment of inertia for pitching
a	motionVirtual mass, or virtual mass moment of inertia
а	- virtual mass, or virtual mass moment or metha
a_{z}	- Added mass for heaving
В	- Coefficient of pitch damping moment
B_n	- Waterline breadth for nth section
b	- Coefficient for damping force or damping moment
b_n	- Damping coefficient per unit length
С	- Coefficient for pitch restoring moment
С	- Coefficient for restoring force or restoring moment
Ε	- Wave energy per unit area of free surface
$h_{_W}$	- Height of wave
I _{yy}	- Mass moment of inertia for pitching
k	- Wave number
k_{yy}	- Radius of gyration for pitching
LBP	- Length between perpendiculars
L_{w}	- Wavelength from crest to crest
L_s	- Length of ship equivalent to LBP
R_{AW}	- Mean resistance increase in waves, that is, resistance in waves minus resistance in still water

T_e	- Period of encounter
T_w	- Wave period
T_z	- Natural period (in smooth water) for heaving
$T_{ heta}$	- Natural period (in smooth water) for pitching
T_{ϕ}	- Natural period (in smooth water) for rolling
и	 Horizontal component of water velocity vertical component of water velocity
V_w	- Wave velocity or celerity
Z.	- Heaving motion
Z_a	- Heaving amplitude
β	- Sectional area coefficient
Е	- Phase angle between motions and waves
\mathcal{E}_1	- Phase angle between wave motion and exciting force (or
E2	moment)Phase angle between exciting force (or moment) and motions
ζ	- Instantaneuous wave elevation
ζ_a	- Wave amplitude
$\overline{\zeta_a}$	- Apparent wave amplitude
heta	- Pitch angle
$oldsymbol{ heta}_a$	- Pitch amplitude
μ	- Heading angle
ω _e	- Frequency of encounter
$\omega_{_{w}}$	- Wave frequency
ω_z	- Natural (circular) frequency for heaving

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Resistance test results obtained from DAAS	138
В	Resistance Test Summary Tables	164
С	Offsets and Input data	169
D	Program Strip Theory Flow Charts	171
E	Wave data, Added Mass Coefficient and Amplitude Ratio Input Data	189
F	Added mass coefficients for two-dimensional floating bodies in heaving motion	192
G	Amplitude ratios \overline{A} for two-dimensional floating bodies in heaving motion	194
Н	Program 'STRIP THEORY' Result	196
Ι	Program 'STRIP THEORY' Source Codes	205
J	Photo shots during model test	228
K	Wave surface profile time histories	236
L	Table of wave amplitude averages	289
М	Wave pattern surface simulation using Hullspeed®	293

CHAPTER 1

INTRODUCTION

1.0 Background of Study

Added resistance in waves is another component of ship's resistance. It is sometimes being misunderstood as wave making resistance. Basically, added resistance in waves is another partial component of the resistance that responsible for speed reduction in a seaway especially in high seas condition. Therefore added resistance prediction represents an important challenge for ship-owners due to its economic implications in terms of choice of engines, fuel consumption and route-time evaluation. Design offices should consider seriously this problem already in the early stages of the design.

Usually, the performance evaluation of a ship in a seaway is primary based on the calm water resistance without properly considering the weather conditions prevailing on the operating route. Even if the calm water resistance is used as a first estimation of the power required, an allowance is added to this value of the resistance to consider the effect of the environment. Therefore in this study it is aim to look into the comparison of the various theoretical method with the towing tests method as a continuous effort from past students master dissertation.

2.0 **Problem Statement**

In carrying out these experimental and theoretical predictions, several issues will be addressed as follow:

- i. What is the influence of the ship speeds and the wave frequencies on the added resistances in waves?
- ii. How accurate is the present method of theoretical prediction of added resistance in waves? Is it reliable?
- iii. What is the relationship of ship generated waves to the added resistance in waves? If there is any, can we use this relationship to predict the added resistance in waves?

3.0 Objectives of the research

The research work is carried out in order to achieve the following objectives:

- i. To evaluate the difference and accuracy of added resistance prediction of a 100 m product tanker between theoretical and model experiment.
- Develop a computer program in order to calculate the added resistances in waves using FORTRAN 77.
- iii. Investigate the influences of the following parameters to added resistance due to waves either from the speed of the vessel and the also the wave frequencies (wave length)
- iv. Investigate the relationship of ship generated waves with the added resistance in waves as ship dissipates energy to the waves created by it at aft and energy is proportional to the squared of the wave amplitudes.

v. Additionally hydrodynamics analysis computer software namely Seakeeper® can be used as to compare the results obtained experimentally and validate the computed results.

4.0 Scopes of the research

The scope of the research is listed as follows:

- i. Conduct literature research on ship added resistances due to head waves mainly on the familiarization on the Strip Method and Potential Flow Theory.
- ii. Develop a computer program to calculate the ship added resistance in waves using strip theory to generate the hydrodynamic coefficients, ship's heave and pitch motion and using momentum and energy method or radiated energy method in order to get the added resistance values.
- iii. Conduct experiments using the tanker model in a towing tank for calm water resistance test.
- iv. Conduct experiments using the tanker model in a towing tank in regular waves.
- v. Determine added resistance due to waves by subtracting resistance in waves to the resistance in calm water
- vi. Familiarization of Maxsurf software namely Maxsurf Pro® for inputs of linesplan and hulls particulars and Seakeeper® for predicting added resistances due to waves.
- vii. Estimate added resistance due to waves by using theoretical method using SEAKEEPER namely Gerritsma and Beukelman's method and Salvesen's method.
- viii. Validate the theoretical prediction results with the model experiment test results. Compare and analyze both results.

5.0 Research Flow Chart

This topic discusses the approach of the project that has been taken to ensure the objectives of the project will be achieved. It also presents the project flow chart. Basically the project begins with deciding the objectives and the scopes. This is done by having discussion with the project supervisor namely, Ir. Dr. Mohamad Pauzi Abdul Ghani.

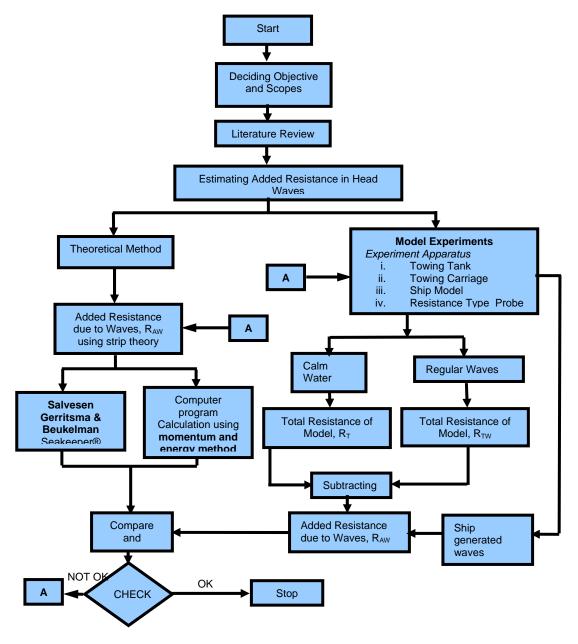


Figure 1.1: Research Project Flow Chart

Later after the objectives and the scopes are agreed, literature research and review are done to select and pinpoint the approach of on how the research to be done. Basically, as agreed in this research project, there are two approaches in determining the added resistances of a ship in head wave, which are experimentally and theoretically. In experiment works, both resistances are taken in calm water and in regular waves, and concurrently the ship generated waves are taken by using resistance probe. Theoretically, few methods are chosen to predict the added resistances in head waves, and here two approach are determined which is using computational software namely Seakeeper® and also a program will be developed using one of the method in predicting added resistances in waves.

The flow chart of this research project is available in figure 1.1. The experimental or theoretical prediction works will be repeated if any discrepancy found during the estimation of added resistances in waves.