
VHDL IMPLEMENTATION OF PIPELINED DLX MICROPROCESSOR

IGNATIUS EDMOND ANTHONY

UNIVERSITI TEKNOLOGI MALAYSIA

 v

ABSTRACT

 The 32-bit load/store DLX processor architecture is a generic RISC processor

designed by Hennessy and Patterson for pedagogical purposes. The DLX processor

design abstracts many features of general-purpose commercial processors, and is a

well-understood computer architecture, providing a good architectural model for

study, not only because of the popularity of this type of machine, but also because it

is easy to understand. Utilizing open source hardware such as the DLX core yields

the apparent advantage of free-for-all distribution as well as having source codes that

are is available and open, allowing for source code modification at-will. This project

aims to continue previous work on integration of the DLX core by adding instruction

pipelining which was excluded from the previous project’s scope due to complexity

and time limitations. Instruction execution speedup and performance was left on the

table to be dealt with in future work. Since the DLX microprocessor was, by nature,

a 5-stage pipelined microprocessor, it can be expected that the core’s performance on

instruction execution can be sped up with a pipeline implementation. Comparison

between the non-pipelined and pipelined DLX were also performed to verify this

instruction execution speedup expectation.

 vi

ABSTRAK

Senibina pemproses DLX merupakan suatu pemproses generik RISC 32-bit

yang direkacipta oleh Hennnesy and Patterson bagi tujuan peyelidikan and

pendidikan. Senibina pemproses DLX merangkumi pelbagai ciri-ciri and fungsi

pemproses umum di pasaran, dan bukan sahaja merupakan senibina komputer yang

mudah difahami, tetapi juga amat popular. Menggunakan pemproses sumber terbuka

atau open-core seperti mesin DLX ini memberi kelebihan dalam tersedianya kod-kod

sumber secara terbuka yang membenarkan dan memudahkan pengubahsuaian untuk

keperluan projek. Matlamat projek in adalah untuk meneruskan projek sebelumnya

di mana pemproses DLX dan Wishbone interface diintegrasikan, tetapi dengan

menambah fungsi pipelining untuk pemprosesan suruhan. Dengan penambahan ciri

ini, adalah dijangka bahawa tempoh pemprosesan suruhan dapat disingkatkan

memandangkan cara pemprosesan suruhan dalam mesin DLX dilakukan dalam lima

peringkat. Perbandingan prestasi pemproses DLX sebelum and selepas implementasi

ciri pipelining turut dilaksanakan dalam projek ini untuk mengesahkan jangkaan

awal.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS xiii

 LIST OF APPENDICES xiv

1 PROJECT OVERVIEW 1

 1.1 Background 1

 1.2 Objectives 3

 1.3 Scope of Work 3

 1.4 Expected Results 4

 1.5 Report Layout 5

2 LITERATURE REVIEW 6

 2.1

2.2

Processor Selection Considerations of Systems-On-

Chip

DLX Implementations

 6

8

 2.2.1 ASPIDA DLX Project 8

 2.2.1 University of Stuttgart DLX Project 11

 2.3 Pipeline Design Considerations 12

 viii

3 DLX PROCESSOR ARCHITECTURE 15

 3.1 Overview 15

 3.2 External View of the DLX 15

 3.2.1 The DLX Interface 15

 3.2.2 Memory Interface and Access 16

 3.2.3 Reset 18

 3.2.4 Halt 19

 3.2.5 Error 19

 3.3 The DLX Programming Model 19

 3.3.1 Accessible Registers 19

 3.3.2 The DLX Instruction Format 20

 3.3.3 The DLX Instruction Set 20

 3.4 Internal Structure of the DLX 25

 3.4.1 The Datapath 26

 3.4.2 The Control Unit 28

 3.4.3 The Basic Execution Steps 29

4 DESIGN WORKFLOW, METHODOLOGY AND

TOOLS

 32

 4.1 Design Workflow 32

 4.2 Tools 34

 4.2.1 Altera Quartus II 6.0 Web Edition 34

 4.2.2 VHDL 36

5 PIPELINED DLX COMPONENT DESIGN 38

 5.1 Pipelined DLX Overview 38

 5.2 Pipelined Datapath 39

 5.2.1 Load / Store Instruction 40

 5.2.2 Arithmetic/Logic Instruction 40

 5.2.3 Test and Set Instructions 41

 5.2.4 Branch/Jump Instructions 41

 5.3 Redesigned Control Unit 42

 5.3.1 Instruction Fetch (IF) 43

 ix

 5.3.2 Instruction Decode (ID) 44

 5.3.3 Execution Stage (EXE) 45

 5.3.4 Memory Stage (MEM) 46

 5.3.5 Write Back (WB) 47

6 RESULTS AND PERFORMANCE ANALYSIS 48

 6.1 Overview 48

 6.2 Functional Validation 48

 6.3 Gate Count and Frequency Statistics 51

 6.4 Instruction Execution Speed-Up 52

7 CONCLUSION AND FUTURE WORK

RECOMMENTATIONS

 55

 7.1 Conclusion 55

 7.2 Recommendations for Future Work 56

REFERENCES

59

Appendix A 59-63

CHAPTER 1

PROJECT OVERVIEW

1.1 Background

 The 32-bit load/store DLX processor architecture is a generic RISC processor

designed by Hennessy & Patterson for pedagogical purposes. The DLX processor

design abstracts many features of general-purpose commercial processors, and is a

well-understood computer architecture.

 The DLX provides a good architectural model for study, not only because of

the popularity of this type of machine, but also because it is easy to understand. Like

most load/store machines, the DLX emphasizes a simple load/store instruction set,

design for pipelining efficiency, an easily decoded instruction set and efficiency as a

compiler target.

 The Wishbone Bus is an open source hardware computer bus intended to let

the parts of an integrated circuit communicate with each other. The aim is to allow

the connection of differing cores to each other inside of a chip or system-on-chip.

 Utilizing open source hardware such as the DLX core and Wishbone bus (or

its competitor – the AMBA bus) yields benefits which include solutions for most of

the problems associated with proprietary cores. Besides the apparent advantage of

free-for-all distribution, utilizing open source hardware standards and open

microprocessor cores tout:

 2

• Each core will have a larger user base, which will ensure better support, better

documentation and better implementation examples to work from.

• The source is available, so any developer can find out what he or she needs to

know about the core.

• Eventually, as cores and standards for them are developed, cores will become

more standards-compliant than proprietary cores

• Allows for source code modification at-will, which enables designers to fine-

tune and tweak any design for any design constraint – gate count, performance,

power, etc.

 While previous work on integration of the DLX core and Wishbone bus

interface has been undertaken and completed, instruction pipelining was excluded

from the project’s scope due to complexity and time limitations. A DLX

microprocessor core with a non-pipelined instruction execution data path was used to

showcase the microprocessor core-Wishbone bus integration functionality on the

FPGA.

 Since the previous project’s focus was on functionality, instruction execution

speedup and performance was left on the table to be dealt with in future work. Since

the DLX microprocessor was, by nature, a five-stage pipelined microprocessor, it can

be expected that the core’s performance on instruction execution can be sped up with

a pipeline implementation.

1.2 Objectives

 The objective of this project is to design a five-stage pipelined DLX

microprocessor for the purpose of instruction execution speedup and performance

improvement.

 As part of the project, the performance of instruction execution speedup of

the enhanced DLX processor with pipelined-instruction execution versus the non-

 3

pipelined DLX will be evaluated and analyzed using a predetermined test suite which

will consist of several small programs.

 Finally, exploration and investigation will be done on several design-for-test

(DFT) feature integrations into the DLX-Wishbone system for improved system

debug-ability as future work.

1.3 Scope of Work

 This project is focused on the incremental enhancement of an existing DLX

processor design with Wishbone bus interface integration in UTM [2], to modify the

data path unit and controller unit for pipelined instruction execution in five stages:

Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory Access

(MEM) and Write-Back (WB).

 The reference source code for this project is referenced from the DLX project

by the University of Stuttgart, Germany which implements a non-pipelined, non-

synthesizeable flavour of the DLX processor.

 Implementation of the DLX enhancements would involve coding in hardware

description language VHDL. Altera’s Quartus 6.1 Web Edition is the tool of choice

for design entry, logic synthesis (compilation) and simulation.

 In the work flow of the project, the main emphasis would be on adding the

pipelining capability into the DLX processor’s datapath unit as well as any

incremental changes in the control unit to support the pipelined execution. The

Wishbone bus interface integration into the design will be used as-is from the

previous project with the expectation that any previous issues have been resolved.

 4

 While the eventual target implementation of the design would be in ASIC,

this project’s implementation level will only be restricted to functional and timing

simulation within Altera’s Quartus software.

 As a final outcome, the implementation is validated and verified for

functionality correctness on through simulation. Performance analysis and evaluation

would be carried out using a predetermined suite of small programs to be executed

on the integrated DLX system.

1.4 Expected Results

 The pipelined DLX processor is successfully designed and simulated in

Altera’s Quartus software. The processor implementation is validated and verified

using FFT computation task or other simple sorting programs.

 The enhanced pipelined-DLX will offer at least 1.5X instruction execution

speedup versus non-pipelined core measured by CPU cycle time required to

complete predefined computation task-list on both processors. This will serve as the

baseline expectation to justify that the additional logic overhead incurred due to the

pipelined-datapath translates to real-world performance speedup.

 5

1.5 Report Layout

 The layout of this report would be as follows:-

Chapter 1: Brief overview of project, including objectives and work scope.

Chapter 2: Literature review of other existing DLX projects undertaken by

other universities, design considerations for pipelining, and

microprocessor selection considerations.

Chapter 3: Overview of the DLX processor and instruction set architecture,

pipelining concepts and design considerations.

Chapter 4: Design workflow, methodology and tools.

Chapter 5: Pipelined DLX microprocessor components and design.

Chapter 6: Results and performance analysis.

Chapter 7: Conclusion and future work recommendations.

CHAPTER 7

CONCLUSION AND FUTURE WORK RECOMMENTATIONS

7.1 Conclusion

The pipelined DLX processor was successfully designed and implemented

using VHDL based loosely on the previous DLX project carried out in UTM. The

redesigned DLX processor was successfully simulation using Altera’s Quartus 2 7.2

Web Edition software suite.

The pipelined DLX utilized a five-stage instruction pipeline (instruction

fetch, instruction decode, execute, memory and write-back) to operate on instruction

fed into the processor.

This project consisted of several phases of work. In this first part of the

project, much effort was been spent to understand the DLX architecture and source

code, as well as delving into pipelining concepts and design considerations. The

next stage involved successfully re-simulated and verifying the previous non-

pipelined DLX in Quartus. This is imperative to verifying the functionality of the

previous design can be reproduced, as well as strengthens knowledge of the DLX

architecture and familiarizing with the Quartus design tools.

The two main components of the DLX – the datapath and the control unit -

were redesigned to enable pipelined execution of instructions. Once the VHDL

coding of the submodules were completed, all the sub-blocks were integrated and

 57

validated in Quartus. A lot of time and effort was spent iterating between coding the

blocks, integrating the design and validating the implementation in Quartus.

Once the design was functionally validated, performance analysis work was

carried out, focusing on comparing the previous non-pipelined DLX versus the

redesigned pipelined-DLX processor.

The pipelined DLX showcased a 25% instruction execution speedup

measured by number of clock cycles, as compared to the non-pipelined DLX that

came at a cost of 23% increase in logic element utilization as measured by Quartus

tool. Finally, exploration of possible future work to further improve the performance

of the pipelined DLX processor was done.

Throughout the design, implementation and validations stages of the project,

numerous hindrances were encountered, which includes lack VHDL coding

proficiency, familiarizing with the Quartus tool, as well as handling branch

instructions in the pipelined architecture. Each setback was handled meticulously

and diligently.

In summation, a wealth of knowledge was gained from this project which

could not be lesson-taught. In depth knowledge of computer architecture, VHDL

coding, pipelining concepts and implementation, branching handling in

microprocessor design as well as generic skills were among the expertise acquired

through this project.

7.2 Recommendations for Future Work

Among several possible future work recommendations presented here, the

most pivotal would be a full scale implementation of the pipelined DLX on FPGA

(and possibly fabricated ASIC). With the design implemented on FPGA, real world

 58

performance of the pipelined DLX can be measures, particularly with the presence of

real external memory interactions. This will introduce the need for better timing

synchronization and handling between the DLX processor and the external memory.

Another possible path to explore in further improving the performance of the

DLX processor would be the introduction of a branch-prediction algorithm and

hardware module. This can be realized through multiple fetches from memory per

load cycle and a sub-module that looks-ahead two instruction in advance to prepare

for branch instructions in the program. This will eliminate the 3-cycle penalty paid

whenever an instruction in the pipeline is decoded as a branch, resulting in the entire

pipeline being flushed.

The addition of a cache (either data cache or instruction cache) would also

significantly increase the performance of the DLX processor. In this case, an

instruction cache would be more ideal to work with the pipelined architecture since

latency to fetch the instructions from the memory can be reduced to a minimum if

instructions are cached, regardless of whether the branch prediction unit is

implemented.

