EXTREME GROWTH BEHAVIOUR OF CORROSION PIT IN HYDROCARBON PIPELINE (CASE STUDY OF Ø242.1MM PIPELINE)

ANN SEE PENG

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Civil - Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2008

ABSTRACT

Inspection data obtained from in-line inspection is useful to assess present integrity as well as to predict future integrity of pipeline by using statistical and probabilistic analyses and simulation process. However, numerical errors arise when all the inspection data are used in the analysis. Numerical error arises because failure probability due to a single extreme corrosion out of huge quantity of corrosion data has been greatly reduced. Thus, in this study, extreme values analysis using extreme value theory, peaks-over-threshold method or combination of both methods is adopted to analyze the inspection data. This aims to eliminate the "low-risk" data in the analysis in order for extreme values to be emphasized. Based on the result, high threshold value will lead to high failure probability. However, the optimum threshold value is limited by the number of remaining data. Meanwhile, extreme value distribution is also efficient in indicating an early failure probability. Instead, combination of both methods results an overestimated failure probability.

ABSTRAK

Data yang diperolehi daripada pemeriksaan dalam talian pipe adalah sangat berguna untuk menilai keadaan kini and meramalkan integriti kelak tailian pipe dengan mnggunakan analisis statistik dan kebarangkalian. Walau bagaimanapun, apabila kesemua data diambilkira dalam analisis, keputusan yang diperolehi sering diiringi kesilapan angka. Kesilapan angka timbul kerana quantiti data yang banyak menyebabkan kebarangkalian kegagalan tailan paip yang disebabkan oleh satu pengaratan yang ekstrem adalah sangat rendah. Maka, dalam kajian ini, analisis nilai ekstrem dengan menggunakan teori nilai ekstrem, cara nilai-atas-batasan atau keduaduanya sekali untuk menganalisiskan data. Ini adalah bertujuan untuk mengecualikan data-data risiko rendah daripada analisis supaya nilai-nilai ekstrem lebih dititikberatkan. Keputuskan menunjukkan semakin tinggi nilai batasan, semakin tinggi kebarangkalian kegagalan tailian paip. Walau bagaimanapu, nilai batasan dihadkan oleh bilangan data yang masih kekal setelah data-data bawah nilai batasan dihapuskan. Sementara itu, taburan nilai ekstrem adalah juga berkesan dalam menunjukkan kebarangkalian kegagalan yang lebih awal. Di sebaliknya, kombinasi kedua-dua cara ini pula menghasilkan kebarangakalian kegagalan yang terlampau.

TABLE OF CONTENTS

CHAPTER	TITLE			PAGE
	DEC	LARAT	ION	ii
	DED	ICATIO	N	iii
	ACK	NOWLI	EDGEMENT	iv
	ABS	TRACT		V
	ABS	TRAK		vi
	TAB	LE OF C	CONTENTS	vii
	LIST	OF TA	BLES	xi
	LIST	OF FIG	URES	xii
	LIST	OF SY	MBOLS	xiv
Chapter 1	INTI	RODUC	ΓΙΟΝ	
	1.0	Introd	uction	1
	1.1	Proble	em Statement	2
	1.2	Objec	tives of Study	3
	1.3	Scope	of Study	3
	1.4	Impor	tance of Study	4
Chapter 2	LITE	ERATUR	E REVIEW	
1	2.0		uction	5
	2.1	Piggir	ng Inspection	5
	2.2	Piggir	ng Tools	6
	2.3	In-Lir	ne Inspection Tools	7
		2.3.1	Metal Loss Inspection Techniques	7
			2.3.1.1 Magnetic Flux Leakage	8

	2.3.1.2 Ultrasonis	9
	2.3.1.3 High Frequency Eddy Current	9
	2.3.1.4 Remote Field Eddy Current	10
2.4	Peaks-Over-Threshold Method	11
2.5	Extreme Value Statistics	13

Chapter 3	3.0	Introduction	14
	3.3	Flow of Methodology	14
	3.4	Statistical Approach	14
		3.4.1 Introduction	16
		3.4.2 Histogram	16
		3.4.2.1 Construction Histogram	17
	3.5	Probabilistic Approach	19
		3.5.1 Introduction to Probability Distribution	19
		3.5.2 Continuous Random Variables	20
		3.5.3 Normal Distribution	21
		3.5.4 Weibull Distribution	23
		3.5.5 Exponential Distribution	25
	3.6	Estimating Parameters	25
		3.6.1 Probability Plot	26
		3.6.2 Maximum Likelihood Estimator	28
		(M-Estimators)	
		3.6.3 Moments Estimators	29
	3.7	Goodness of Fit Tests (Hypothesis Testing)	31
	3.8	Extreme Value Distributions	32
	3.9	Monte Carlo Simulation	32
		3.9.1 Monte Carlo Simulation Procedures	32
Chapter 4	4.0	Introduction	34
	4.3	Pigging Data	34

	4.4	Selection of Peaks Over Threshold Value (POT value)	35
	4.5	Statistical Analysis	36
		4.5.1 Corrosion Data Analysis	36
		4.5.2 Corrosion Growth Analysis	37
	4.6	Correction of Corrosion Growth Analysis	39
		4.6.1 Random Correction Factor	39
		4.6.2 Z-score correction method	40
		4.6.3 Zero-defect corrosion rate estimation	40
		4.6.4 deWaard and Milliams equation	41
	4.7	Probabilistic Analysis	43
		4.7.1 Construction of Histogram	43
	4.8	Estimation of Parameters	44
	4.9	Verification of Parameters	46
	4.10	Distribution of Each Threshold	47
	4.11	Extreme Value Distribution	49
Chapter 5	5.0	Introduction	51
	5.3	Pipeline Reliability Assessment	51
	5.4	Failure Model	52
	5.5	Limit State Function	53
	5.6	Calculation of Failure Probability	54
	5.7	Number of Cycles	55
	5.8	Target Reliability Level	56
	5.9	Enhancement Studies	56
		5.9.1 Comparison between Different Corrosion Rate	56
		5.9.2 Comparison between different limit state	57
		function	
Chapter 6	6.0	Introduction	59

apter o	0.0	muou	uotion				57
	6.3	Peaks	Over Threshol	d Method			59
		6.3.1	Comparison	between	Different	Threshold	60

Value

		6.3.2 Discussion on Peaks Over Threshold Method	60
	6.4	Predicted Failure Probability with Various Corrosion	61
		Growth Rate	
	6.5	Comparison between Extreme and Non Extreme	62
		Analysis	
	6.6	Comparison between Extreme Analysis Combined	62
		with different threshold value	
	6.7	Comparison between Different Limit State Function	63
Chapter 7	7.0	Introduction	68
	7.3	Conclusions	68
	7.4	Additional Conclusions	69
	7.5	Recommendations	70

REFERENCE

71

CHAPTER 1

INTRODUCTION

1.0 Introduction

Hydrocarbon pipeline in oil and gas industry is mainly used to transport oil and gas. It links the offshore production platform to the onshore facilities. Along the pipeline, it is exposed to various defects mechanisms. Corrosion, erosion and external pressure are among the well-known mechanisms that result significant influence to the integrity of pipelines.

As compared to other defect mechanisms, internal corrosion has been proven to be more difficult in terms of monitoring and evaluating. Not similar to external corrosion which can be easily seen and measured using simple tools, internal corrosion occurs inside the pipeline. It can not be easily seen and required more complicated tools to map, locate and measure the corrosion. This leads to various inspection tools invented. The inspection tools will be further discussed in latter chapter.

When more complicated tools are employed for the inspection, huge quantities of inspection data are produced. Usually, probabilistic method is adopted to transform these data into outcome in term of failure probability. With the great variety of distribution models and analysis approaches, different outcomes could be produced. This study

concerns the effects of Peaks-Over-Threshold (POT) and extreme value statistics on the outcomes of analysis of inspection data.

1.1 Problem Statement

In oil and gas industry, the first failure is usually of the most concern. First failure always generated by the deepest corrosion pit in pipeline. Thus in order to evaluate or assess the reliability of pipeline, the deepest corrosion sites are of the most interest as these locations are the most likely locations for failure to initiate.

Each pigging inspection carried on a pipeline could produce a vast quantity of data, covering from the shallowest to the deepest corrosion defects. By considering all the data as independent source of potential failure, the analyses are subjected to numerical errors and subsequently lead to unrealistic estimated probability of pipeline failure. This is because of the failure probability of each single defect is very small among the huge quantities of data. Thus, it is more realistic to consider only the data that have exceeded certain extent (depth) of corrosion into the analyses. As these data are the most likely location for failure to initiate.

The research questions of this study include:

- i. How significant the effect of extreme defects on the pipeline failure probability?
- ii. What is the optimum truncation value to cut-off the low-risk data out of the huge quantities of inspection data?

1.2 Objectives of Study

The major aim to conduct this research is to study the extreme growth behaviour of corrosion pit in hydrocarbon pipeline. In order to achieve such aim, a few objectives are established to support the research. The associate objectives are listed below:

- i. To model the normal growth and extreme growth of internal corrosion pit in hydrocarbon pipeline
- ii. To determine the most optimum range of POT values for pipeline corrosion data.
- iii. To compare pipeline failure probability between normal growth and extreme growth of corrosion pit in hydrocarbon pipeline using Monte Carlo Simulation process.

1.3 Scope of Study

The scope of this study covers the analysis of two sets of real in-line inspection data obtained from in-line inspection carried out on a pipeline located in North Sea by using magnetic flux leakage devices (MFL). The properties of the pipeline are shown in table.

Length	Diameter	Wall	Year of	Year of
		thickness	Installation	Inspection
22km	242.1mm	9.53mm	1967	1998, 2000

Table 1.1 Properties of the inspected Pipeline

Statistical, probabilistic analysis and simulation process are adopted in this study. They are used to analysis the inspection data. These inspection data concerns solely on the metal loss volume regardless the causes of loss. Thus none of material properties, environmental properties, operational condition and etc. are taken into account.

The analysis in this study involves conventional analysis method in combination with Peaks-Over-Threshold approach (POT) and extreme values statistic (EV) are to tackle the problem as mentioned in previous section.

1.4 Importance of Study

This study demonstrates the extreme analysis of pipeline inspection data using two approaches; peaks over threshold method and extreme value theory. Te applicability of both methods in pipeline assessment is investigated. By using both methods to emphasize the extreme corrosion pits in pipeline reliability assessment, an earlier failure probability can be foreseen. It might not be the precise failure time; however, it serves as precaution in planning the next inspection, maintenance or even replacement.

REFERENCES

- Boyun, G., Shanhong, S., Jacob, C. and Ali, G., (2005). *Offshore Pipelines*. Oxford: Gulf Professional Publishing
- Cramer, E., Gharpuray, D., Marley, M., Sigurdsson, G. and Bjornoy, O.H. (1999). *Risk Based Assessment of Corroded Pipelines*. Kuala Lumpur: OGM'99. 1-17.
- DNV (1999). *Recommended Practice RP-F101 for Corroded Pipelines 1999*. Norway: Det Norske Veritas.
- Dodson, B. (1994). Weibull Analysis. Milwaukee: ASQC Quality Press. 1-5.
- Escoe A. K. (2006). *Pigging and Pipelines Assessment guide*. Oxford: Gulf Professional Publishing
- Hellevik, S.G. and Langen, I. (2000). In-Service Inspection Planning of Flow lines Subjected to CO₂ Corrosion. Seattle, USA: ISOPE 2000, Proceeding of the 10th International Offshore and Polar Engineering Conference. May 28-June 2. Vol IV. 372-379.
- Lewis, E.E. (1996). *Introduction to Reliability Engineering*, 2nd Edition. New York: John Wiley & Sons, Inc.
- Melchers, R.E. (1999). *Structural Reliability Analysis and Prediction*, 2nd Edition. Chichester, UK: Ellis Herwood. 1-125.

- Noor, N.M. (2002). Reliability-Based Assessment of Offshore Pipeline Subjected to Internal Corrosion. University Teknologi Malaysia: Master Thesis.
- Pandey, M.D. (1997). Probabilistic Models for Condition Assessment of Oil and Gas Pipeline. NDT & Engineering International. 31(5). 349-358.
- Roberge, P.R. (1999). *Handbook of Corrosion Engineering*. New York: McGraw-Hill Companies. 1-5.
- Tiratsoo, J.H.N. (1992). Pipeline Pigging Technology. Houston, Gulf Publishing Company.
- Yahaya, N. and Wolfram, J. (1999). The Application of Peaks-Over-Threshold Approach on The Structural Reliability of Corroding Pipelines. Jurnal Teknologi. 30. 51-68.
- Yong B. (2001). Pipelines and Risers. Oxford: Gulf Professional Publishing