USING HEC-RAS AND QUAL2E TO ASSESS JOHOR RIVER WATER QUALITY

ALI H. AHMED SULIMAN

UNIVERSITI TEKNOLOGI MALAYSIA

USING HEC-RAS AND QUAL2E TO ASSESS JOHOR RIVER WATER QUALITY

ALI H. AHMED SULIMAN

A project report submitted in partial fulfilment of the requirements

for the award of the degree of Master of Engineering

(Civil-Hydraulics and Hydrology)

Faculty of Civil Engineering

Universiti Teknologi Malaysia

Lastly, to all my fellow friends,

Thanks for everything...

ACKNOWLEDGEMENT

First of all, my praises and thanks to Almighty Allah, the Most Gracious the Most Merciful, who gave me the knowledge, encouragement and patience to accomplish this research May the peace and blessings of Allah be upon our Prophet Mohammad.

I wish to express my sincere appreciation and thanks to my supervisor, Prof. Dr. AYOB KATIMON, for encouragement when I have problems, guidance to the right way, and suggestions when I am hesitate. Without his continued support and interest, this project report would not have been the same as presented here.

I am also indebted to Universiti Teknologi Malaysia (UTM). I also need take this opportunity to say very thankful to my FKA staff for their guidance, advice and knowledge in this field for help me successful finished my project. Without their contribution, interest and guidance I would not complete this study.

Last but not least, to all my family members and friends who have directly or indirectly helps and contribute to the success of this project.

ABSTRACT

Johor River is a major raw water supplier for a highly populated region, Johor state as well as Singapore. Because of the development over the entire catchment, water quality has become a sensitive matter. For this reason, several studies have been carried out in order to investigate its affects on the environment. Computer simulation and Numerical model are considered as essential and powerful tools in water resources monitoring plan in decisionmaking process. HEC-RAS is integrated system software designed to perform one dimensional hydraulic calculation. It was used to estimate the hydraulic changes due to the hydrological alteration of Johor River in response to the change of river discharges and to calculate the sediment transport capacity. Also in this study, QUAL2E was used as the water quality modeling analysis tool. It is suitable for one-dimensional analysis with constant flow and it is applied to predict the water quality model for the Johor River. The model was used to simulate both dissolved oxygen (DO) and biological oxygen demand (BOD₅) along the certain reach of the river. Data was collected from several stations along Johor River, ranging from Rantau Panjang till water treatment plant. Flow rates, depths, loads, dissolved oxygen, and length of the river were measured in the field. Moreover, biochemical oxygen demands concentrations and total suspended solid were measured in the libratory. Those entire databases were used to supply inputs to the two models. As first time the HEC-RAS has been used to model; and followed by QUAL2E for simulating water quality at Johor River. Also In order to assess the vegetation buffer strips' performance, and because of the reducing of the light penetration, harmful algal blooms, decrease in dissolved oxygen, total suspended solid (TSS) was estimated. All parameters are compared to the Interim National Water Quality Standard (INWQS) provided by Department of Environment (DOE). From the finding, the average concentration of suspended solid was 17.97 mg/l. The trap efficiency for pollution load reduction by vegetation buffer strip was estimated 9.17 % and this value would be bigger during high discharges.

ABSTRAK

Sungai Johor merupakan pembekal air mentah utama untuk daerah yang sangat padat di negeri Johor serta Singapura. Kerana pembangunan pesat, ketinggian air telah menjadi masalah sensitif. Untuk alasan ini, kajian telah dilakukan untuk menyiasat kesan ruya terhadap persekitaran. Simulasi komputer dan model berangka dianggap sebagai alat penting dan berkuasa dalam pemantauan sumber daya air di dalam proses membuat keputusan. HEC-RAS terintegrasi perisian sistem yang direka untuk melakukan perhitungan hidrolik satu dimensi. Ini digunakan untuk menganggarkan perubahan hidrolik kerana perubahan hidrologi Sungai Johor dalam menanggapi perubahan rejim sungai dan untuk mengira kapasiti pengangkutan sedimen. Juga dalam kajian ini, QUAL2E digunakan sebagai alat analisis pemodelan ketinggian air. Sangat cocok untuk analisis satu-dimensi dengan arus konstan dan itu tersirat untuk memprediksi model ketinggian air bagi Sungai Johor. Model ini digunakan untuk simulasi kedua oksigen terlarut (DO) dan keperluan oksigen biologi (BOD5) sepanjang liputan tertentu sungai. Data dikumpul daripada beberapa stesen di sepanjang Sungai Johor, pemprosesan air bermula dari Rantau panjang. Nelai Arus, kedalaman, beban, oksigen terlarut, dan panjang sungai diukur di lapangan. Selain itu, permintaan oksigen biokimia dan konsentrasi total pepejal tersuspensi diukur dalam makmal. kesemua database digunakan sebagai input kepada dua model. Pertama, HEC-RAS telah digunakan untuk model, dan diikuti oleh QUAL2E untuk simulasi high air di Sungai Johor. Juga Untuk menilai prestasi jalur penyangga vegetasi, pengurangan penetrasi cahaya, mekar alga berbahaya, penurunan oksigen terlarut, total suspended solid (TSS) dianggarkan. Semua parameter yang dibandingkan dengan Kualiti Air Kebangsaan Interim Standard (INWQS) disediakan oleh Jabatan Alam Sekitar (DOE). Dari laporan tersebut, maka konsentrasi paurate bahan teranpai adalah 17,97 mg / l. Kecekapan perangkap untuk pengurangan beban pencemaran oleh vegetasi buffer dianggarkan 9.17% dan nilai ini akan lebih besar mengilcut kadar aliram sungai.

TABLE OF CONTENTS

CHAPTER

TITLE

TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi

(BOD5) sepanjang liputan tertentu sungai. Data dikumpul daripada beberapa stesen di sepanjang Sungai Johor, pemprosesan air bermula dari Rantau panjang. Nelai Arus, kedalaman, beban, oksigen terlarut, dan panjang sungai diukur di lapangan. Selain itu, permintaan oksigen biokimia dan konsentrasi total pepejal tersuspensi diukur dalam makmal. kesemua database digunakan sebagai input kepada dua model. Pertama, HEC-RAS telah digunakan untuk model, dan diikuti oleh QUAL2E untuk simulasi high air di Sungai Johor. Juga Untuk menilai prestasi jalur penyangga vegetasi, pengurangan penetrasi cahaya, mekar alga berbahaya, penurunan oksigen terlarut, total suspended solid (TSS) dianggarkan. Semua parameter yang dibandingkan dengan Kualiti Air Kebangsaan Interim Standard (INWQS) disediakan oleh Jabatan Alam Sekitar (DOE). Dari laporan tersebut, maka konsentrasi paurate bahan teranpai adalah 17,97 mg / l. Kecekapan perangkap untuk pengurangan beban pencemaran oleh vegetasi buffer dianggarkan 9.17% dan nilai ini akan lebih besar mengilcut kadar aliram sungai.

TABLE OF CONTENTS

CHAPTER

TITLE

TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi

TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii

1 INTRODUCTION

1.1	Introduction	1
1.2	Statement of the Problem	4
1.3	Objective	5
1.4	Scope of study	5

2 LITERATURE REVIEW AND MATHEMATICAL MODELING

2.1	Gener	al	6
2.2	Water	pollution	7
	2.2.1	Point Source	7
	2.2.2	Non-Point Source	8
2.3	Water	Quality Monitor	9
2.4	Water	Quality Parameters	11
	2.4.1	Dissolved Oxygen (DO)	12
	2.4.2	Biochemical Oxygen Demand (BOD)	13
	2.4.3	pH	14
	2.4.4	Total suspended solid (TSS)	15
2.5	HEC-	RAS Overview	15
	2.5.1	Steady Flow Water Surface Profile	16
	2.5.2	Energy Head Loss	18
		2.5.2.1 Friction Loss Evaluation	19
		2.5.2.2 Contraction and Expansion	19

Loss Evaluation

	2.5.3 Assumption in Steady Flow Program	n 20
2.6	Riparian Buffer Strip	20
2.7	Sediment Transport Capacity in HEC-RAS	25
	2.7.1 Fall Velocity	28
	2.7.2 Sediment Transport Function	30
	2.7.1.2 Toffaleti Method	30
2.8	Water Quality Modeling	33
2.9	Limitation of QUAL2E	36
2.10	QUAL2E Calibration and Validation	37
2.11	Applications of QUAL2E	38

3 METHODOLOGY

3.1	Introduction	40
3.2	Location of Study Area	42
3.3	Data Collection	43
	3.3.1 Water Sampling and its Stations	44
	3.3.2 Flow Measurement	48
3.4	In-Situ Testing	51
3.5	Water Quality Test	52
	3.5.1 Total Suspended Solid	52
	3.5.2 Biochemical Oxygen Demand (BOD)	55
3.6	Interim National Water Quality Standards	
	(INWQS)	55
3.7	Sieve Analysis	58
3.8	Calibration of Qual2E Model	59
3.9	Validation of QUAL2E Model	60

4 EXECUTION STEPS AND RESULTS

4.1	Johor River Modeling	62
4.2	HEC-RAS Interface	63
4.3	Starting a New Project	63
4.4	Entering Geometry Data	64
	4.4.1 River System Schematic	64
	4.4.2 Cross Section Geometry	65
4.5	Steady Flow	66
	4.5.1 Boundary Condition	66
	4.5.2 Discharge Information	67
4.6	Steady Flow Analysis	68
4.7	Sieve Analysis	74
4.8	Sediment Transport Capacity	76
4.9	Analysis the Data for QUAL2E	81
4.10	Comparison between Calibrated	81
	and Observed Data	
4.11	Total Suspended Solid of Johor River	83
4.12	pH Analysis	85

5 CONCLUSION AND RECOMMENDATION

5.1	Conclusion	86
5.2	Recommendations	88

REFERENCES

90

LIST OF TABLES

TABLE NO

TITLE

2.1	Some Recommended Widths of Vegetate Buffer	
	Strips, for Various Functions	24
2.2	limitation of data in QUAL2E	37
3.1	The Calculation of Discharge Using	51
	Velocity-Area Method	
3.2	Interim National Water Quality Standards	56
	(INWQS)	

3.3	Data Needed to Run QUAL2E Program	60
4.1	Sediment Transport Potential	78
4.2	Data for Johor River from Sampling	81
4.3	Total Suspended Solid Concentration from	84
	Laboratory Testing in unit mg/l or ppm.	
4.4	The pH values from IN-SITU Testing	85

LIST OF FIGURES

FIGURE NO

TITLE

2.1	The relationship between BOD and DO of a River System	13
2.2	Representation of Terms in the Energy Equation	17
2.3	Riparian Buffer with Three Zones	21
2.4	The relationship between particle sieve diameter	31
	and its fall velocity	
2.5	QUAL2E computational network	36

3.1	The overall processes involved in this study	41
3.2	Johor River Basin	42
3.3	Buffer Strips at Johor River	43
3.4	The Exact Location of the River Sampling Stations	44
3.5	The surface water level at Rantau Panjang Station	45
3.6	The Submergence area Vegetation Buffer Strip	45
3.7	The place of Water Samples within the Cross-Section of the	46
•	River	
3.8	Water Sampling Using Van Dorn Sampler in order to Pick the Samples from the River	47
3.9	Polystyrene Box and the Bottles used to Collect Water	47
	Samples	
3.10	Schematic Picture Demonstrating Flow Rate Using Velocity-	48
	Area Method	
3.11	Current Meter	49
3.12	DO Meter	52
3.13	Apparatus for Total Suspended Solid Test	54
3.14	The sieves and the shaker machine	58
3.15	The Instrument used to Weighed the Sample Retained	59
4.1	The HEC-RAS Main Window	64
4.2	New Project Window	64
4.3	River System Schematic of Johor River	65
4.4	Cross Section Window	66
4.5	Steady Flow Boundary Condition Editor	67
4.6	Steady Flow Data Editor	68
4.7	Steady Flow Analysis Window	68
4.8	Cross Section Plot at Station one at Rantau Panjang	69
4.9	Cross Section Plot at Station Two	70
4.10	Cross Section Plot at Station Three	70
4.11	Cross Section Plot at Station Four	71
4.12	Cross Section Plot at Station Five at the Bridge	71
4.13	Profile Plot	73
4.14	General Profile Plot	72
4.15	Rating Curve	73

4.16	X-Y-Z Perspective Plots	73
4.17	Details Tabular of Cross Section	74
4.18	The Result of Sieve Analysis	75
4.19	Sediment Transport Capacity Window	76
4.20	Sediment Rating Curve Plot for all Stations for Profile one	79
4.21	The Sediment Profile Plot	80
4.22	Comparison between Calibrated and Observed Data for	
	Oxygen Demand Concentration	82
4.23	Comparison Between Calibrated and Observed Data for	83
	Biochemical Oxygen Demand Concentration	

CHAPTER 1

INTRODUCTION

1.1 Introduction

Water plays an important role in our daily life and without it no life on the earth. Most activities in our life depend on water such as agriculture, drinking, a medium of transportation and many more. In fact, many great civilizations have started at near to the source of water whether river or stream, such as Mesopotamia, Egypt, and many more.

According to the study of Hydrology, river is defined as a natural stream flow in a channel. River water quality is affected by a wide range of natural and human pollution. The most important of the natural pollution are geological, hydrological and climatic. Water pollution occurs when a body of water is unfavorably affected by the addition amount of bad materials to the water body. It can come from a number of different sources. If the pollution comes from a single source, like oil leak, we called it, point-source pollution. While, the pollution that comes from many unknown sources called, non-point source pollution. Approximately, all the pollution types affect the immediate area surround for that source. Sometimes the pollution may affect the environment for miles away from the source. The effects of water pollution are not just hurtful for people, but it has effects on habitat such as animals, fish, and birds. It can destroy the aquatic life and reduces its productive ability. It is also hazardous to human health, and overall water supply system.

In Malaysia, there are 1800 rivers comprising 150 systems that run up to 38000 km. As in many part of the world, water from rivers in Malaysia is used extensively for domestic needs, agriculture, drinking, cooking, washing, and many other purposes. One of those rivers is Johor River. It is very important fresh water supply to the treatment plant located at Kota Tinggi which distributed treated water to eater local need. The water quality of Johor River has been deteriorated with increasing level of various pollutants. This contaminant eventually flow into Johor River from the area neighbor it.

Computer simulation and numerical model is one of the best ways for hydrodynamic study and controlling the water quality. It is powerful and essential tool to monitoring plan in making decision related to the parameters of the water quality. We can compile and analyze the hydrodynamic data and the water quality parameters data for a particular length of river to evaluate river water quality.

HEC-RAS is an integrated system composed of separate hydraulic analysis components, data storage and management capabilities, graphics, and reporting facilities. The system ultimately contains three one-dimensional hydraulic analysis components for (1) steady flow water surface profile computations, (2) unsteady flow simulation, and (3) moveable boundary sediment transport computations. All three components use a common geometric data representation and common geometric and hydraulic computation routines. In addition, the system contains several hydraulic design features that can compute the basic water surface profiles.

Qual2e is a one-dimensional mathematical model. It is available as free software to simulate river water quality. It is a multi-purpose model for determining the quality of stream flow by allowing the simulation of fifteen parameters associated to water quality in any reach of river chosen by researcher. The model is applicable to well mixed streams and considers the transport mechanisms – dispersion and advection – significant only along the main direction of flow (longitudinal direction).

When the discharge decrease as well as the depth of water will reduce, the vegetation buffer strip area will increase within the river. So, this area can play as filter to intercept the sediment transport capacity. Riparian buffer is the area of permanent vegetation (trees, shrubs and grass) neighbor surface water bodies, and are to improve water quality by trapping or removing various non-point source pollutants from over land and shallow subsurface flowing in the same time [14]. It is important to use vegetation buffers in reducing the contaminant to the river especially before or during the high discharges.

1.2 Statement of the Problem

The development over the entire world leads to more concentration on water quality which is consider as a sensitive matter and has affects on humans and environment. The contamination loadings in Johor River come from many sources as a non-point source contamination, when the rain falls on catchment area surround Johor River. The contaminant substances are carried by runoff, and before the contaminants enter the water body, they pass through the buffer zones to pour in watershed or directly to the river. This would create many problems for the water quality status such as decrease in dissolved oxygen, harmful algal blooms, and reduced light penetration. Moreover, the sediment transport capacity also consider as a serious problem which is affect on the flow depth and bed river condition. The study on hydrological characteristics of river is so important for future development especially in water resources engineering in term of water resource management.

The aim of this study is to determine and analyze the concentration of some parameters which are considered as important parameters to cover river water quality. These parameters are Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS), and PH, and also sediment transport capacity for several cross sections. Because the raw water of the Johor River is used to supply the domestic requirement, therefore, all these parameters are compared to the Interim National Water Quality Standard (INWQS) provided by Department of Environment (DOE).

1.3 Objective of Study

- 1. To estimate a hydrological model for 5000 m of Johor River using HEC-RAS.
- To predict the fluctuation water level for and sediment transport capacity for different discharge using HEC-RAS.
- 3. To analyze and simulate water quality for Johor River using QUAL2E program.
- 4. To estimate the typical concentration of suspended solid and trap efficiency of the vegetation buffer strip along the Johor River.

1.4 Scope of Study

The scope of this study is as follows:

- 1. Buffer zones identification.
- 2. Water quality sampling and the analysis in the lab after we bring the samples from the site.
- 3. IN-SITU testing.
- 4. Sediment transport capacity calculation.
- 5. Getting Samples from the river for grain size test.