DEVELOPMENT OF AN AUTOMOTIVE SUSPENSION SYSTEM USING ACTIVE FORCE CONTROL

ABDUL HALIM MUHAIMIN

This project report is submitted as a part of the fulfillment of the requirement for the award of the Master Degree in Mechanical Engineering

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > OCTOBER, 2003

ACKNOWLEDGEMENT

I would like to express my gratitude to my supervisor, PM. Dr. Musa Mailah for his advice, help and guidance during the course of executing this project. Special thanks to the technical staffs at the Production Laboratory, Faculty of Mechanical Engineering, UTM Skudai, who have been extremely helpful especially Maizan Sulaiman and Abdul Latif Suyut. Credits are due to fellow post graduates, Endra Pitowarno and Khisbullah Huda for their valuable contribution to the project. I would also like to show my sincere appreciation to all my friends and colleagues for their continuous moral support and encouragement during my study.

Last but by no means least, I would like to thank cordially my wife, Siti Noriah Basri for her patience, endurance and not forgetting her skills in keeping the younger generation (seven of them) under control while I worked.

ABSTRAK

Kajian ini dilakukan bagi menyelidiki ciri-ciri sambutan dua darjah kebebasan sistem gantungan kenderaan dengan kawalan daya aktif (AFC) sebagai elemen kawalam utama. Ciri-ciri sambutan dihubungkaitkan dengan keselesaan penumpang dan kebolehkawalan sesebuah kenderaan. Kedua-dua kaedah iaitu kajian simulasi dan eksperimen telah dilakukan bagi mencapai matlamat ini. Dalam kajian simulasi, dua kaedah kawalan sistem gantungan aktif telah dikaji dan dibuat perbandingan yang melibatkan penggunaan kawalan klasikal PID bersama continuous skyhook dan AFC dengan kaedah *iterative learning (ILM)* dan *fuzzy logic (FL)*. Kebolehan kawalan AFC bertindak sebagai satu sistem yang lasak telah dibuktikan.Gangguan permukaan jalan yang sesuai dan keadaan bebanan lain dimodelkan dan diujakan kepada sistem bagi menguji ketahanlasakannya sistem berkenaan. Keputusan daripada simulasi menunjukkan sistem gantungan aktif menggunakan pengawal AFC dengan FL adalah terbaik dari segi anjakan dan pecutan jisim badan, daya dinamik tayar, ruang fungsi gantungan, daya hidraulik aktuator dan selisih laluan. Dalam kajian eksperimen, sebuah prototaip gantungan yang bersais kecil telah dibina dan diuji. Prototaip dibangunkan menggunakan perisian MATLAB/SIMULINK dengan Real Time Wokshop (RTW) yang dihubungkan dengan kad antara muka melalui sebuah komputer peribadi (PC) sebagai pengawal utama. Keputusan-keputusan eksperimen yang didapati menentusahkan kebolehan pengawal AFC sebagai pengawal gantungan aktif yang lasak berbanding dengan sistem kawalan lain yang dipertimbangkan.

ABSTRACT

This research was carried out to investigate the response characteristics of a twodegrees-of-freedom (DOF) vehicle suspension system with the proposed active force control (AFC) as the main control element. The characteristics are related to the riding comfort and handling of the vehicle. Both simulation and experimental studies were accomplished in the research work for this purpose. In the simulation study, two active suspension control methods were examined and compared involving the classic proportional-integral-derivative (PID) to be used together with the continuous skyhook and AFC with embedded iterative learning method (ILM) and fuzzy logic (FL) control schemes. The potentials of the AFC schemes as robust systems are particularly highlighted. Appropriate road disturbance and other loading conditions are modelled and applied to the proposed systems to test for the system robustness. The results of the simulation study show that active suspension system using AFC with FL control show its superiority in terms of body mass displacement and acceleration, dynamics tyre load, suspension working space, hydraulic actuator force and the track error. In the experimental study, a prototype of the suspension rig was fully developed and tested. The laboratory scale physical rig was developed using the MATLAB/SIMULINK with Real Time Workshop (RTW) tool that is interfaced with a suitable data acquisition card via a personal computer (PC) as the main controller. Experimental results obtained in the study further verified the potential and superiority of the proposed AFC scheme as a robust active suspension control compared to the other schemes considered in the study.

TABLE OF CONTENTS

CHAPTER	CON	VTENTS	PAGE	
	TITI	TITLE		
	DEC	CLARATION	ii	
	ACKNOWLEDGEMENT ABSTRAK		iii iv	
	ABS	TRACT	V	
	TABLE OF CONTENTS		vi	
	LIST	ST OF FIGURES		
	LIST	Γ OF SYMBOLS	xiii	
	LIST	Γ OF APPENDICES	XV	
CHAPTER I	INT	RODUCTION	1	
	1.1	General Introduction	1	
	1.2	Objective of Study	2	
	1.3	Scope of Study	3	
	1.4	Research Approach	3	
	1.5	Outline of Masters Project	4	
CHAPTER II	THE	CORETICAL BACKGROUND AND		
	LITI	ERATURE REVIEW	6	
	2.1	Introduction	6	
	2.2	Overview Of Vehicle Suspension System	6	
	2.3	Proportional-Integral-Derivative (PID) Control	8	

	2.4	Continuous Skyhook Control Method	9
	2.5	Active Force Control	10
	2.5	Iterative Learning Method	12
	2.7	Fuzzy Logic Control	13
		2.7.1 Fuzzification	13
		2.7.2 Execution Of The Rules	15
		2.7.3 Defuzzification	16
	2.8	Review Of Previous Work On	
		Active Suspension System	17
	2.9	Conclusion	21
CHAPTER III	MOI	DELLING AND SIMULATION	22
	3.1	Introduction	22
	3.2	Quarter Car Model	22
	3.3	Disturbance Model	24
		3.3.1 Road Disturbance	25
		3.3.2 Internal Disturbance	25
	3.4	Passive Suspension System Model	26
	3.5	Active Suspension Control System	26
		3.5.1 Active Suspension System Using	
		Skyhook Method	27
		3.5.2 Active Suspension System Using	
		AFC Strategy	30
		3.5.2.1 AFC With Iterative	
		Learning Method	31
		3.5.2.2 AFC With Fuzzy Logic	
		Method	33
	3.6	Modelling and Simulation Parameters	37
	3.7	Conclusion	38
CHAPTER IV	SIM	ULATION RESULTS AND DISCUSSION	40

	4.1	Introduction	40
	4.2	Tuning the Controller Parameters	40
		4.2.1 The Effect Of PID Elements	40
		4.2.2 Effect of the Estimated Mass	43
		4.2.3 Effects of the Learning Parameters of ILM	44
		4.2.4 Effects of C _{min} and C _{max}	45
	4.3	Controller Parameters	47
	4.4	Performance Evaluation	47
	4.5	Conclusion	52
CHAPTER V	THE	EXPERIMENTAL ACTIVE	
	SUSI	PENSION SYSTEM	53
	5.1	Introduction	53
	5.2	RTW-ASS Version 1.0	54
	5.3	SIMULINK Model with	
		Real-Time Worskhop (RTW)	57
	5.4	Experimental Results of	
		the RTW-ASS Version 1.0	59
	5.5	RTW-ASS Version 2.0	60
	5.6	Experimental Results of	
		the RTW-ASS Version 2.0	62
	5.7	RTW-ASS Version 2.1	65
	5.8	Experiment Results of RTW-ASS Version 2.1	67
	5.9	Conclusion	72
CHAPTER VI	CON	ICLUSION AND RECOMMENDATION	73
	6.1	Conclusion	73
	6.2	Recommendations for Future Works	74

REFERENCES

75

APPENDICES

79

ix

LIST OF FIGURES

FIGURE DESCRIPTION

PAGE

2.1	A Block Diagram showing the PID Control of A Suspension System	9
2.2	Skyhook Control With A Fictitious Damper	10
2.3	The Schematic Diagram of AFC Strategy	11
2.4	A Graphical Model of the Iterative Learning Method	13
2.5	Example of Triangular Shaped Input Membership Function	14
2.6	Input Intersection With Membership Function	14
2.7	Example of Triangular Shaped Output Membership Function	15
2.8	Example of Rule Table	15
3.1	Passive Linear Quarter Car Model	23
3.2	Active Linear Quarter Car Model	24
3.3	Bump and Hole	25
3.4	Harmonic Shape Road Surface	25
3.5	SIMULINK Diagram of A Passive Quarter Car Suspension System	26
3.6	Active Suspension Control Using Skyhook Method	28
3.7	Control Algorithm for Skyhook Method	29
3.8	Algorithm for If action subsystem1	30
3.9	The SIMULINK Diagram of the AFC Control Strategy	31
3.10	Active Suspension System with AFC Strategy and ILM	32
3.11	Iterative Learning Algorithm	32
3.12	Active Suspension System with AFC and Fuzzy Logic	33
3.13	Inputs and Output Fuzzy Logic Controller	33
3.14	The yout Membership Function	34
3.15	Error membership function	35
3.16	Estimated mass membership function	36

3.17	Control Surface for Fuzzy Logic Controller	37
4.1	Body Mass Displacement with Different Setting of K_p	41
4.2	Body Mass Displacement with Different Setting of K_i	42
4.3	Body Mass Displacement with Different Setting of K_d	43
4.4	Body Mass Displacement with Different Setting of EM	44
4.5	Body Mass Displacements with Different Settings of	
	Learning Parameters	45
4.6	Body Mass Displacement with Different Setting of C_{\min}	46
4.7	Body Mass Displacement with Different Setting of C_{max}	46
4.8	Body Mass Displacement for the Control Schemes	48
4.9	Body Mass Acceleration for the Control Schemes	49
4.10	Response of the Suspension Working Space for	
	the Control Schemes	50
4.11	Response of the Dynamics Tyre Load for the Control Schemes	50
4.12	Response of the Actuator Force for the Control Schemes	51
4.13	Response of the Track Error for the Control Schemes	52
5.1	A Block Diagram of the Proposed Rig - RTW-ASS Version 1.0	54
5.2	The Complete Rig - RTW-ASS Version 1.0	55
5.3	A Close-up View of the Mechanical System	56
5.4	Accelerometer Attached to the Body	56
5.5	The SIMULINK with RTW Model Using PID Controller	57
5.6	The SIMULINK with RTW Model Using AFC-PID Controller	58
5.7	The DAS-1602 System with the I/O Settings of the Physical Rig	58
5.8	The Controller Parameter Settings	59
5.9	The body displacement of the system	59
5.10	A View of the Rig - RTW-ASS Version 2.0	60
5.11	Position of the Solenoid Actuators	61
5.12	A Block Diagram of the Proposed Rig - RTW-ASS Version 2.0	61
5.13	The Driver Circuit and Signal Conditioner	62
5.14	The SIMULINK with RTW Model Using Three Modes of Control	63
5.15	Body Displacements with Disturbance at High Frequency	64
5.16	Body Displacements with Disturbance at Low Frequency	64
5.17	The Cam Assembly	66

5.18	The RTW-ASS Version 2.1	66
5.19	The Dimensions (in mm) of RTW-ASS Version 2.1	67
5.20	Body Displacements of the System with the Given Conditions	68
5.21	PID Parameter Setting	68
5.22	AFC Parameter Setting	69
5.23	Body Displacements at $K_p = 20$, $K_d = 5$, EM = 0.05 kg	
	and $f = 0.8 Hz$	69
5.24	Body Displacements at $K_p = 15$, $K_d = 5$, EM = 0.05 kg	
	and $f = 0.8 Hz$	70
5.25	Body Displacements at $K_p = 10$, $K_d = 5$, EM = 0.05 kg	
	and $f = 0.8 Hz$	70
5.26	Body Displacements at $K_p = 15$, $K_d = 5$, EM = 0.04 kg	
	and $f = 2.8 Hz$	70
5.27	Body Displacements at $K_p = 15$, $K_d = 5$, EM = 0.03 kg	
	and $f = 2.8 Hz$	71
5.28	Body Displacements at $K_p = 8$, $K_d = 5$, EM = 0.03 kg	
	and $f = 6.8 \text{ Hz}$	71
5.29	Body Displacements at $K_p = 8$, $K_d = 5$, EM = 0.0295 kg	
	and $f = 6.8 \text{ Hz}$	71

LIST OF SYMBOLS

SYMBOL SUBJECT

μ	Weighting function
Α	Proportional element of Iterative Learning Algorithm
AFC	Active Force Control
ASS	Active Suspension System
В	Derivative element of Iterative Learning Algorithm
С	Damping coefficient
C_{max}	Maximum damping coefficient
C_{min}	Minimum damping coefficient
C_s	Skyhook damping coefficient
DAS	Data Aquisition System
EM	Estimated mass
F_a	Actuator force
$g_{\it vel}$	Velocity gain
ILM	Iterative Learning Method
IM	Initial mass
K_d	Derivative gain
K_i	Integral gain
K_p	Proportional gain
k_s	Spring stiffness
k_t	Tire stiffness
M_b	Vehicle body mass
M_t	Wheel mass
Q	Actuator gain
RTW	Real Time Wokshop

S_k	Value of the estimated parameter

- S_{k+1} Next step value of the estimated parameter
- TE_k Position track error
- *V_{rel}* Relative velocity between body mass and wheel
- *y** Crisp output value
- Z Displacement
- Ż Velocity
- Ż Acceleration

LIST OF APPENDICES

APPENDIX DESCRIPTION

PAGE

A	Isometric view of the rig	79
В	Exploded view of the shock absorber	80
С	The Data Acquisition System Card DAS-1602	81
D	The Linear Position Sensor	82
E	The Accelerometer	83
F	The Solenoid Actuator	84
G	The Driver Circuit	85

CHAPTER I

INTRODUCTION

1.1 General Introduction

Since the development of the vehicle suspension system, designers have been faced with the conflict of vehicle safety versus ride comfort. Originally, this tradeoff was minimized by the single optimal adjustment of a passive spring and damper. In more recent years, the development of computer-controlled suspension dampers and actuators has increased the investigation of the vehicle safety versus ride comfort trade-off, and has led to the development of numerous active and semi active suspension control designs [1].

Passive suspension system consists of conventional spring and damper with the parameters related to the stiffness and damping typically fixed and cannot be changed by external signal. In view of the conflicting requirements of the suspension and the fact that the vehicle has to operate over a wide range of conditions, there should be a compromise in choosing the spring stiffness and damping parameters. In other words, it is desirable that the above parameters could be made to change with the operating and loading conditions such that the vehicle performance particularly concerning the riding comfort can be improved. This situation leads to a class of suspension system usually known as semi-active system where the parameter of one of the main components (usually the damper) can be made to vary in order to appropriately accommodate the corresponding change in the system interaction with the environment. Another useful method is to introduce an external energy to the conventional passive suspension system in the form of an actuating force coupled with a closed loop (feed back element) incorporated into the system. This physical layout contributes to the so-called active suspension system which has shown some positive signs and promises in terms of its practicality and feasibility as can be seen from a number of research works in this area [2,3,4]. The performance of the system can be further improved with the introduction of intelligent element into the system. Thus, the potential of an intelligent active suspension system with the ability to avoid the compromise as mentioned earlier is clear and evident.

In this research project, the vehicle ride comfort trade-off is studied through a simulation study based on the response of the vehicle model due to passive suspension with open-loop configuration and later compared with the response due to a number of active suspension with closed-loop control schemes. The proposed control strategy for the active suspension system uses an active force control (AFC) method which has been shown to be very robust and effective in countering parameter uncertainties and disturbances [5]. Intelligent elements are also employed with the AFC scheme based on the iterative learning method (ILM) and fuzzy logic (FL). An experimental study was also carried out using a developed laboratory scaled model of an active suspension rig controlled by a personal computer (PC) with suitable a software and hardware interface.

1.2 Objective of Study

The main objective of this research work is to investigate the response characteristics of a quarter car model representing a class of passenger vehicle using passive spring and damper suspension system and active control methods. Both the simulation and experimental responses were studied in this research. The responses obtained could serve as a preliminary findings into the potential application of the proposed active suspension control to the real automotive system.

1.3 Scope of Study

The scope of this study encompasses the computer modelling, simulation and experimental studies of an automotive suspension system. A quarter car model is considered when deriving the equations of motion representing the dynamics of the system. The methods used in the simulation work (apart from the passive method) include the continuous skyhook control with proportional-integral-derivative (PID) element, active force control (AFC) strategy with iterative learning method (ILM) and active force control strategy with fuzzy logic (FL) control. In the experimental study, a fully functional laboratory scaled model of the suspension rig fitted with suitable sensory and actuating devices will be designed and develop to complement the theoretical and simulation study performed earlier. A comparison of the response of the passive method, PID control and AFC plus PID (with crude approximation technique) will be made for the experimental work. Only the vertical displacements constituting a two degrees-of-freedom (DOF) system is assumed in the study. This represents the movement of the sprung mass (car body) and the unsprung mass (tyre). Road disturbances in the form of a 'bump and hole' and sinusoidal road surface are to be modelled and practically developed to test for the robustness of the system.

1.4 Research Approach

The research is initiated by deriving the mathematical model of the main dynamic system, i.e., the vehicle quarter car model suspension, using the classic *Newtonian* mechanic. The model used is a two DOF system representing a class of a passenger car. It is assumed to be excited by disturbance forces exerted directly on the vehicle body or those generated by the road surface condition to the wheel (tyre) via a spring and damper mechanism. Again, the disturbances were modelled mathematically taking into account a number of assumptions. A number of control schemes were also developed and modelled. These schemes include the PID with skyhook method and AFC technique employing both crude estimation and intelligent mechanisms (to estimate the inertial parameter necessary for the AFC method). The latter scheme (AFC method) is the focus of the research project which is largely based on the measured and estimated parameters and that it is practical to realize [5].

Based on the derived models, a simulation study using MATLAB and SIMULINK was then rigorously carried out, first considering the passive suspension system with open-loop response and later the closed loop control active suspension system. The results of the simulations were then compared for both the passive and active systems and later assessed quantitatively in terms of the three parameters which are deliberately chosen to represent each of the conflicting requirements of the suspension system. These parameters are the discomfort parameter related to the acceleration of the system, suspension working space (SWS) and dynamic tyre load [6].

A prototype of the proposed system was designed and developed involving the integration of mechanical, electrical/electronics and computer (software programming) control disciplines. Hence, the research adopts a complete mechatronics approach towards realizing the prototype of the proposed system. The SIMULINK with Real Time Workshop (RTW) facility interfaced with suitable data acquisition card will be fully exploited in the study. In the experimental study, the road disturbance was considered as a sine wave function generated from a rotating cam of suitable profile. Here, due to time constraint, the parameter of interest to be assessed is the vehicle body displacements relative to road surface produced by the suspension systems with different modes of control.

1.5 Outline of Masters Project

The necessary component for achieving objective of the study are given in the succeeding chapters. Theoretical information and literature review related to the project background are given in Chapter 2. This includes the description of the different types of vehicle suspension systems. In particular, the concept of passive, semi active and active suspension systems is explained. The mathematical models of the suspension systems based on the equations of motion are presented here. The active suspension control methods used in the research is discussed in greater detail

REFERENCES

- [1] Wilkinson, P.A. Advanced hydraulic suspension ride simulation using a 3D vehicle model. *SAE 940866*, 1994.
- [2] Campos, J., Lewis, F.L., Davis, L. and Ikenaga, S. Back-stepping based fuzzy logic control of active vehicle suspension systems. *Automation and Robotics Research Institute*, The University of Texas at Arlington, June, 1999.
- Kuo, Y.P., Li, T.H. GA-Based Fuzzy PID Controller for Automotive Active Suspension System. *IEEE Transactions on Industrial Electronics*. 46(6), December 1999.
- [4] Ikenaga, S., Campos, J., Lewis, F.L., Davis, L. Active suspension control of ground vehicle based on a full vehicle model. *Automation and Robotics Research Institute*, The University of Texas at Arlington, 2001.
- [5] Hewit, J.R. and Burdess (1981). "Fast Dynamic Decoupled Control for Robotics Using Active Force Control." *Trans. Mechanism and Machine Theory.* 16(5). 535-542.
- [6] Sharp, R.S. and Hassan, S.A. On the performance capabilities of active automobile suspensions of limited bandwidth. *Vehicle System Dynamics*, 16(4):213-225, 1987.
- [7] Karnopp, D. Are active suspension really necessary? In Proc. ASME Winter Annual Meeting, Dynamic System and Control Division, pages 1-9, San Fransisco, CA, USA, 1978.

- [8] Carter, K.A. Transient motion control of passive and semi active damping for vehicle suspensions. MSc. Thesis, Virginia State University, Blacksburg, Virginia, USA, 1998.
- [9] Hewit, J.R., Advances in Teleoperations, Lecture note on Control Aspects, CISM, 1998.
- [10] Mailah, M. and Yong, M.O., "Intelligent Adaptive Active Force Control of a Robot Arm With Embedded Iterative Learning Algorithms", Jurnal Teknologi, UTM, No. 35(A), Disember 2001, pp. 85-98.
- [11] Mailah, M. and Rahim, N.I.A, "Intelligent Active Force Control of a Robot Arm Using Fuzzy Logic", IEEE International Conference on Intelligent Systems and Technologies TENCON 2000, Kuala Lumpur, September 2000, Vol. II, pp 291-297.
- [12] Hussein S.B., Jamaluddin, H. and Mailah, M.,"The Hybrid Intelligent Active Force Controller for a Robot Arm Using Neural Network and Evolutionary Computation", IEEE International Conference on Intelligent Systems and Technologies TENCON 2000, Kuala Lumpur, 24-27 Sept.2000.
- [13] Arimoto, S., Kawamura, S., and Miyazaki, F. (1986). "Convergence, Stability and Robustness of Learning Control Schemes for Robot Manipulators." Recent Trends in Robotics: Modeling, Control and Education, ed. by Jamshidi M., Luh L.Y.S., and Shahinpoor M. 307-316.
- [14] Moon, S.Y. and Kwon, W.H., Genetic Based Fuzzy Control for Automotive Suspension, IEEE International Conference on Expert Systems, 1996.

- [15] Emura, J., Kakizaki, S., Yamaoka, F. and Nakamura, M. Development of the semi active suspension system based on the skyhook damper theory. SAE 940863, 1994.
- [16] Crolla, D.A., Firth, G.R., Hine, P.J. and Pearce, P.T. The performance of suspensions fitted with controllable dampers. *Proc.* 11th IAVSD-Symposium, supplement to Vehicle System Dynamics, 18: 149-163, Kingston Ontario, 1989.
- [17] Thompson, A.G. Optimal and sub-optimal linear active suspensions for road vehicles. *Vehicle System Dynamics*, 13:61-72, 1984.
- [18] Sharp, R.S., Hassan, S.A. Performance predictions for a pneumatic active car suspension systems. *Proc. Instn. Mechanical Engineers*, 202(D4):243-250, 1988.
- [19] Wilson, D.A., Sharp, R.S. and Hassan, S.A. The application of linear optimal control theory to the design of active automotive suspensions. *Vehicle System Dynamics*, 15:105-118, 1986.
- [20] Gordon, T.J., Marsh, C. and Wu, Q.H. A learning automaton methodology for control system design in active vehicle suspensions. *Control'94 Conference Publication*, No. 389, IEE, 1994.
- [21] Lin, J.S. and Kannelakopoulos, I. Modular adaptive design for active suspensions. Proc. of the 36th IEEE Conference on Decision and Control, San Diego, CA, December 1997.
- [22] Lin, J.S. and Kannelakopoulos, I. Road adaptive nonlinear design of active suspensions. *Proc. of the 1997 American Control Conference*, Albuquerque, NM, June 1997.
- [23] Rao, M.V.C. and Prahlad, V. A tunable fuzzy logic controller for vehicle active suspension system. *Fuzzy Sets and Systems*, 85:11-21, 1997.

- [24] Campos, J., Lewis, F.L., Davis, L. and Ikenaga, S. Back-stepping based fuzzy logic control of active vehicle suspension systems. *Automation and Robotics Research Institute*, The University of Texas at Arlington, June, 1999.
- [25] Kuo, Y.P., Li, T.H. GA-Based Fuzzy PID Controller for Automotive Active Suspension System. *IEEE Transactions on Industrial Electronics*. 46(6), December 1999.
- [26] Ikenaga, S., Campos, J., Lewis, F.L., Davis, L. Active suspension control of ground vehicle based on a full vehicle model. *Automation and Robotics Research Institute*, The University of Texas at Arlington, 2001.
- [27] Donahue, M.D. Implementation of active suspension for improved ride comfort. MSc. Theses. University of California, Berkeley, USA, 2001.
- [28] Vahidi, A. and Eskandarian, A. Predictive Control of Vehicle Suspensions with Time-Delay for a Quarter Car Model. *Proceedings of Multi-Body Dynamics: Monitoring and Simulation Techniques-II*: pp. 97-105, Bradford, UK, 2000.
- [29] Omar, Z., Modeling and Simulation of an Active Suspension System Using Active Force Control Strategy, MSc Project Report, Universiti Teknologi Malaysia, 2002.