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ABSTRACT 

 

 

 

 

Throughput independent and parameterized data compression processor core 

was designed to tackle the needs of high-speed data compression applications.  The 

design is based on combination of LZSS algorithm and Huffman coding, which 

enables it to be used in compression of a wide variety of data types.  However, 

several design limitations exist.  The design uses several technology-dependent 

modules that limit its hardware realization in alternative technologies.  In addition, it 

also suffers from an abnormal functional behavior when trying to decompress data 

that contain sufficiently high redundancy.  In view of these limitations, design 

enhancements are proposed.  One of the proposed enhancements is to improve the 

design portability to any hardware implementation technology.  This is accomplished 

through designing generic hardware to replace the technology-dependent modules 

and utilizing conditional compilation approach to best decide the design realization 

given the available resources and constraints.  With this approach, IP cores designed 

for the targeted technology should be used to take advantage of the efficient resource 

utilization and proven design, which leads to faster time-to-market and minimizes the 

integration risks and verification efforts of large systems.  However, if the design 

does not have access to IP cores, then generic modules can be instantiated but at the 

expense of development cost.  Another design enhancement offers a hardware patch 

to fix the decompression core hardware bug.  The issue was identified to originate 

from writing and reading the same memory location simultaneously.  As a solution, 

the behavior of the memory controller and its supporting logic are modified to 

prevent this from occurring.  From the design simulation results, it is concluded that 

the decompression core hardware bug is finally solved.   
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ABSTRAK 

 

 

 

 

Satu perkakasan pemadatan data yang berparameter serta mempunyai kadar 

pemprosesan bebas telah direka untuk menangani keperluan aplikasi pemadatan data 

berkadar laju.  Rekaan ini dicipta berasaskan kepada kombinasi algoritma LZSS and 

kod Huffman, yang membolehkan ia digunakan untuk memproses pelbagai jenis 

data.  Namun, wujud beberapa kelemahan dalam rekaan tersebut.  Ia menggunakan 

beberapa modul yang bergantung kepada teknologi khusus yang menghadkan 

pengrealisasian perkakas jika digunakan dalam sistem teknologi yang berbeza.  

Selain dari itu, rekaan tersebut juga mempunyai masalah kelakuan fungsi proses 

menidak-padat yang tidak normal apabila ia digunakan untuk memproses data yang 

mempunyai kadar ulangan yang tinggi.  Justeru, beberapa cadangan membaik pulih 

rekaan dihasilkan untuk menangani kelemahan-kelemahan tersebut.  Salah satu 

cadangan baik pulih yang dikemukakan membolehkan rekaan tersebut direalisasikan 

dalam pelbagai jenis teknologi perkakasan.  Perkara ini berjaya dihasilkan menerusi 

rekaan perkakas generik untuk menggantikan modul yang bergantung kepada 

teknologi khusus dan menggunakan cara kompilasi bersyarat untuk merealisasikan 

rekaan berdasarkan kepada sumber dan maklumat yang ada.  Menerusi cara ini, 

perkakas IP yang direka untuk teknologi tertentu dapat digunakan bagi memastikan 

hasil yang efektif dan berkesan, sekaligus memendekkan kadar masa yang diperlukan 

untuk memasarkan produk dan mengurangkan risiko pengalihan dan pengesahan 

maklumat bagi sistem-sistem yang besar.  Namun, sekiranya rekaan ini tidak 

mempunyai akses kepada perkakas IP, modul generik boleh digunakan tetapi 

melibatkan kos pembangunan yang tinggi.  Satu lagi cadangan baik pulih ialah 

menawarkan tampalan perkakasan untuk membaiki pepijat dalam proses menidak-

padat.  Masalah ini dikenalpasti berpunca apabila sistem memori diakses untuk 

menulis dan membaca pada masa yang sama.  Untuk menyelesaikan perkara ini, 

kelakuan pengawal memori dan logik sokongannya diubahusai untuk mengelakkan 

masalah tersebut dari berlaku.  Dari keputusan simulasi rekaan, dapat disimpulkan 

bahawa pepijat dalam proses menidak-padat data telah berjaya diselesaikan.
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

This project implements register-transfer-level design of a proprietary high-

speed data compression and decompression processor cores using Verilog hardware 

description language.  In addition, this project also offers enhancements aimed at 

improving the design portability to any hardware implementation technologies, as 

well as solving a hardware bug of the decompression processor core design.  In the 

first chapter, overview of the project background is presented, followed by 

discussions on the problem statement, project objectives as well as the scope of 

work.  An overview of the theory and knowledge involved is also presented.  The 

organization of this thesis is presented at the end of the chapter. 

 

 

 

 

1.1 Background 

 

 

In many computing applications, getting the maximum throughput from 

limited resources is always desirable.  For example, modern communication systems 

normally have limitations on its transmission medium’s bandwidth utilization for 

data transfers.  To fully utilize the available bandwidth, traffic sent through the 

medium should not contain any redundant information.  This is not necessarily the 

case however, because all source information has inherent redundancies in them 

(Shannon, 1948).  This means considerable amount of valuable resources would be 

wasted if these redundancies are not removed when transmitting data over the limited 

bandwidth medium.   
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In addition to efficient resource utilization, certain computing applications 

require fast information processing and data manipulations in order for the system to 

properly operate in real-time.  For example, many wireless communication systems 

operate in time division duplex mode, where windows of finite time duration are 

allocated for data transfers between two communicating terminals.  This means all 

processing must be completed and the required data must be valid within this time 

window to ensure proper communication takes place and to enable other data transfer 

windows to be allocated.  Else, the communication channel will break down and all 

processed data will be rendered useless.  Therefore, any improvements in ensuring 

optimal physical resources utilization must also take into account the required 

processing time of such improvements, so that the real-time performance of the 

overall system is not degraded. 

 

 

A cost effective way to efficiently utilize limited physical resources in high-

speed computing applications is by compressing the information processed by such 

applications.  Essentially, data compression techniques remove the inherent 

redundant information in source data such that the information can be represented by 

fewer bits.  Applying this technique in high-speed communication systems for 

example, allows more information to be transferred over a limited bandwidth 

medium compared to if original source data were to be transmitted.  This would 

increase the effective bandwidth utilization of the transmission medium and the 

overall system performance. 

 

 

 However, data compression techniques are normally computationally 

intensive, which means considerable amount of processing time is required to 

achieve sufficient compression savings.  Therefore, to effectively apply data 

compression techniques in high-speed computing applications, the complex 

processing of the data compression algorithms must be done considerably fast to 

enable the system operating in real-time with required performance.  This means a 

high-speed data compression solution is needed in order to effectively utilize limited 

resources in any high-speed computing applications. 
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 To fulfill this need, a proprietary high-speed data compression and 

decompression processor cores were designed and developed by Universiti 

Teknologi Malaysia (Yeem, 2002).  The hardware uses data compression techniques 

based on combination of Lempel-Ziv-Storer-Szymanski (LZSS) algorithm and 

Huffman coding.  It was designed as a parameterized module for easy configurability 

that can provide suitable compromise between constraints of hardware resources, 

processing speed and compression saving.  In addition, both processor cores were 

designed to be easily integrated with any memory-mapped bus systems, which 

attractively lend itself for operation within virtually all modern systems utilizing 

some kinds of processor architecture.  Initially, both compression and decompression 

processor cores were ported to an ALTERA programmable logic device, which is the 

FLEX10KE field programmable gate arrays (FPGA).  As such, it uses several 

ALTERA intellectual-property (IP) cores to ease design and development work, and 

to take advantage of optimized resource utilization of the target device.  The IP cores 

used are the Library of Parameterized Module (LPM) first-in-first-out buffers (FIFO) 

and dual port memories. 

 

 

 

 

1.2 Problem Statement 

 

 

The use of several IP modules targeted for specific technology means 

hardware implementation of the compression and decompression processor cores is 

limited to ALTERA programmable logic devices that support FIFO and dual port 

memories used.  At best, hardware implementation of the design in other logic 

devices or technologies requires all IP modules to be replaced by equivalent 

hardware in the device or technology of interest.  However, if equivalent modules are 

not available in target technology, or the design does not have access to IP modules 

because of licensing requirements, hardware implementation would be considerably 

difficult because the only solution is hardware redesign.  Moreover, being 

technology-dependent means the design has less competitive advantage for 

commercial applications simply because potential users require highly flexible 

solution for procurement considerations and ease of system maintainability.  
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In addition to the limitation of the design’s hardware portability, it is found 

that the functionality of the decompression processor core is not reliable.  When 

decompressing data with sufficiently high redundant information, the restored data 

do not match its original source.  When decompressing other sets of source data 

however, the decompression processor core outputs match the original source bit-by-

bit.  This inconsistent behavior means the decompression processor core design does 

not meet its required functional specifications, which renders it useless in real 

applications. 

 

 

 

 

1.3 Objectives & Scope of Work 

 

 

In view of the design limitations discussed in the previous section, the 

objectives of this project are: 

 

1) To improve the compression and decompression processor core hardware 

portability to any programmable logic devices and/or process technologies. 

 

2) To solve the abnormal behavior of the decompression processor core when 

processing highly redundant data. 

 

3) To develop a data compression system targeted to a prototyping hardware 

platform for real-time design verification and performance analysis. 

 

 

The scope of work of this project can be divided into three phases.  The first 

phase involves hardware redesign of the compression and decompression processor 

cores using Verilog hardware description language.  The parameterized nature of 

original design will be kept to preserve its advantage in terms of hardware re-

configurability.  Included in this project phase is the design of generic FIFO and 

dual-port memory modules to replace the ALTERA IP cores used in original design.  

The generic modules will enable both processor cores to be implemented in any 

programmable logic devices and ASIC technologies without requiring any design 
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modifications.  In addition, a hardware patch will be designed to solve the abnormal 

functional behavior of the decompression processor core.  With this fix, the design is 

expected to meet its functional specifications for any level of source data 

redundancies.  

 

 

The second phase involves developing a stand-alone data compression system 

by embedding the compression and decompression processor cores in a processor-

based system.  Both cores will function as secondary processors that implement the 

required compression and decompression processing tasks to off-load the computing 

constraints of the system processor. This system architecture allows faster processing 

of the required data compression computations, so that the whole system can operate 

in real-time especially for high-speed applications.  In this phase, the work consists 

of designing memory-mapped bus slave interfaces for both processor cores to enable 

data transfers with the system processor, building the overall system by integrating 

necessary components using a CAD tool, and implementing the system onto a 

prototyping hardware platform. 

 

 

The final phase of the project involves developing an embedded firmware 

program that provides a mechanism for controlling and utilizing the compression and 

decompression processor cores inside the system.  The firmware will be written in C 

programming language and will be an important tool in order to test the data 

compression system running in actual hardware and in real-time.  This will enable an 

easier and more efficient evaluation of the design to verify its compliance to the 

functional specifications. 

 

 

 

 

1.4 Literature Review 

 

 

This section discusses the theory and background knowledge involved in this 

project.  It provides a general overview of the compression algorithms used, which 

are the LZSS compression algorithm and Huffman coding, followed by discussions 
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on the hardware architecture and design approach of the proprietary high-speed data 

compression and decompression processor cores.  

 

 

 

 

1.4.1 Lempel-Ziv-Storer-Szymanski (LZSS) Compression Algorithm 

 

 

The main data compression technique chosen to be implemented in the design 

is the Lempel-Ziv-Storer-Szymanski (LZSS) algorithm.  It is a lossless compression 

technique, which means no information is lost during the compression and 

decompression process.  Compared to lossy compression techniques, where some 

information of source data is permanently lost in the process in favors for high 

compression savings, the LZSS algorithm generally has lower compression 

performance.  However, for applications that cannot tolerate even a single bit of 

information lost, this technique can provide such guarantee.  Therefore, LZSS 

compression algorithm actually covers larger application scope, where data 

compression techniques are concerned.   

 

 

The LZSS algorithm is also known as a universal data compression 

technique.  This means the algorithm can be applied to any discrete source, and its 

performance is comparable to certain optimal fixed code schemes designed for 

completely specified sources (Lempel, 1977).  Using this technique, a priori 

knowledge of the source data characteristics is not required since the algorithm 

adaptively construct an optimal codeword representation of the source data.  Coupled 

this with larger varieties of data compression applications it can handle, the 

proprietary data compression and decompression processor core design certainly has 

good competitive advantage for commercial high-speed computing applications.  

 

 

Using this compression technique, the source data are encoded as LZSS 

codeword, represented as a pair of position-length pointer which points to parsed 

strings in a dictionary or encoding table.  The strings are basically repeating symbols 

of source data that are stored inside the dictionary.  The idea is to replace the 

representation of the repeated strings with a form that only requires fewer bits than 
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the original data, thus representing the source with lesser number of bits.  On the 

decompression side, the LZSS algorithm adaptively regenerates the dictionary or 

encoding table based on the compressed data characteristics.  Therefore, transmission 

of the dictionary is not required, which improves its processing speed and reduces 

bandwidth requirement for communication systems.   

 

 

1.4.1.1 Notations and Definition 

 

 

Before the exact mechanics of the coding procedures are described, we need 

to define terminologies used in LZSS algorithm.  

 

Definition: The source data strings are over a finite alphabet A of α symbols, say A = 

{0, 1, …, α−1}.   A string S of length l(S) = k over A is an ordered k-tuple S = s1s2 … 

sk of symbols from A.  To indicate a substring of S which starts at position i and ends 

at position j, we write S(i, j).  When i ≤ j, S(i, j) = sisi+1 … sj , but when i > j, we take 

S(i, j) = Λ, the null string of length zero. 

 

Definition: The concatenation of strings Q and R forms a new string S = QR; if l(Q) 

= k and l(R) = m, then l(S) = k + m, Q = S(1,k), and R = S(1+1, k+m).  For each j, 0 

≤ j ≤ l(S), S(1, j) is called a prefix of S; S(1, j) is a proper prefix of S if j < l(S).   

 

Definition: Given a proper prefix S(1, j) of a string S and a positive integer i such that 

i ≤ j, let L(i) denote the largest nonnegative integer l ≤ l(S) − j such that S(i, i+l−1) = 

S(j+1, j+l), and let p be a position of S(1,j) for which L(p) = max1≤i≤jL(i). The 

substring S(j+1, j+L(p)) of S is called the reproducible extension of S(1, j) into S, and 

the integer p is called the pointer of the reproduction.  For example, if S = 00101011 

and j = 3, then L(1) = 1 since S(j+1, j+1) = S(1,1) but S(j+1, j+2) ≠ S(1,2).  

Similarly, L(2) = 4 and L(3) = 0. Hence, S(3+1, 3+4) = 0101 is the reproducible 

extension of S(1,3) = 001 into S with pointer p = 2. 
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1.4.1.2 LZSS Encoding Process 

 

 

1) Set i = 1, and initialize an integer h; h0 = 0 

2) Initialize buffer B with predefined symbols and first Ls symbols of the incoming 

source stream, S; B0 = X
n – Ls

S(1, Ls), where X is the predefined symbol 

3) For each i, 

a. Determine the reproducible extension of Bi-1 (1, n–Ls) into Bi-1. 

b. Compute the codeword, Ci, the integer hi, and update the contents of the 

buffer, Bi: 

i. If L(p) of the reproducible extension > 0 then 

� Ci = 1Ci1Ci2, where Ci1 = p – 1, Ci2 = L(p) 

� hi = hi-1 + L(p) 

� Bi = Bi-1 (1 + L(p), n) S(hi + 1, hi + Ls) 

ii. If L(p) of the reproducible extension = 0 then 

� Ci = 0Ci3, where Ci3 = Bi-1 (n–Ls+1, n–Ls+1) 

� hi = hi-1 + 1 

� Bi = Bi-1 (2, n) S (hi + 1, hi + Ls) 

4) If hi < l(S), then i = i + 1 and go to Step 3.  Else, STOP. 

 

 

1.4.1.3 LZSS Decoding Process 

 

 

1) Let Di denote the content of the buffer before i-th iteration of the algorithm, 

where l(Di) = n – Ls. 

2) Set i = 1, and initialize the buffer D with (n – Ls) predefined symbols, D1 = X
n–Ls

, 

X is the predefined symbol; 

3) For each i, 

a. Shift the contents of the buffer, Di:  

i. D’i = D’i (2, n–Ls) D’i (pi, pi)  ; if Flag = 1 (
*
Note 1), or 

ii. D’i = D’i (2, n–Ls) Hi   ; if Flag = 0 (
*
Note 2) 

b. Compute the restored string, Si: 

i. Si = D’i (n–Ls–li–1+1, n–Ls)  ; if Flag = 1 

ii. Si = D’i (n–Ls, n–Ls)   ; if Flag = 0 

c. Update the contents of the buffer: Di+1 = D’i 
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4) If Ci is the last codeword, then STOP. Else i = i + 1 and go to Step 2. 

 
*
Note 1:  Determine the p i–1 and li–1 from the next [log2 (n–Ls)] and the next 

[log2(Ls)] bits of Ci. Apply li–1shift, while copying the contents of 

position pi in the buffer into the position n – Ls. 

 
*
Note 2:  Determine the explicit symbol (said Hi) from the next l(Si(1,1)) bits of 

Ci. Shift the buffer once, while copying the Hi into the position n–Ls 

of the buffer. 

 

 

Example of the encoding and decoding process of LZSS algorithm is 

explained in Appendix A. 

 

 

 

 

1.4.2 Huffman Coding Algorithm 

 

 

Huffman coding is an entropy or statistical-based coding technique, where it 

requires a priori knowledge of the source data distribution characteristics in order to 

construct an optimal encoding table for better performance.  It allows variable-length 

codeword, where lesser bits are assigned to frequently occurring symbols, and more 

bits are assigned to symbols that seldom occur.  Effectively, the encoded data will 

take fewer bits to be represented since most of the frequently used symbols of the 

source have been replaced by shorter codes.   

 

 

 General procedure to construct Huffman codes is as follows: 

1) Rank all symbols in order of probability of occurrence. 

2) Successively combine the two symbols of the lowest probability to form a new 

composite symbol; eventually we will build a binary tree where each node is the 

probability of all nodes beneath it. 

3) Trace a path to each leaf, noticing the direction at each node. 

 

 

Appendix B describes the Huffman coding technique in details. 
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1.4.3 High-Speed Data Compression Core Design 

 

 

The technique used in the design of high-speed data compression and 

decompression processor cores is based on combination of LZSS compression 

algorithm and Huffman coding.  The source data to be compressed is first processed 

by the LZSS compression technique since the algorithm is not restricted in what type 

of data it can process, coupled with the fact that it requires no a priori knowledge of 

the source.  LZSS codeword is then generated whenever matches between the source 

data and the dictionary elements are detected, where the encoded data are represented 

as position-length pair codeword.  Generally, the length portion of the LZSS 

codeword yielded by the algorithm is non-uniformly distributed, where smaller 

lengths occur more frequently than longer ones (Yeem, 2002).  This suggests 

Huffman coding be employed to further encode the length portion of LZSS 

codeword in order to achieve higher compression saving.  In the decompression side, 

the whole process is performed in the reverse order. Figure 1.1 illustrates this 

approach. 

 

Compression

Source data

LZSS 
Codeword

Compressed 
dataLZSS 

Encoding

Huffman

Encoding

Decompression

Compressed 
data

LZSS 

Codeword
Restored 
dataLZSS 

Decoding
Huffman
Decoding

 
Figure 1.1: Compression and decompression approach of the processor core design 
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The LZSS algorithm, however, involves computationally intensive matching 

process during the compression stage because each input phrase has to be compared 

with every possible phrase in the dictionary.  Furthermore, the dictionary updating 

process involves variable length shifting of the input source into the dictionary, since 

the length of longest matched phrase changes with time.  If this operation is done 

using variable-length shifter, considerable amount of hardware resources will be 

consumed, which can lead to higher implementation cost because bigger (and 

correspondingly, more expensive) programmable logic device or ASIC silicon is 

needed.  The design tackles these problems through systolic array architecture of the 

LZSS compression dictionary, where each input data is compared with every 

dictionary elements simultaneously, while shifting input data is done one symbol at a 

time through the use of a fixed-length shifter. 

 

 

The Huffman coding technique also presents certain design challenges.  

Conventional Huffman coding requires a priori knowledge of the source data 

distribution characteristics in order to construct an optimal encoding table for better 

performance.  However, in many real-life applications, it is difficult to determine the 

characteristics of source data because its probability distribution normally changes 

with time.  Even when the source distribution statistics are available, different 

sources have different distribution characteristics.  The encoding table must then be 

generated for each type of source data.  Furthermore, the generated table must be 

transmitted along with the encoded data so that decompression can be performed 

correctly.  This would both reduce the compression saving and increase the 

processing time of the hardware.  The design tackles these problems by employing a 

predefined Huffman encoding table for both compression and decompression cores.  

The reason for this is two-fold; the first one is to simplify generation of the encoding 

table since adaptively building the table for different source data is no longer 

required. The second reason is to eliminate the need to transmit the encoding table to 

the decompression side, so that inefficient resource utilization and degradation of 

compression saving issues due to this encoding table transmission can be overcome.  

 

 

The data compression core design also employs the reconfigurable and 

reusable hardware concept.  This design concept promotes the use of the existing 
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hardware in other application domains with different processing requirements 

without significant modifications to the original design.  As a result, it helps in 

speeding up development cycle of large systems and lowering the cost of 

implementation.  The hardware design achieves this modularity through the use of 

scaleable hardware architecture and parameterized design approach, that resulted in 

configurable data compression and decompression processor cores based on suitable 

compromises between the constraint of resources, speed and compression saving.  In 

addition, the design allows capability of integrating both processor cores with any 

external memory-mapped systems, through the use of reconfigurable bus interfaces.  

Table 1.1 describes the required design parameters and its effects on the generated 

hardware in terms of resources, speed and compression saving trade-off, as well as 

the suitable interfacing mechanism to the external system: 

 

Table 1.1: Design parameters of the compression and decompression processor cores 

Design Parameter Description 

SymbolWIDTH Width of each input source symbol 

DicLEVEL The number of elements used to build the LZSS dictionary i.e. 

2
DicLEVEL

 

MAXWIDTH The predefined maximum match size in parsing symbols into 

one string i.e. 2
MAXWIDTH

 - 1 

IniDicValue The predefined symbol stored in each dictionary element 

when the dictionary is initialized. 

InterfaceWIDTH Width of the interfacing bus which is used to connect the 

compression/decompression hardware with an external 

interfacing system i.e. 2
InterfaceWIDTH

 

PollAmount Maximum number of data, each is 2
InterfaceWIDTH

, which is 

transferred between the compression/decompression hardware 

and external interfacing system within an interfacing phase. 
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1.5 Thesis Organization 

 

 

The work in this thesis is organized into seven chapters.  This first chapter 

presents the research background and motivation, followed by its objectives and 

scope of work.  An overview of the theory and knowledge involved is presented, 

before concluding with thesis organization. 

 

 

Chapter two discusses the research methodology.  It starts with discussions 

on the design and verification approaches, followed by descriptions of the tools and 

techniques used to complete the research work. 

 

 

Chapter three describes the design of the data compression hardware.  This 

includes design details of both the compression and decompression processor cores, 

as well as their respective interfaces to external host systems.  

 

 

Chapter four explains the design modifications and hardware enhancements 

proposed.  It starts by discussing design details of the parameterized and generic 

memory modules, followed by discussion on the conditional compilation approach 

for the best compromise of hardware implementation.  In addition, root cause of the 

decompression processor core hardware bug is described and followed by detailed 

explanation of the hardware modifications required to solve the issue.  

 

 

Chapter five discusses the development of a processor-based, stand-alone 

data compression system.  An overview of the system development is presented, 

focusing on the CAD tool used and the approach of embedding custom design with 

predefined IP modules.  In addition, this chapter describes the details of a memory-

mapped bus slave interface design to enable data transfers between the compression 

and decompression processor cores and the system processor.  This chapter also 

describes the system firmware development, which will be used to test the overall 

system running on actual prototyping hardware platform. 
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Chapter six describes the design simulation and hardware test that are 

performed on both processor cores, as well as the complete system for functional 

verification and validating the system performance operating in real-time.  In 

addition, comparison with original design is discussed to evaluate the performance of 

the proposed design enhancements. 

 

 

Chapter seven summarizes the research work and states all deliverables of the 

project.  Recommendations for potential future works are also given. 

 

 

 

 

1.6 Summary 

 

 

In this chapter, introduction to the background, theories and motivation of 

this project are discussed.  Based on the discussions, objectives of the project are 

identified which leads to the scope of work necessary to achieve the desired goals.  

In the next chapter, research methodologies used in this project are described. 




