

REGISTER TRANSFER LEVEL DESIGN OF COMPRESSION PROCESSOR

CORE USING VERILOG HARDWARE DESCRIPTION LANGUAGE

ROSLEE BIN MOHD SABRI

UNIVERSITI TEKNOLOGI MALAYSIA

iii

Specially dedicated to

 my beloved wife and family

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my deepest gratitude to my main

project supervisor, Professor Dr. Mohamed Khalil bin Mohd Hani, for giving me the

opportunity to work on new areas of digital system design. His constant

encouragement, critics and guidance were key to bringing this project to a fruitful

completion. I have learnt and gained much, not only in the field of research, but also

in the lessons of life.

My sincerest appreciation goes out to all those who have contributed directly

and indirectly to the completion of this research and thesis. Of particular mention is

Ms Hau Yuan Wen for her guidance, advices and motivations. Without her

continued support and interest, this project and thesis would not have been the same

as presented here.

I would also like to recognize the support of my fellow postgraduate students.

My sincere appreciation also extends to all my colleagues and others who have

provided assistance at various occasions. Their views and tips are useful indeed. At

the same time, the constant encouragement and camaraderie shared between all my

friends during my postgraduate studies has been an enriching experience.

Finally, I would like to express my love and appreciation to my wife who has

shown unrelenting care and support throughout this challenging endevour.

v

ABSTRACT

Throughput independent and parameterized data compression processor core

was designed to tackle the needs of high-speed data compression applications. The

design is based on combination of LZSS algorithm and Huffman coding, which

enables it to be used in compression of a wide variety of data types. However,

several design limitations exist. The design uses several technology-dependent

modules that limit its hardware realization in alternative technologies. In addition, it

also suffers from an abnormal functional behavior when trying to decompress data

that contain sufficiently high redundancy. In view of these limitations, design

enhancements are proposed. One of the proposed enhancements is to improve the

design portability to any hardware implementation technology. This is accomplished

through designing generic hardware to replace the technology-dependent modules

and utilizing conditional compilation approach to best decide the design realization

given the available resources and constraints. With this approach, IP cores designed

for the targeted technology should be used to take advantage of the efficient resource

utilization and proven design, which leads to faster time-to-market and minimizes the

integration risks and verification efforts of large systems. However, if the design

does not have access to IP cores, then generic modules can be instantiated but at the

expense of development cost. Another design enhancement offers a hardware patch

to fix the decompression core hardware bug. The issue was identified to originate

from writing and reading the same memory location simultaneously. As a solution,

the behavior of the memory controller and its supporting logic are modified to

prevent this from occurring. From the design simulation results, it is concluded that

the decompression core hardware bug is finally solved.

.

vi

ABSTRAK

Satu perkakasan pemadatan data yang berparameter serta mempunyai kadar

pemprosesan bebas telah direka untuk menangani keperluan aplikasi pemadatan data

berkadar laju. Rekaan ini dicipta berasaskan kepada kombinasi algoritma LZSS and

kod Huffman, yang membolehkan ia digunakan untuk memproses pelbagai jenis

data. Namun, wujud beberapa kelemahan dalam rekaan tersebut. Ia menggunakan

beberapa modul yang bergantung kepada teknologi khusus yang menghadkan

pengrealisasian perkakas jika digunakan dalam sistem teknologi yang berbeza.

Selain dari itu, rekaan tersebut juga mempunyai masalah kelakuan fungsi proses

menidak-padat yang tidak normal apabila ia digunakan untuk memproses data yang

mempunyai kadar ulangan yang tinggi. Justeru, beberapa cadangan membaik pulih

rekaan dihasilkan untuk menangani kelemahan-kelemahan tersebut. Salah satu

cadangan baik pulih yang dikemukakan membolehkan rekaan tersebut direalisasikan

dalam pelbagai jenis teknologi perkakasan. Perkara ini berjaya dihasilkan menerusi

rekaan perkakas generik untuk menggantikan modul yang bergantung kepada

teknologi khusus dan menggunakan cara kompilasi bersyarat untuk merealisasikan

rekaan berdasarkan kepada sumber dan maklumat yang ada. Menerusi cara ini,

perkakas IP yang direka untuk teknologi tertentu dapat digunakan bagi memastikan

hasil yang efektif dan berkesan, sekaligus memendekkan kadar masa yang diperlukan

untuk memasarkan produk dan mengurangkan risiko pengalihan dan pengesahan

maklumat bagi sistem-sistem yang besar. Namun, sekiranya rekaan ini tidak

mempunyai akses kepada perkakas IP, modul generik boleh digunakan tetapi

melibatkan kos pembangunan yang tinggi. Satu lagi cadangan baik pulih ialah

menawarkan tampalan perkakasan untuk membaiki pepijat dalam proses menidak-

padat. Masalah ini dikenalpasti berpunca apabila sistem memori diakses untuk

menulis dan membaca pada masa yang sama. Untuk menyelesaikan perkara ini,

kelakuan pengawal memori dan logik sokongannya diubahusai untuk mengelakkan

masalah tersebut dari berlaku. Dari keputusan simulasi rekaan, dapat disimpulkan

bahawa pepijat dalam proses menidak-padat data telah berjaya diselesaikan.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xi

 LIST OF FIGURES xii

 LIST OF SYMBOLS xv

 LIST OF APPENDICES xvi

1 INTRODUCTION 1

 1.1 Background

1.2 Problem Statement

1.3 Objectives & Scope of Works

1.4 Literature Review

1.4.1 Lempel-Ziv-Storer-Szymanski (LZSS)

Compression Algorithm

1.4.1.1 Notations and Definition

1.4.1.2 LZSS Encoding Process

1.4.1.3 LZSS Decoding Process

1.4.2 Huffman Coding Algorithm

1.4.3 High-Speed Data Compression Core Design

1.5 Thesis Organization

1

3

4

5

6

7

8

8

9

10

13

viii

1.6 Summary 14

2 METHODOLOGY 15

 2.1 Research Procedure

2.2 Design Verification Strategy

2.2.1 Functional and Timing Simulations

2.2.2 Real-Time Hardware Testing

2.3 Tools and Techniques

2.3.1 Verilog Hardware Description Language

2.3.2 C Software Programming

2.3.3 Altera System-On-Programmable-Chip

(SOPC) Builder Tool

2.3.4 Altera Quartus II Tool

2.3.5 Altera Excalibur Hardware Development Kit

2.4 Summary

15

17

18

22

23

23

24

24

25

25

26

3 DESIGN OF DATA COMPRESSION HARDWARE 27

 3.1 Overview of the Compression Hardware Design

3.2 Design of Compression Unit

3.2.1 LZSS Coder

3.2.2 Fixed Huffman Coder

3.2.3 Data Packer

3.3 Design of Compression Interface

3.4 Overview of the Decompression Hardware Design

3.5 Design of Decompression Unit

3.5.1 Data Unpacker

3.5.2 Fixed Huffman Decoder

3.5.3 LZSS Expander

3.6 Design of Decompression Interface

3.7 Summary

27

28

29

35

36

38

41

42

43

44

45

49

51

4 DESIGN MODIFICATIONS & HARDWARE

ENHANCEMENTS

52

ix

 4.1 Hardware Portability Issue

4.2 Generic Dual Port Memory Design

4.2.1 Design Specifications

4.2.2 Hardware Architecture

4.3 Generic Synchronous FIFO Design

4.3.1 Design Specifications

4.3.2 Hardware Architecture

4.4 Hardware Bug of Decompression Processor Core

Design

4.5 Details of Hardware Patch

4.6 Summary

52

54

54

55

56

57

57

59

64

68

5 DATA COMPRESSION SYSTEM HARDWARE

DEVELOPMENT

69

 5.1 Data Compression System Hardware Architecture

Overview

5.2 System on Programmable Chip Development

5.3 Avalon Memory-Mapped Slave Interface Design

5.3.1 Interface Register Sub-module Design

5.3.2 Interface Controller Sub-module Design

5.4 Firmware C Programming

5.5 Summary

69

71

73

76

78

82

86

6 DESIGN SIMULATION AND HARDWARE TESTING 87

6.1 Design Simulation

6.1.1 Test Setup

6.1.2 Test Result of Compression Processor Core

6.1.3 Test Result of Decompression Processor Core

6.2 Hardware Testing

6.2.1 Test Setup

6.2.2 Test Result of Data Compression System

6.3 Performance Analysis

6.3.1 Performance Metrics

87

87

89

89

90

91

92

93

94

x

6.3.2 Performance Comparison

6.4 Summary

94

96

7 CONCLUSIONS 97

 7.1 Concluding Remarks

7.2 Recommendations for Future Work

7.2.1 Improvement of LZSS Codeword Generation

Module

7.2.2 Employing Adaptive Huffman Coding

Technique

97

98

98

99

REFERENCES 101

Appendices A - J 104-181

xi

LIST OF TABLES

TABLE NO TITLE PAGE

1.1 Design parameters of the compression and

decompression processor cores.

12

3.1 Example of the Huffman encoding table 35

5.1 Address mapping of the slave peripheral

implemented by the interface register sub-module

76

6.1 Hardware parameters for compression and

decompression processor core design simulation

88

6.2 Results of data compression system hardware test 92

6.3 Benchmarking results of compression processor

core performance between VHDL and Verilog

design

95

6.4 Benchmarking results of decompression processor

core performance between VHDL and Verilog

design

95

xii

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 Compression and decompression approach of the

processor core design

10

2.1 Overview of test bench approach for design

simulations

18

2.2 Concept of cross-checking between RTL and

behavioral models used in design verification

19

2.3 Verification environment setup for simulating

design functionality of compression and

decompression processor core top level modules

21

3.1 Functional block diagram of the compression

hardware

28

3.2 Block Diagram of Compression_Unit 29

3.3 Hardware architecture of the LZSS coder module 29

3.4 Connection between PEs 30

3.5 PE hardware structure 31

3.6 Reduction tree hardware structure 32

3.7 Delay tree hardware structure 33

3.8 ASM flowchart of codeword generator 34

3.9 Operation of data packer 37

3.10 Block diagram of the compression interface 38

3.11 State transition diagram of compression interface

input controller

40

3.12 Functional block diagram of the decompression

hardware

42

3.13 Block diagram of Decompression_Unit 43

xiii

3.14 Operation of data unpacker 43

3.15 State transition diagram of fixed Huffman

decoder

45

3.16 Hardware architecture of LZSS expander 46

3.17 State transition diagram of codeword analyzer 47

3.18 Hardware architecture of decompression

dictionary

48

3.19 Hardware architecture of symbol generator 49

3.20 Block diagram of the decompression interface 50

4.1 Hardware architecture of the dual port memory 56

4.2 Hardware architecture of the synchronous FIFO 59

4.3 Behavior of dual port memory for simultaneous

read and write accesses on different memory

locations

61

4.4 Behavior of dual port memory for simultaneous

read and write accesses on same memory

locations

63

4.5 Simplified state transition diagram of the

Expander_Codeword_Analyzer sub-module

65

4.6 Updated state transition diagram of the improved

Expander_Codeword_Analyzer sub-module

design

66

4.7 Behavior of the decompression processor core

dual port memory after implementation of design

improvement

68

5.1 Overall architecture of the data compression

system on a chip design

70

5.2 Description of Avalon bus slave interface read

transfer with one fixed wait-state mechanism

74

5.3 Description of Avalon bus slave interface write

transfer with one fixed wait-state mechanism

75

5.4 Overview of the Avalon bus slave interface

module

75

xiv

5.5 Bit mapping structure of interface register control

signals

77

5.6 Bit mapping structure of LZSS_Status signal 78

5.7 State machine diagram of the

LZSS_Interface_Controller sub-module

79

5.8 Write data transfer request by host system 81

5.9 Read data transfer request by host system 81

5.10 ASM flowchart of the compression process

firmware design

84

5.11 ASM flowchart of the decompression process

firmware design

85

xv

LIST OF SYMBOLS

ASIC - Application Sppecific Integrated Circuit

CAD - Computer Aided Design

CPLD - Complex Programmable Logic Device

CPU - Central Processing Unit

DSP - Digital Signal Processing

EDA - Electronic Design Automation

FIFO - First In First Out

FPGA - Field Programmable Gate Array

FSM - Finite State Machine

GUI - Graphical User Interface

HDL - Hardware Development Language

I/O - Input/Output

IP - Intellectual Property

LCD - Liquid Crystal Display

LED - Light Emitting Diode

LPM - Library of Parameterized Module

LZSS - Lempel Ziv Storer Szymanski

PLD - Programmable Logic Device

ROM - Read Only Memory

RTL - Register Transfer Level

SRAM - Static Random Access Memory

SoC - System-on-Chip

SOPC - System-on-Programmable-Chip

UART - Universal Asynchronous Receiver Transmitter

VHDL - Very High Speed Integrated Circuit Hardware Description

Language

VLSI - Very Large Scale Integration

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Example of LZSS Compression Algorithm 104-108

B Example of Huffman Coding 109-110

C Compression Processor Core Verilog Codes 111-132

D Decompression Processor Core Verilog Codes 133-152

E Generic Memory Module Verilog Codes 153-156

F NIOS System Compression Processor Core

Verilog Codes

 157-162

G NIOS System Decompression Processor Core

Verilog Codes

 163-168

H Hardware Test System Firmware C Code 169-170

I Design Simulation Output Waveform 171-178

J Hardware Test Detailed Results 179-181

CHAPTER 1

INTRODUCTION

This project implements register-transfer-level design of a proprietary high-

speed data compression and decompression processor cores using Verilog hardware

description language. In addition, this project also offers enhancements aimed at

improving the design portability to any hardware implementation technologies, as

well as solving a hardware bug of the decompression processor core design. In the

first chapter, overview of the project background is presented, followed by

discussions on the problem statement, project objectives as well as the scope of

work. An overview of the theory and knowledge involved is also presented. The

organization of this thesis is presented at the end of the chapter.

1.1 Background

In many computing applications, getting the maximum throughput from

limited resources is always desirable. For example, modern communication systems

normally have limitations on its transmission medium’s bandwidth utilization for

data transfers. To fully utilize the available bandwidth, traffic sent through the

medium should not contain any redundant information. This is not necessarily the

case however, because all source information has inherent redundancies in them

(Shannon, 1948). This means considerable amount of valuable resources would be

wasted if these redundancies are not removed when transmitting data over the limited

bandwidth medium.

 2

In addition to efficient resource utilization, certain computing applications

require fast information processing and data manipulations in order for the system to

properly operate in real-time. For example, many wireless communication systems

operate in time division duplex mode, where windows of finite time duration are

allocated for data transfers between two communicating terminals. This means all

processing must be completed and the required data must be valid within this time

window to ensure proper communication takes place and to enable other data transfer

windows to be allocated. Else, the communication channel will break down and all

processed data will be rendered useless. Therefore, any improvements in ensuring

optimal physical resources utilization must also take into account the required

processing time of such improvements, so that the real-time performance of the

overall system is not degraded.

A cost effective way to efficiently utilize limited physical resources in high-

speed computing applications is by compressing the information processed by such

applications. Essentially, data compression techniques remove the inherent

redundant information in source data such that the information can be represented by

fewer bits. Applying this technique in high-speed communication systems for

example, allows more information to be transferred over a limited bandwidth

medium compared to if original source data were to be transmitted. This would

increase the effective bandwidth utilization of the transmission medium and the

overall system performance.

 However, data compression techniques are normally computationally

intensive, which means considerable amount of processing time is required to

achieve sufficient compression savings. Therefore, to effectively apply data

compression techniques in high-speed computing applications, the complex

processing of the data compression algorithms must be done considerably fast to

enable the system operating in real-time with required performance. This means a

high-speed data compression solution is needed in order to effectively utilize limited

resources in any high-speed computing applications.

 3

 To fulfill this need, a proprietary high-speed data compression and

decompression processor cores were designed and developed by Universiti

Teknologi Malaysia (Yeem, 2002). The hardware uses data compression techniques

based on combination of Lempel-Ziv-Storer-Szymanski (LZSS) algorithm and

Huffman coding. It was designed as a parameterized module for easy configurability

that can provide suitable compromise between constraints of hardware resources,

processing speed and compression saving. In addition, both processor cores were

designed to be easily integrated with any memory-mapped bus systems, which

attractively lend itself for operation within virtually all modern systems utilizing

some kinds of processor architecture. Initially, both compression and decompression

processor cores were ported to an ALTERA programmable logic device, which is the

FLEX10KE field programmable gate arrays (FPGA). As such, it uses several

ALTERA intellectual-property (IP) cores to ease design and development work, and

to take advantage of optimized resource utilization of the target device. The IP cores

used are the Library of Parameterized Module (LPM) first-in-first-out buffers (FIFO)

and dual port memories.

1.2 Problem Statement

The use of several IP modules targeted for specific technology means

hardware implementation of the compression and decompression processor cores is

limited to ALTERA programmable logic devices that support FIFO and dual port

memories used. At best, hardware implementation of the design in other logic

devices or technologies requires all IP modules to be replaced by equivalent

hardware in the device or technology of interest. However, if equivalent modules are

not available in target technology, or the design does not have access to IP modules

because of licensing requirements, hardware implementation would be considerably

difficult because the only solution is hardware redesign. Moreover, being

technology-dependent means the design has less competitive advantage for

commercial applications simply because potential users require highly flexible

solution for procurement considerations and ease of system maintainability.

 4

In addition to the limitation of the design’s hardware portability, it is found

that the functionality of the decompression processor core is not reliable. When

decompressing data with sufficiently high redundant information, the restored data

do not match its original source. When decompressing other sets of source data

however, the decompression processor core outputs match the original source bit-by-

bit. This inconsistent behavior means the decompression processor core design does

not meet its required functional specifications, which renders it useless in real

applications.

1.3 Objectives & Scope of Work

In view of the design limitations discussed in the previous section, the

objectives of this project are:

1) To improve the compression and decompression processor core hardware

portability to any programmable logic devices and/or process technologies.

2) To solve the abnormal behavior of the decompression processor core when

processing highly redundant data.

3) To develop a data compression system targeted to a prototyping hardware

platform for real-time design verification and performance analysis.

The scope of work of this project can be divided into three phases. The first

phase involves hardware redesign of the compression and decompression processor

cores using Verilog hardware description language. The parameterized nature of

original design will be kept to preserve its advantage in terms of hardware re-

configurability. Included in this project phase is the design of generic FIFO and

dual-port memory modules to replace the ALTERA IP cores used in original design.

The generic modules will enable both processor cores to be implemented in any

programmable logic devices and ASIC technologies without requiring any design

 5

modifications. In addition, a hardware patch will be designed to solve the abnormal

functional behavior of the decompression processor core. With this fix, the design is

expected to meet its functional specifications for any level of source data

redundancies.

The second phase involves developing a stand-alone data compression system

by embedding the compression and decompression processor cores in a processor-

based system. Both cores will function as secondary processors that implement the

required compression and decompression processing tasks to off-load the computing

constraints of the system processor. This system architecture allows faster processing

of the required data compression computations, so that the whole system can operate

in real-time especially for high-speed applications. In this phase, the work consists

of designing memory-mapped bus slave interfaces for both processor cores to enable

data transfers with the system processor, building the overall system by integrating

necessary components using a CAD tool, and implementing the system onto a

prototyping hardware platform.

The final phase of the project involves developing an embedded firmware

program that provides a mechanism for controlling and utilizing the compression and

decompression processor cores inside the system. The firmware will be written in C

programming language and will be an important tool in order to test the data

compression system running in actual hardware and in real-time. This will enable an

easier and more efficient evaluation of the design to verify its compliance to the

functional specifications.

1.4 Literature Review

This section discusses the theory and background knowledge involved in this

project. It provides a general overview of the compression algorithms used, which

are the LZSS compression algorithm and Huffman coding, followed by discussions

 6

on the hardware architecture and design approach of the proprietary high-speed data

compression and decompression processor cores.

1.4.1 Lempel-Ziv-Storer-Szymanski (LZSS) Compression Algorithm

The main data compression technique chosen to be implemented in the design

is the Lempel-Ziv-Storer-Szymanski (LZSS) algorithm. It is a lossless compression

technique, which means no information is lost during the compression and

decompression process. Compared to lossy compression techniques, where some

information of source data is permanently lost in the process in favors for high

compression savings, the LZSS algorithm generally has lower compression

performance. However, for applications that cannot tolerate even a single bit of

information lost, this technique can provide such guarantee. Therefore, LZSS

compression algorithm actually covers larger application scope, where data

compression techniques are concerned.

The LZSS algorithm is also known as a universal data compression

technique. This means the algorithm can be applied to any discrete source, and its

performance is comparable to certain optimal fixed code schemes designed for

completely specified sources (Lempel, 1977). Using this technique, a priori

knowledge of the source data characteristics is not required since the algorithm

adaptively construct an optimal codeword representation of the source data. Coupled

this with larger varieties of data compression applications it can handle, the

proprietary data compression and decompression processor core design certainly has

good competitive advantage for commercial high-speed computing applications.

Using this compression technique, the source data are encoded as LZSS

codeword, represented as a pair of position-length pointer which points to parsed

strings in a dictionary or encoding table. The strings are basically repeating symbols

of source data that are stored inside the dictionary. The idea is to replace the

representation of the repeated strings with a form that only requires fewer bits than

 7

the original data, thus representing the source with lesser number of bits. On the

decompression side, the LZSS algorithm adaptively regenerates the dictionary or

encoding table based on the compressed data characteristics. Therefore, transmission

of the dictionary is not required, which improves its processing speed and reduces

bandwidth requirement for communication systems.

1.4.1.1 Notations and Definition

Before the exact mechanics of the coding procedures are described, we need

to define terminologies used in LZSS algorithm.

Definition: The source data strings are over a finite alphabet A of α symbols, say A =

{0, 1, …, α−1}. A string S of length l(S) = k over A is an ordered k-tuple S = s1s2 …

sk of symbols from A. To indicate a substring of S which starts at position i and ends

at position j, we write S(i, j). When i ≤ j, S(i, j) = sisi+1 … sj , but when i > j, we take

S(i, j) = Λ, the null string of length zero.

Definition: The concatenation of strings Q and R forms a new string S = QR; if l(Q)

= k and l(R) = m, then l(S) = k + m, Q = S(1,k), and R = S(1+1, k+m). For each j, 0

≤ j ≤ l(S), S(1, j) is called a prefix of S; S(1, j) is a proper prefix of S if j < l(S).

Definition: Given a proper prefix S(1, j) of a string S and a positive integer i such that

i ≤ j, let L(i) denote the largest nonnegative integer l ≤ l(S) − j such that S(i, i+l−1) =

S(j+1, j+l), and let p be a position of S(1,j) for which L(p) = max1≤i≤jL(i). The

substring S(j+1, j+L(p)) of S is called the reproducible extension of S(1, j) into S, and

the integer p is called the pointer of the reproduction. For example, if S = 00101011

and j = 3, then L(1) = 1 since S(j+1, j+1) = S(1,1) but S(j+1, j+2) ≠ S(1,2).

Similarly, L(2) = 4 and L(3) = 0. Hence, S(3+1, 3+4) = 0101 is the reproducible

extension of S(1,3) = 001 into S with pointer p = 2.

 8

1.4.1.2 LZSS Encoding Process

1) Set i = 1, and initialize an integer h; h0 = 0

2) Initialize buffer B with predefined symbols and first Ls symbols of the incoming

source stream, S; B0 = X
n – Ls

S(1, Ls), where X is the predefined symbol

3) For each i,

a. Determine the reproducible extension of Bi-1 (1, n–Ls) into Bi-1.

b. Compute the codeword, Ci, the integer hi, and update the contents of the

buffer, Bi:

i. If L(p) of the reproducible extension > 0 then

� Ci = 1Ci1Ci2, where Ci1 = p – 1, Ci2 = L(p)

� hi = hi-1 + L(p)

� Bi = Bi-1 (1 + L(p), n) S(hi + 1, hi + Ls)

ii. If L(p) of the reproducible extension = 0 then

� Ci = 0Ci3, where Ci3 = Bi-1 (n–Ls+1, n–Ls+1)

� hi = hi-1 + 1

� Bi = Bi-1 (2, n) S (hi + 1, hi + Ls)

4) If hi < l(S), then i = i + 1 and go to Step 3. Else, STOP.

1.4.1.3 LZSS Decoding Process

1) Let Di denote the content of the buffer before i-th iteration of the algorithm,

where l(Di) = n – Ls.

2) Set i = 1, and initialize the buffer D with (n – Ls) predefined symbols, D1 = X
n–Ls

,

X is the predefined symbol;

3) For each i,

a. Shift the contents of the buffer, Di:

i. D’i = D’i (2, n–Ls) D’i (pi, pi) ; if Flag = 1 (
*
Note 1), or

ii. D’i = D’i (2, n–Ls) Hi ; if Flag = 0 (
*
Note 2)

b. Compute the restored string, Si:

i. Si = D’i (n–Ls–li–1+1, n–Ls) ; if Flag = 1

ii. Si = D’i (n–Ls, n–Ls) ; if Flag = 0

c. Update the contents of the buffer: Di+1 = D’i

 9

4) If Ci is the last codeword, then STOP. Else i = i + 1 and go to Step 2.

*
Note 1: Determine the p i–1 and li–1 from the next [log2 (n–Ls)] and the next

[log2(Ls)] bits of Ci. Apply li–1shift, while copying the contents of

position pi in the buffer into the position n – Ls.

*
Note 2: Determine the explicit symbol (said Hi) from the next l(Si(1,1)) bits of

Ci. Shift the buffer once, while copying the Hi into the position n–Ls

of the buffer.

Example of the encoding and decoding process of LZSS algorithm is

explained in Appendix A.

1.4.2 Huffman Coding Algorithm

Huffman coding is an entropy or statistical-based coding technique, where it

requires a priori knowledge of the source data distribution characteristics in order to

construct an optimal encoding table for better performance. It allows variable-length

codeword, where lesser bits are assigned to frequently occurring symbols, and more

bits are assigned to symbols that seldom occur. Effectively, the encoded data will

take fewer bits to be represented since most of the frequently used symbols of the

source have been replaced by shorter codes.

 General procedure to construct Huffman codes is as follows:

1) Rank all symbols in order of probability of occurrence.

2) Successively combine the two symbols of the lowest probability to form a new

composite symbol; eventually we will build a binary tree where each node is the

probability of all nodes beneath it.

3) Trace a path to each leaf, noticing the direction at each node.

Appendix B describes the Huffman coding technique in details.

 10

1.4.3 High-Speed Data Compression Core Design

The technique used in the design of high-speed data compression and

decompression processor cores is based on combination of LZSS compression

algorithm and Huffman coding. The source data to be compressed is first processed

by the LZSS compression technique since the algorithm is not restricted in what type

of data it can process, coupled with the fact that it requires no a priori knowledge of

the source. LZSS codeword is then generated whenever matches between the source

data and the dictionary elements are detected, where the encoded data are represented

as position-length pair codeword. Generally, the length portion of the LZSS

codeword yielded by the algorithm is non-uniformly distributed, where smaller

lengths occur more frequently than longer ones (Yeem, 2002). This suggests

Huffman coding be employed to further encode the length portion of LZSS

codeword in order to achieve higher compression saving. In the decompression side,

the whole process is performed in the reverse order. Figure 1.1 illustrates this

approach.

Compression

Source data

LZSS
Codeword

Compressed
dataLZSS

Encoding

Huffman

Encoding

Decompression

Compressed
data

LZSS

Codeword
Restored
dataLZSS

Decoding
Huffman
Decoding

Figure 1.1: Compression and decompression approach of the processor core design

 11

The LZSS algorithm, however, involves computationally intensive matching

process during the compression stage because each input phrase has to be compared

with every possible phrase in the dictionary. Furthermore, the dictionary updating

process involves variable length shifting of the input source into the dictionary, since

the length of longest matched phrase changes with time. If this operation is done

using variable-length shifter, considerable amount of hardware resources will be

consumed, which can lead to higher implementation cost because bigger (and

correspondingly, more expensive) programmable logic device or ASIC silicon is

needed. The design tackles these problems through systolic array architecture of the

LZSS compression dictionary, where each input data is compared with every

dictionary elements simultaneously, while shifting input data is done one symbol at a

time through the use of a fixed-length shifter.

The Huffman coding technique also presents certain design challenges.

Conventional Huffman coding requires a priori knowledge of the source data

distribution characteristics in order to construct an optimal encoding table for better

performance. However, in many real-life applications, it is difficult to determine the

characteristics of source data because its probability distribution normally changes

with time. Even when the source distribution statistics are available, different

sources have different distribution characteristics. The encoding table must then be

generated for each type of source data. Furthermore, the generated table must be

transmitted along with the encoded data so that decompression can be performed

correctly. This would both reduce the compression saving and increase the

processing time of the hardware. The design tackles these problems by employing a

predefined Huffman encoding table for both compression and decompression cores.

The reason for this is two-fold; the first one is to simplify generation of the encoding

table since adaptively building the table for different source data is no longer

required. The second reason is to eliminate the need to transmit the encoding table to

the decompression side, so that inefficient resource utilization and degradation of

compression saving issues due to this encoding table transmission can be overcome.

The data compression core design also employs the reconfigurable and

reusable hardware concept. This design concept promotes the use of the existing

 12

hardware in other application domains with different processing requirements

without significant modifications to the original design. As a result, it helps in

speeding up development cycle of large systems and lowering the cost of

implementation. The hardware design achieves this modularity through the use of

scaleable hardware architecture and parameterized design approach, that resulted in

configurable data compression and decompression processor cores based on suitable

compromises between the constraint of resources, speed and compression saving. In

addition, the design allows capability of integrating both processor cores with any

external memory-mapped systems, through the use of reconfigurable bus interfaces.

Table 1.1 describes the required design parameters and its effects on the generated

hardware in terms of resources, speed and compression saving trade-off, as well as

the suitable interfacing mechanism to the external system:

Table 1.1: Design parameters of the compression and decompression processor cores

Design Parameter Description

SymbolWIDTH Width of each input source symbol

DicLEVEL The number of elements used to build the LZSS dictionary i.e.

2
DicLEVEL

MAXWIDTH The predefined maximum match size in parsing symbols into

one string i.e. 2
MAXWIDTH

 - 1

IniDicValue The predefined symbol stored in each dictionary element

when the dictionary is initialized.

InterfaceWIDTH Width of the interfacing bus which is used to connect the

compression/decompression hardware with an external

interfacing system i.e. 2
InterfaceWIDTH

PollAmount Maximum number of data, each is 2
InterfaceWIDTH

, which is

transferred between the compression/decompression hardware

and external interfacing system within an interfacing phase.

 13

1.5 Thesis Organization

The work in this thesis is organized into seven chapters. This first chapter

presents the research background and motivation, followed by its objectives and

scope of work. An overview of the theory and knowledge involved is presented,

before concluding with thesis organization.

Chapter two discusses the research methodology. It starts with discussions

on the design and verification approaches, followed by descriptions of the tools and

techniques used to complete the research work.

Chapter three describes the design of the data compression hardware. This

includes design details of both the compression and decompression processor cores,

as well as their respective interfaces to external host systems.

Chapter four explains the design modifications and hardware enhancements

proposed. It starts by discussing design details of the parameterized and generic

memory modules, followed by discussion on the conditional compilation approach

for the best compromise of hardware implementation. In addition, root cause of the

decompression processor core hardware bug is described and followed by detailed

explanation of the hardware modifications required to solve the issue.

Chapter five discusses the development of a processor-based, stand-alone

data compression system. An overview of the system development is presented,

focusing on the CAD tool used and the approach of embedding custom design with

predefined IP modules. In addition, this chapter describes the details of a memory-

mapped bus slave interface design to enable data transfers between the compression

and decompression processor cores and the system processor. This chapter also

describes the system firmware development, which will be used to test the overall

system running on actual prototyping hardware platform.

 14

Chapter six describes the design simulation and hardware test that are

performed on both processor cores, as well as the complete system for functional

verification and validating the system performance operating in real-time. In

addition, comparison with original design is discussed to evaluate the performance of

the proposed design enhancements.

Chapter seven summarizes the research work and states all deliverables of the

project. Recommendations for potential future works are also given.

1.6 Summary

In this chapter, introduction to the background, theories and motivation of

this project are discussed. Based on the discussions, objectives of the project are

identified which leads to the scope of work necessary to achieve the desired goals.

In the next chapter, research methodologies used in this project are described.

