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ABSTRACT 

Intrusion Detection Systems (IDS) are developed to be the defense against 

these security threats. Current signature based IDS like firewalls and anti viruses, 

which rely on labeled training data, generally can not detect novel attacks. A method 

that offers a promise to solve this problem is the anomaly based IDS. Literature has 

shown that direction towards reducing false positive rate and thus enhancing the 

detection rate and speed have shifted from accurate machine learning classifiers to 

the adaptive models like bio-inspired models. Consequently, this study has been 

introduced  to enhance the detection rate and speed up the detection process by 

reducing the network traffic features. Moreover, it aimed  to investigate the 

implementation of the bio-inspired Immune Network approach for clustering 

different kinds of attacks. This approach aimed at enhancing the detection rate of 

novel attacks and thus decreasing the high false positive rate in IDS. Rough Set 

method was applied to reduce the dimension of  KDD CUP ’99 dataset which used 

by this study and select only the features that best represent all kinds of attacks. 

Immune Network clustering was then applied using aiNet algorithm in order to 

cluster normal data from attacks in the testing dataset. The results revealed that 

detection rate and speed were enhanced by using only the most significant features. 

Furthermore, it was found that Immune Network clustering method is robust in 

detecting novel attacks in the test dataset. The principal conclusion was that IDS  is 

enhanced by the use of significant network traffic features besides the 

implementation of the Immune Network clustering  to detect novel attacks. 
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ABSTRAK 

 Sistem Pengesanan Pencerobohan (IDS) dibangunkan untuk menangani 

ancaman keselamatan ini. Sistem pengesanan berteraskan tandatangan seperti 

dinding api dan anti-virus kebiasaannya tidak dapat mengecam serangan-serangan 

baru manakala sistem pengesanan berbentuk ‘anomaly’ berupaya menyelesaikan  

masalah sebegini. Kajian menunjukkan tumpuan telah beralih kepada pengurangan 

false alarm serta pembaikan terhadap tahap pengesanan dan kelajuan pengesanan 

dengan aplikasi seperti pengesanan berbentuk ‘machine-learning’ kepada kaedah 

berdasarkan ‘bio-inspired’. Oleh itu, kajian projek ini dibangunkan untuk 

menambahbaik kadar pengesanan serta kelajuan proses pengesanan ini dengan 

mengurangkan atribut pada paket rangkaian trafik. Secara spesifiknya, fokus kajian 

projek ini tertumpu kepada pengaplikasian pendekatan ‘bio-inspired Immune 

Network’ pada sistem pengesanan pencerobohan dengan mengumpukkan (cluster) 

kepada kelas-kelas serangan. Tujuannya adalah untuk menambahbaik kadar 

pengesanan terhadap serangan-serangan baru dan menurunkan kadar ‘false positive’. 

Kaedah ‘Rough Set’ digunakan untuk mengurangkan dimensi atribut pada paket-

paket rangkaian set data KDD CUP ’99 serta memilih atribut-atribut yang terbaik 

bagi mewakili semua jenis serangan. Algoritma aiNet digunakan bagi mengasingkan 

kan data normal dari data serangan pada set data pengujian. Hasil kajian 

menunjukkan kadar pengesanan serta kelajuan proses pengesanan boleh dicapai 

dengan menggunakan atribut-atribut rangkaian yang penting. Disamping itu, Immune 

Network berupaya mengesan jenis-jenis serangan yang baru. Kesimpulannya, 

penambahbaikan pada sistem pengesanan pencerobohan ini boleh diperolehi dengan 

menggunakan atribut-atribut rangkaian yang penting sahaja mewakili semua jenis 

serangan dan Immune Network berupaya mengklusterkan serangan-serangan baru. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Due to the increase use of computer networks in many aspects of life, the 

number of vulnerabilities also is increasing causing the network resources 

unavailable and violates the system confidentiality, integrity and availability. 

Intrusions pose a serious security threat for the stability and the security of 

information in the network environment. A network intrusion attack encompasses a 

wide range of activities. It includes attempting to destabilize the network, gaining 

unauthorized access to files with privileges, or mishandling and misusing of software 

(Jiang et al., 2006).  

Intrusion Detection Systems (IDS’s) are security tools that, like other 

measures such as antivirus software, firewalls,  and access control schemes, are 

intended to strengthen the security of information and communication systems 

(Teodoro, 2009). An Intrusion Detection System is an important component of the 

computer and information security framework. Its main goal is to differentiate 
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between normal activities of the system and behaviors that can be classified as 

intrusive. 

The purpose of IDS is to detect unauthorized use or access to the computer 

system or network from the outside environment by those who do not have the 

authority or access rights to such systems. The main goal of intrusion detection is to 

build a system that could automatically scan the network activity and detect such 

intrusion attacks. An IDS is used to detect several types of malicious behaviors that 

can compromise the security and trust of a computer system or network. This 

includes network attacks against vulnerable services, data driven attacks on 

applications, host based attacks such as privilege escalation, unauthorized logins and 

access to sensitive files, and malware (viruses, Trojan horses, and worms). 

There are two main intrusion detection approaches: anomaly intrusion 

detection system and misuse intrusion detection system .The anomaly detection 

focuses on the unusal activities of patterns and uses the normal behavior patterns to 

identify an intrusion. The misuse detection recognizes known attack patterns and 

uses well-defined patterns of the attack. On the other hand, IDS’s may be categorized 

according to the host system into two types:  

 

i. Host-based IDS (HIDS) 

ii. Network-based IDS(NIDS) 

 

The first operates at the host level and monitors a single host machine using the audit 

trails of the host operating system, whereas the other operates at the network level 

and monitors any number of hosts on the network. 

According to Zainal et al., (2006), IDS can be treated as pattern recognition 

problem or rather classified as learning system. They stated that, an appropriate 

representation space for learning by selecting relevant attributes to the problem 
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domain is an important issue for learning systems.  Bello et al., (2005)   suggested 

that feature reduction is necessary to reduce the dimensionality of training dataset. 

They claimed that feature reduction also enhances the speed of data manipulation 

and improves the classification rate by reducing the influence of noise. 

 Furthermore, Kim et al., (2005) stated that the goal of feature reduction is to 

find a feature subset in order to maximize some performance criterion, such as 

classification accuracy. They claimed that selecting important features is an 

important issue in intrusion detection.   

In  literature,  numbers of anomaly detection systems were developed based 

on many different machine learning techniques. For example, some studies apply  

single  learning  techniques,  such  as  neural  networks,  genetic  algorithms, support 

vector machines, bio-inspired algorithms , etc. On the other hand, some systems are  

based on combining different learning techniques, such as hybrid or ensemble  

techniques. In particular, these techniques were developed as classifiers, which were 

used to classify or recognize whether the incoming network access is normal access 

or an attack. 

Computing models inspired by biology are a way to make use of concepts, 

principles and mechanisms underlying biological systems. This type of computing 

includes among others, fields as evolutionary algorithms, neural networks, molecular 

computing quantum computing and immunological computation. The trend now is 

going towards the bio-inspired systems because of the ability of those systems to 

adapt naturally with the environment in which they applied. The human immune 

system provides inspiration for solving a wide range of innovative problems. 

The Immune Network theory as originally proposed by Jerne, (1974a) 

hypothesized a novel viewpoint of lymphocyte activities, natural antibody 
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production, pre-immune repertoire selection, tolerance and self/non-self 

discrimination, memory and the evolution of the immune system. It was suggested 

that the immune system is composed of a regulated network of cells and molecules 

that recognize one another even in the absence of antigens. The immune system was 

formally defined as an enormous and complex network of paratopes that recognize 

sets of idiotopes, and of idiotopes that are recognized by sets of paratopes, thus it 

could recognize as well as be recognized (de Castro et al., 2001). 

By dealing with very large number of data over networks, it is very difficult 

to classify them manually to detect possible intrusions. Labeled data can be obtained 

by simulating intrusions, but this is limited to the set of known attacks and will fail to 

address the new types of attacks that may occur in the future. As a result of  that 

limited ability in detecting unknown attacks, the detection system will not be able  to 

play its role in securing the network data. So a technique for detecting intrusions 

when the data is unlabeled  is needed, as well as detecting new and unknown types of 

attacks . 

1.2 Problem Background 

 

 

Kim and Park, (2003) proposed a network-based Support Vector Machine 

SVM IDS, and demonstrated it through results of 3 kinds of experiments. They have 

shown that SVM IDS can be an effective choice of implementing IDS.  They 

discovered that there are some miss-classified input vectors and those degrade the 

performance of SVM IDS. They claimed that the performance of SVM IDS can be 

improved by applying Genetic Algorithm (GA) based feature extraction. They 

further suggested that Decision Tree (DT) method can also be used to extract features 

instead of GA. 
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Shon et al., (2005) employed a GA for selecting proper TCP/IP packet fields 

to be applied to support vector learning in order to distinguish anomaly attacks from 

normal packets. Their results showed that their proposed GA and the time delay 

preprocessing were reasonable for feature reduction. Moreover, they claimed that the 

two approaches using supervised and unsupervised SVM provide a high correction 

rate, but high false positive alarms. 

A multi-level hybrid classification model combining DT and Bayesian 

Network (BN) clustering has been proposed by Xiang, (2008). Their results on KDD 

CUP’99 dataset, a benchmark dataset used to evaluate IDS, were compared with 

other popular approaches such as multi-level tree classifier and winners of KDD 

CUP’99. It was shown that this new approach is very efficient in detecting intrusions 

with an extremely low false-negative rate of 3.23%, while keeping an accepTable 

level of false-positive rate of 3.2%. Although the false positive rate was reported to 

be as low as 0.5% for the KDDCUP’99 winner (Pfahringer, 2000), the corresponding 

false negative rate was merely 9.1%, which is much higher than their result (3.23%).   

 Zanero and Savaresi, (2004) stated that the problem of IDS does not lie only 

in the sheer number of vulnerabilities that are discovered every day. They claimed 

that there are also an unknown number of unexposed vulnerabilities that may not be 

immediately available to the experts for analysis and inclusion in the knowledge 

base. In order to overcome this problem, they introduced an unsupervised anomaly 

detection based on clustering. They satated that their approach increase the detection 

rate of different kinds of unknown attacks  

In most circumstances, labeled data or purely normal data is not readily 

available since it is time consuming and expensive to manually classify it. Purely 

normal data is also very hard to obtain in practice, since it is very hard to guarantee 

that there are non intrusions when they were collecting network traffic (Leung and 
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Leckie, 2005). They stated that to address these problems, they used a new type of 

intrusion detection algorithm called unsupervised anomaly detection.  

Data reduction can be achieved by filtering, data clustering and feature 

selection (Chebrolu et al., 2004). Generally, the capability of anomaly intrusion 

detection is often hindered by the inability to accurately classify a variation of 

normal behavior as an intrusion. Additionally, network traffic  data  is  huge,  and  it  

causes  a  prohibitively high overhead and  often  becomes a  major  problem  in IDS 

(Sung and Mukkamala, 2004).  

According to Chakraborty, (2005), the existence of these irrelevant and 

redundant features generally affects the performance of machine learning or pattern 

classification algorithms. Hassan, et al., (2003) proved that proper selection of 

feature set has resulted in better classification performance. (Sung and Mukkamala, 

2004) have demonstrated that the elimination of these unimportant and irrelevant 

features did not significantly lowering the performance of IDS.  

 Chebrolu et al., (2004) tackled the issue of effectiveness of an IDS in terms 

of real-time and detection accuracy from the feature reduction perspective.  In their 

work, features were reduced using two techniques, Bayesian Network (BN) and 

Classification and Regression Trees (CART). They have experimented using four 

sets of feature subset which are 12, 17, 19 and all the variables (41) from one 

network connection. Dataset used was KDD CUP 99.  They suggested that using the 

full 41 features do drop the detection rate of the IDS. 
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1.3 Problem Statement 

In most circumstances, labeled data is not available since it is time consuming 

and very expensive to classify it manually. Meanwhile there is always a dynamic 

change in traffic patterns as well as an emerging of novel attacks.  All these problems 

make the supervised approach unpractical solution for IDS. To solve these problems, 

researchers move to work on unsupervised approach, namely clustering as this 

unsupervised approach does not depend on the labeled data. Various unsupervised 

methods have been proposed but the detection rate of IDS is rather inadequate in 

comparison to supervised approaches. 

1.4 Research Question 

To cater the problems stated in secion 1.3 this study was carried out to answer the 

following questions: 

 

1. How to reduce the dimension of input data or how to choose the features that 

best represent all types of attacks? 

2. How Immune Network clustering method perform in detecting new attack 

types? 

3. How to evaluate the performance of the Immune Network method for 

clustering? 
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1.5 Project Hypothesis 

The Feature Reduction using Rough Set method and the Immune Network 

clustering for network-based IDS would yield a good performance in terms of 

detection accuracy, speed and identifying new attack types. 

1.6 Project Aim 

The aim of this project was to reduce the data features and classify /cluster 

the data such that it gives a lower false positive rate, improves accuracy, speed, and 

improves the ability of classifying new attack types of unknown dataset. 

1.7 Objectives 

To accomplish the aim of this project, a few objectives have been identified: 

1. To improve the accuracy and speed of detecting attacks by selecting  

            significant data features that best represent all attack types. 

2. To investigate the ability of Immune Network method for clustering  

            normal traffic from attacks thus detection rate for unknown attacks can be   

            further improved. 

3. To compare the performance of the Immune Network clustering with  

a traditional clustering method, namely K-Means on the test data. 
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1.8 Project Scope 

The scope of this project is defined as follows: 

1. The dataset that was used in this study is the KDD Cup 1999, a common  

benchmark for evaluation of intrusion detection techniques.  

2. The feature reduction model was developed using Rough Set Theory to get  

the most significant features that best represent all attack types. 

3. The Immune Network model was adopted using the original Immune  

Network algorithm (aiNet). 

4. Evaluation / Comparison was done with a traditional clustering method, 

namely K-Means. 

1.9 Significance of the Project 

This study evaluates the performance of feature reduction and Immune 

Network clustering for the network-based IDS in terms of accuracy, speed of 

detection and the ability to classify new attack types in the test dataset. The results 

were compared with K-Means clustering method to see whether this approach can 

give better performance. The result of the study was contributed to the identification 

of an improved approach for IDS. This new approach could be used to develop a 

methodology that will be valuable in future studies of anomaly based IDS 

improvements. 
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