SIMULATION AND PERFORMANCE ANALYSIS OF THE SUB CARRIER MULTIPLEXED RADIO OVER FIBER SYSTEM

MAHYUDDIN BIN ARSAT

UNIVERSITI TEKNOLOGI MALAYSIA

To my beloved mother and father

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many peoples, researchers, academicians and practitioners. With a deep sense of gratitude, I wish to express my sincere thanks to my supervisor, Dr. Sevia Mahdaliza Idrus, for her immense help in carrying out the project. Profound knowledge and timely with came as a boon under the guidance of Dr. Sevia M. Idrus. Her valuable suggestions as final words during the course of work are greatly acknowledge.

The acknowledgement would not be complete without the mention of my project master colleagues at Universiti Teknologi Malaysia, Hamim bin Nasoha and Hilman bin Harun for their timely help on simulation session during my research.

I also want to thank my parent, who taught me the value of hard work by their own example. I would like to share this moment of happiness with my father, mother, sisters and brothers. They rendered me enormous support during he whole tenure of my project.

Finally, I would like to thank all whose direct and indirect support helped me completed my thesis.

ABTRACT

Radio over Fiber (RoF) technology or micro cellular over fiber is proposed solution for the reducing cost and providing highly reliable communication services. The system is a technique that modulates RF in microwave signals on an optical carrier to take advantage of the low loss of optical fiber characteristic. The RoF system is very cost-effective because the localization of signal processing in central station and also use a simple base station. In this system, the subcarrier multiplexed system for data transmission has been developed and the performance of the system was analyze in term of signal power, Bit Error Rate (BER), Carrier-to-Noise ratio (CNR) and Eye diagram. This system was focus on a link between two stations; a transmitter and receiver. The designed of SCM-RoF system employing PSK as the RF modulation scheme. In this work, the transmitter presenting four input signal and each of the signal will be modulate using PSK individually. At the optical domain, the CW Laser diode was used as the optical source, while Mach Zender as the optical modulator. Whereby, the transmission link was modelled using standard single mode fiber up to 150 km communication distance with EDFA 0m - 5mlength. At the receiver end, the light carrying the radio subcarrier multiplexed signal is photo-detected by a PIN photodiode.

ABSTRAK

Teknologi penghantaran Radio melalui Fiber (RoF) telah memperkenalkan pengurangan kos dan penyediaan servis komunikasi yang boleh dipercayai. Sistem ini merupakan teknik memodulatkan isyarat frekuensi radio dengan isyarat pembawa optik dengan memanupulasi kelebihan kadar kehilangan yang rendah yang ada pada karakter fiber optik. Sistem RoF ini juga sangat kos-effektif kerana system ini manjalankan pemprosesan isyrat secara berpusat dan hanya memerlukan stesen utama yang ringkas. Sistem subcarrier multiplexed untuk sistem penghantaran data telah dibangunkan dan prestasi sistem ini telah dianalisi menerusi Kadar Ralat Bit (BER), Nisbah Pembawa dan Hingar (CNR) dan rajah mata. Sistem ini memfokuskan pengahantaran melalui satu penghantar dan satu pernerima. Sistem ini juga menggunakan PSK sebagai teknik memodulat isyarat. Pada kajian ini, empat saluran isyarat RF telah diperkenalkan yang mana setiap isyarat dimodulatkan dengan teknik PSK. CW laser telah digunakan sebagai sumber optik dan modulator Mach Zender digunakan sebagai modulator optik. Selain itu, Fiber satu mod (SMF) telah digunakan pada talian penghantaran dengan kadar jarak maksimum 150 km serta EDFA pada kadar 0 m - 5m. Pada bahagian penerima pula, pengesan optik PIN telah digunakan untuk mengesan isyarat termodulat tersebut.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	TITI	LE PAGE	i
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	ГКАСТ	V
	ABS	ГКАК	vi
	TAB	LE OF CONTENTS	vii
	LIST	COF TABLES	xi
	LIST OF FIGURES		xii
	LIST	COF SYMBOLS	XV
	LIST	COF ABBREVIATIONS	xvi
	LIST	COF APPENDICES	xvii
1	INTE	RODUCTION	1
	1.1	Historical Perspective	1
	1.2	Project Background	2
	1.3	Objectives	4
	1.4	Scope of work	4
	1.5	Methodologies	5
	1.6	Thesis Outline	7

LITERATURE REVIEW	9
	LITERATURE REVIEW

2.1	Radio over Fiber		
2.2	Sub C	arrier Multiplexing	10
	2.7.1	Analog SCM System	13
	2.7.2	Digital SCM System	13
2.3	Optica	al Modulator	14
	2.3.1	Mach-Zender Modulator	14
	2.3.2	Electrooptic Phase Modulator	15
2.4	Light	Source	20
2.5	Fiber	Link	22
	2.7.1	Step-Index Fiber	22
	2.7.2	Graded-Index Fiber	25
2.6	Optica	al Amplifier	26
	2.7.1	Noise	29
	2.7.2	Gain Saturation	30
	2.7.3	Inhomogeneous Broadening Effects	30
	2.7.4	Polarization Effects	31
2.7	Receiv	ver Part	32
	2.7.1	Receiver Sensitivity	33
	2.7.2	Dynamic Range	34
	2.7.3	PIN Photodetector	36
	2.7.4	Avalanche Photodetector	39
	2.7.5	Photodetector Noise	42
SCM	– ROF	MODELLING	43
3.1	The T	ransmitter Model	45
3.2	The T	ransmission Link Model	49
3.3	The R	eceiver Model	51
SIMU	JLATIO	DN RESULT	54
4.1	The T	ransmitter Simulation Results	55
4.2	The T	ransmission Link Simulation Results	58
4.3	The R	eceiver Simulation Results	59
4.4	The E	ye Diagram	62

3

4

5	PER	FORMA	NCES ANALYSIS	65
	5.1	Analysis on Fiber Length without EDFA Introduced		65
		5.1.1	The Bit Error Rate Performances	66
		5.1.2	The Carrier to Noise Ratio Performances	68
		5.1.3	The Eye Diagram	69
	5.2	Analys	sis on EDFA Length	70
		5.2.1	The Carrier to Noise Ration Performances	71
		5.2.2	The Bit Error Rate Performances	72
		5.2.3	Quality Factor	73
		5.2.4	The Eye Diagram	74
	5.3	Analys	sis on Fiber Length with EDFA	74
		5.3.1	The Carrier to Noise Ratio Performances	75
		5.3.2	The Bit Error Rate Performances	76
		5.3.3	Quality Factor	77
		5.3.4	The Eye Diagram	78
	5.4	Analys	sis on nonlinearity due to optical power level	79
		5.4.1	The Bit Error Rate Performances	80
		5.4.2	The Carrier to Noise Ratio	81
		5.4.3	Quality Factor	82
		5.4.4	The Eye Diagram	83
	5.5	Analys	sis on number of channels in the system.	83
		5.5.1	The Bit Error Rate Performances	84
		5.5.2	The Carrier to Noise Ratio	85
		5.5.3	The Eye Diagram	86
6	CON	CLUSI	ON AND RECOMMENDATION	87
	6.1	Conclu	usion	87
	6.2	Recom	nmendation	89
	6.3	Future	Work	90
	6.4	Public	ation	91

REFERENCES	89
APPENDIX A	94
APPENDIX B	96

LIST OF TABLES

TA	BL	Æ	NC)
----	----	---	----	---

TITLE

PAGE

2.1	Typical Step-Index Fiber characteristic	22
3.1	Global simulation setup	44
3.2	Subcarrier frequency allocation	45
3.3	Spectrum frequency	45
3.4	Simulation setup for EDFA	48
3.5	Simulation setup for Single Mode Fiber	48
3.6	Simulation setup for APD Photo detector	51
5.1	Basic Simulation Specification for Analysis on	
	Fiber Length	64
5.2	Basic simulation setup for Analysis on EDFA length	68
5.3	Basic simulation setup for SCM_ROF with EDFA	73
5.4	Basic simulation setup for nonlinearity of power levels	77
5.5	Frequency allocation for 8 channels	81
6.1	Length of fiber with reasonable BER	86

LIST OF FIGURE

TITLE

NO

1.1	Basic architecture of a single end-to-end SCM system	3
1.2	The project flow chart	6
2.1	A basic configuration of SCM system.	8
2.2	Basic configuration of RF modulation	10
2.3	Basic configuration of Optical modulator	12
2.4	The spectrum of Optical Double Side Band (ODSB)	12
2.5	The spectrum of Optical Single Side Band (OSSB)	13
2.6	Basic configuration of Optical Modulator for OSSB	14
2.7	The optical signals modulated by a single wavelength.	17
2.8	Basic architecture of using Phase Modulator.	17
2.9:	Step-Index Fiber. (a) Refractive index profile.	
	(b) End view.(c) Cross-sectional side view.	21
2.10	Graded-Index Fiber. (a) Refractive index profile.	
	(b) End view.(c) Cross-sectional side view.	24
2.11	Schematic diagram of a simple Doped Fiber Amplifier	25
2.12	A basic structure of PIN diode	26
2.13	Cross-sectional view of PIN diode	35
2.14	Energy-band diagram under reserve bias	35
2.15	Structure of an APD	38
2.16	Gain versus reverse bias characteristic of APD	39
3.1	Model of four channels SCM-ROF system.	42
3.2	Transmitter for electrical domain	43

PAGE

3.3	Transmitter for optical domain.	46
3.4	Transmission link	50
3.5	The receiver for optical domain.	51
4.1	Signal wave modulated by PSK	53
4.2	(a) RF spectrum for data signal on first channel	
	(3.6 GHz).	54
	(b) RF spectrum for data signal on second	
	channel (7.2 GHz).	54
	(c) RF spectrum for data signal on third	
	channel (10.8 GHz).	54
	(d) RF spectrum for data signal on fourth	
	channel (18.0 GHz).	54
4.3	RF spectrum for adding four channels.	55
4.4	Amplified composite signal	55
4.5	Spectrum of the signal after Mach Zender modulator.	56
4.6	Optical spectrum after EDFA.	57
4.7	Optical spectrum after propagated 65km in fiber.	57
4.8	RF spectrum detected by photo detector	58
4.9	Amplified received RF spectrum	58
4.10	RF spectrum for channel 1	59
4.11	Received electrical signal wave	59
4.12	Eye Diagram for the channel 1.	60
4.13	Eye Diagram for the channel 2.	61
4.14	Eye Diagram for the channel 3.	61
4.15	Eye Diagram for the channel 4.	61
5.1	BER Performance for channel 1.	65
5.2	BER Performance for channel 4.	65
5.3	CNR for the all channels.	66
5.4	Eye diagram for channel 1	67
5.5	CNR for 4 channels	69
5.6	Log of BER for 4 channels	70
5.7	Q factor versus EDFA length.	71
5.8	Eye Diagram for channel 1	72

5.9	CNR performance for 4 channels	74
5.10	BER performance for 4 channels	75
5.11	Quality factor for 4 channels.	75
5.12	Eye diagram for fiber length 1 km to 150 km	76
5.13	BER for channel 1 versus optical power.	78
5.14	BER for channel 2	79
5.15	CNR for versus optical power	79
5.16	Q factor for channel 1 and 2.	80
5.17	The eye diagram for channel 1	80
5.18	BER performance for 8 channels	82
5.19	CNR performance for 8 channels	83
5.20	The eye diagram for channel 5	84
5.21	Eye diagram for channel 6	84

LIST OF SYMBOLS

f		Frequency
-	•	
λ	:	Lambda
P_0	:	Input optical power
$L_{ m is}$:	Insertion loss
ϕ_{Bias}	:	Bias phase shift
Vл	:	Half wave voltage
с	:	Critical angle,
Δ	:	Refractive index change
\mathbf{n}_1	:	Refractive index
Er ⁺³	:	Erbium ion
J	:	Quantum number
dB	:	Decibel
Ν	:	Average number of electrons
Т	:	Bit interval of time
m	:	Number of electrons generated
η	:	Quantum efficiency
ρ	:	Resistivity
Ω	:	Ohm
GHz	:	Giga Hertz

LIST OF ABBREAVIATIONS

TDM	:	Time Division Multiplexed
FDM	:	Frequency Division Multiplexed
SCM	:	Sub Carrier Multiplexed
WDM	:	Wavelength Division Multiplexed
SCM-ROF	:	Sub Carrier Multiplexed Radio over Fiber
CNR	:	Carrier to Noise Ratio
BER	:	Bit Error Rate
EDFA	:	Erbium Doped Fiber Amplifier
MZM	:	Mach Zehnder modulator
FM	:	Frequency modulation
AM-VSB	:	Amplitude modulation with vestigial sideband
IMD	:	Intermodulation distortion
ODSB	:	Optical Double Side Band
OSSB	:	Optical Single Side Band
SCM/WDM	:	Sub Carrier Multiplexed and wavelength-division
		multiplexing
LO	:	Local Oscillator
DFB LD	:	Distributed-feedback laser diode
ASE	:	Amplified Spontaneous Emission
PSC	:	Plastic-cladded silica fiber
PDG	:	Polarization Dependent Gain
LNA	:	Low noise amplifier
RMS	:	Root-mean-square

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Graph for Extended Performances Analysis	94
В	Published Conference Papers	96

CHAPTER 1

INTRODUCTION

1.1 Historical perspective

The technology of communication in huge bandwidth was the global demand either for industrial field or consumer interest. Basically, drastic demand of high bandwidth on communication was cause of a new communication application which required higher bandwidth such as internet video and audio and others new application. In recent years, optical communications networks are finally feeling the bandwidth constraints already in other type of communication networks such as wireless and satellite communication systems. In fact, service providers are searching a ways to increase their fiber optic network capacity.

Optical communication was one of the best ways in term of high bandwidth data communication. Even there a lot of parameters that will affect the performance of optical communication especially in term of dispersion and attenuation, server providers were have full of excitation to use optical fiber as medium. Technology like TDM, FDM, SCM and WDM and their combination are used and improved the performance of the optical communication.

The use of subcarrier multiplexing (SCM) transmission using an optical carrier instead of the traditionally used super carrier over optical fibers is very attractive. This technology has found wide spread application because of its simplicity and cost-effectiveness.

Error correction coding techniques, such a block convolution, and trellis, have advanced, further enhancing the noise immunity of multi state modulation scheme. Hus, the type of modulation mentioned plus coding techniques can be very good candidates for SCM application.

1.2 Project Background.

This project was focus on a link between two station; one transmitter and receiver. The link was applying SCM and Radio Over Fiber (ROF) system the schemes that has been applied to perform the communication system were PSK as a RF modulation techniques.

For this project, the transmitter has been focus only four input signal and each of the signal will be modulate using PSK individually. All the input signals so called as data signals has been multiplexed and allocated closely to each other. At the optical domain, the optical source was used CW Laser diode and Mach Zender modulator which is an external optical modulator. The composite signal (multiplexed signals) has been modulated with single optical wavelength by the MZM. The transmission link has been replaced the typical transmission line (coaxial cable) with optical fiber. The system used a standard single mode fiber for long haul communication system which was able to exceed several kilometre. However, in this study, several components has been introduced or applied in the system such as optical amplifier which was post-amplifier and pump laser. Other than that, in the electrical domain, numbers of Band Bass Filter (BPF) has been applied at the transmitter and receiver part as well. In other to achieved better Carrier to Noise Ratio (CNR) of the system, electrical amplifier has been introduced after multiplexer and before demultiplexer.

At the receiver end, the light carrying the microwave subcarrier multiplexed composite signal is photo-detected by a photodiode. For this project, the system applies PIN as a photo detector at the receiver part.

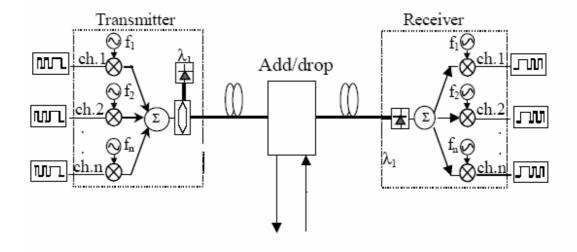


Figure 1.1: Basic architecture of a single end-to-end SCM system

1.3 Objectives

The objectives on this project are:

- To model and simulate optical Sub Carrier Multiplexed Radio over Fiber (SCM-ROF) System.
- To analyze the performance of the SCM-ROF System in term of CNR, BER, Quality Factor, losses and attenuation.

1.4 Scope of Work

The scopes of this project are:

- Modeled and analyzed specific to Sub Carrier Multiplexed Radio Over Fiber System.
- 2) Completed a transmission system included single transmitter, optical link and single receiver.

1.5 Methodologies

The methodology of this project has been followed the list below and flow chart found in Figure 1.2

- Full understand and literature review on current development of the optical system especially Sub Carrier Multiplexed – Radio over Fiber (SCM-ROF) System.
- 2) The system architecture has been identified and modeled.
- The system has been modeled which was represented the connection from transmitter to receiver.
- Suitable simulation software has been identified and applied to the system which was OptiSystem software.
- 5) The analysis of the system has been on to Fiber length without EDFA introduced, EDFA length, Fiber length with EDFA, nonlinearity due to optical power level, and number of channel in the system.
- The system performances have been represented by the BER, CNR, Q Factor and eye diagram.

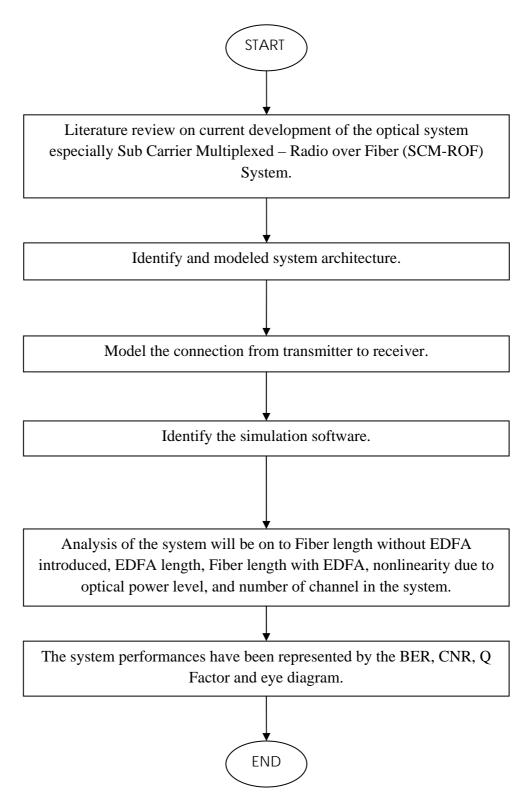


Figure 1.2: The project flow chart

The project has been following the basic outline that shows by the flow chart. However, there were several parameter need to be concern before shift one to another analysis. It was vital process especially that contributed the changes of frequency at the electrical domain and data rate of the incoming signals.

In addition, each of the components applied in the system has their own contribution in the system performance. Therefore, knowing the function, characteristic, response and also the parameters all the components was an obligation to the researchers before get through the simulation stage.

Last but not least, the performance analysis has been represented with suitable graphs, diagrams, and tables which were able to be referring for further study and the results compatible for some practical and industrial needs.

1.6 Thesis Outline

This project report is organized into 6 chapters which are introduction, literature review, SCM-ROF modeling, simulation results, performances analysis, conclusion and recommendation.

The first chapter will be discussed on the project background, scope of work and the methodologies applied in this project. In depth reviewed of the theoretical and previous study will be presented in the chapter 2 with literature review as the title. The reviewed will be cover from the basic knowledge of SCM system until to the receiver part of the system. In chapter 3, the system of SCM-ROF will be discuss and describe the model for this project. In this chapter also presented the basic simulation setup from the modeled system. The simulation results will be presented and the issues involved will be explained in details in the chapter 4. These issues include general simulation method; simulation implementation of the modulations, optical fiber, and PMD issues. This chapter also presented the RF spectrum, electrical wave, eye diagram and optical spectrum for the system.

In chapter 5, the simulation results will be focused on five different of analysis of SCM-ROF system which was analysis on fiber length without EDFA introduced, analysis on EDFA length, analysis on fiber length with EDFA, analysis on nonlinearity due to optical power level, and analysis on number of channels in the system. These analyses will be presented the system performances by BER, CNR, Quality Factor and Eye Diagram as well.

And finally, in chapter 6, the thesis is concluded and the problems that need further studies are discussed and prospected. All publications paper also will be mentioned in this particular chapter.