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ABSTRACT 

 

 

 

Solder joint reliability (SJR) is the key concern in electronics packaging, 

primarily for ball grid array (BGA) packages. It affects the overall performance and 

reliability of electronics devices. In this project, the response of Sn-4.0Ag-0.5Cu 

(SAC405) lead-free solder joints in a typical BGA package is examined. Finite 

element (FE) analysis is employed along with published experimental data in 

establishing a thorough understanding of the mechanics and failure process of the 

solder joints. The accuracy of FE results for SJR is highly dependent on the solder 

constitutive behavior prescribed in the analysis. In the respect, unified inelastic strain 

theory (Anand model) is employed with model parameters extracted from series of 

published tensile tests data at different temperatures and strain rates. The model is 

refined further to ensure better predictive capability. The SJR of a BGA test package 

subjected to solder reflow process and temperature cycles is examined. The critical 

solder joint is identified at location near to the die corner. The highest stress and 

inelastic strain magnitudes are calculated at the component side of the 

solder/intermetallics compound (IMC) interface. Stress-strain hysteresis suggested 

that solder joint fatigue is primarily contributed by localized shear effect. Both strain- 

and energy-based life prediction models have been developed for the accelerated 

reliability cycles. The failure process of solder/pad interface under applied monotonic 

loading is described. In this respect, the Cohesive Zone Model (CZM) is evaluated 

within the FE framework to simulate the relatively brittle interface. Materials 

parameters for CZM are established based on published data of solder ball shear tests. 

It was found that localized cracking of the solder/pad interface in lead-free solder 

joints under shear test setup is initiated by tensile stress field due to shear tool 

clearance. 
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ABSTRAK 

 

 

 

Kebolehpercayaan sambungan pateri (SJR) adalah faktor penting dalam 

pembungkusan elektronik, terutamanya bagi pakej ball grid array (BGA). Ia 

mempengaruhi prestasi dan kebolehpercayaan keseluruhan alat elektronik. Dalam 

projek ini, gerakbalas sambungan pateri bebas plumbum Sn-4.0Ag-0.5Cu (SAC405) 

dalam pakej BGA biasa dikaji. Analisis unsur terhingga (FE) digunakan bersama 

dengan data eksperimen yang telah diterbitkan untuk mendapatkan pemahaman 

lengkap sifat mekanik dan proses kegagalan sambungan pateri. Ketepatan keputusan 

FE bagi SJR sangat bergantung kepada perilaku konstitutif pateri yang digunakan 

dalam analisis. Dalam hal ini, teori penyatuan terikan tak anjal (model Anand) 

digunakan. Parameter model diekstrak daripada siri data ujian tegangan pada 

pelbagai suhu dan kadar terikan yang telah diterbitkan. Model diperbaiki lagi bagi 

memperolehi keupayaan ramalan yang lebih baik. SJR pakej ujian BGA yang 

dikenakan dengan proses reflow pateri dan kitaran suhu dikaji. Sambungan pateri 

kritikal dikenalpasti terletak berhampiran dengan penjuru die. Magnitud tegasan dan 

terikan tak anjal yang paling tinggi didapati di permukaan pateri/lapisan sebatian 

antara logam (IMC) di bahagian komponen. Histeresis tegasan-terikan menunjukkan 

bahawa lesu sambungan pateri kebanyakannya disumbangkan oleh kesan ricih 

setempat. Kedua-dua model ramalan hayat yang berdasarkan terikan dan tenaga telah 

ditubuhkan bagi kitaran kebolehpercayaan yang dipercepatkan. Proses kegagalan di 

permukaan pateri/pad dibawah pembebanan monotonic dikaji. Dalam hal ini, 

Cohesive Zone Model (CZM) digunakan di dalam rangka kerja FE untuk 

mensimulasikan lapisan antara muka yang agak rapuh. Parameter bahan bagi CZM 

diperolehi berdasarkan data ujian ricih bola pateri yang telah diterbitkan. Terdapat 

retak setempat di permukaan pateri/pad dalam sambungan pateri bebas plumbum 

bagi ujian ricih yang dimulakan dengan kawasan tegasan tegangan yang disebabkan 

oleh toleransi alat ricih.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of Study 

 

 Several studies have been carried out in addressing solder joint reliability 

(SJR) issues at the computational solid mechanics laboratory (CSMLab), UTM. 

These include determination of solder material constitutive inelastic behavior [1] and 

assessment of SJR by predicting the fatigue lives of solder joint in electronic 

assembly using strain- and energy-based approaches for loadings of temperature 

cycles, cyclic twisting and cyclic bending [2]. It continued by the determination of 

solder/intermetallics compound (IMC) interface behavior and modeling of solder ball 

shear test [3]. All of those studies are preformed on Sn-40Pb (leaded) solder material. 

The current study is a continuation of those projects and on Pb-free solder alloy.  

  

 In this study, some of those previous methods are employed, but for lead-free 

solder material since the leaded solder material has gradually been substituted by 

lead-free solder material due to health and environmental concerns. In comparisons 

to those previous works, several improvements have been made. These include the 

establishment of new modified Anand model for improving the prediction of solder 

joint inelastic behavior, development of solder joint life prediction models utilizing 

the material model established in the current study, and improvement of cohesive 

zone model (CZM) for simulating solder joint interface fracture.  
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1.2 Overview  

 

 In the year of 1965, Gordon Moore dictated that the number of transistor in an 

integrated circuit (IC) will be doubled every year. After that, he changed it to every 

18-24 months. The prediction of Moore’s Law, as shown in Figure 1.1, is still 

applicable today. Besides that, he also forecasted that the coming 20 years trend will 

still follow the Moore’s Law [4]. IC with higher transistor number has faster data 

processing speed. This type of IC is designed for more advanced electronics device 

usage. Consequently, the heat dissipation in modern IC has been rapidly growing 

along with rising of transistor number and clock frequency. 

 

 

Figure 1.1: Intel CPU transistors double every ~ 18 months [5] 

 

 Another significant trend is the combination of various functionalities in a 

single electronics device or system. For example, new generation personal digital 

assistant (PDA) and mobile phone offer a range of functionalities such as computing, 

communication, photography, web browsing, etcetera. It means that extra 

functionalities are added into the electronics package and assembly. Soon, ideas of 

die stacking, package stacking and device integration are introduced to produce 

electronics package and assembly that can provide more functionalities. As a result, 

more complex and compact type of electronics package and assembly will be 

available. The insertion of additional functionality in a smaller package will induce 

higher heat density [6]. For instance, Folded Stacked Chip Scale Package (FSCSP), 

as shown in Figure 1.2, is known as next generation package that will be developed 

to combine multiple memory and logic chips into a single package.  
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Figure 1.2: FSCSP electronics package [7] 

 

 In addition to those trends, it is believed that leaded solder material will 

gradually be replaced with lead-free solder material in the future. Sn-Pb (Leaded) 

material is the main choice for the solder joint interconnection in the past. It is 

because it has few good material properties such as reflow properties and low 

melting temperature [8]. But soon it will be substituted by lead-free solder material 

due to the environmental and health issues. Japan, Europe and U. S. already took 

some actions to ban or reduce the usage of leaded material as solder joint 

interconnection [9]. 

 

 Those electronics packaging trends mentioned above put higher requirements 

on electronics packaging technology. These trends aggravate the SJR issue. The 

followings are some of the explanations:  

1. Heat is unavoidable for electronics assembly due to increasing of clock 

frequency and higher heat density in the future. Unfortunately the coefficient 

thermal expansion (CTE) mismatch of electronics assembly that caused by 

heat will influence the reliability of solder joint interconnection.  

2. Smaller electronics part such as solder joint interconnection will be 

introduced to meet the demands of more connections, smaller pitch and 

compact size of electronics package. The trends of pin count and pitch are 

illustrated in Figures 1.3 and 1.4. During the manufacturing process or usage 

of the electronics assembly, the solder joint connection is probably exposed to 

several mechanical loadings such as cyclic temperature, bending cycles and 

drop impact. Those mechanical loadings are critical especially for small tiny 
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solder joint. It is no doubt that smaller solder joint connection will face higher 

risk of mechanical failure such as fracture. 

 

 

Figure 1.3: Pin count trends [10] 

 

 

Figure 1.4: Pitch trends [10] 

 

3. Changing of solder material from leaded type to lead-free type weakens the 

solder joint in the electronics assembly. It is believed that Sn4.0Ag0.5Cu 

(SAC405) lead-free solder alloy demonstrating a greater susceptibility to 

brittle fracture than Sn-Pb (Leaded) solder [11]. Besides that, lead-free solder 

material requires reflow profile with higher peak temperature (260 
o
C) 

compared to leaded solder material (230 
o
C). It is because lead-free solder 

material has higher liquidus temperature, TL (217 – 219 
o
C) than leaded solder 

material (183 
o
C) [12]. So, it will lead to higher initial deformation (warpage) 

of electronics assembly and larger residual stress and strain at the solder joint 

connection after the reflow process.  
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1.3 Problem Definition 

 

A good design of electronics packaging and material selection can ensure that 

the circuit works properly and increase the reliability of electronics products. Among 

mechanical failures found in the electronics assembly include die cracking, solder 

joint fracture, underfill/substrate delamination and underfill/die delamination [13]. 

Based on Gibson et al. [14] paper, 70% of failures in electronics components are the 

fracture of the solder joint. Thus, this project focused on SJR issues. Since the solder 

joint is small and electronics device is expensive, electronics assembly experimental 

tests such as cyclic temperature, drop impact and vibration are often time consuming 

and involving high cost. Finite element (FE) analysis is an alternative method for 

investigating the SJR issues. By using FE analysis, the mechanics behavior of small 

solder joint such as distributions and evolution of stress and strain can be predicted. 

Besides, FE simulation results can be used to predict the solder joint fatigue life and 

solder joint interface strength. Good solder joint material model is needed because 

the accuracy of FE simulation results is highly dependent on material constitutive 

model, accurate geometry, loading conditions and boundary conditions employed in 

the FE model. Existing studies on leaded solder material such as solder joint material 

models, life prediction models and interfacial damage models need to be re-evaluated 

for lead-free solder material.  

 

 

 

1.4 Objectives 

 

 The objectives of this study are: 

1. To determine the unified inelastic strain model parameters for lead-free solder 

material. 

2. To develop a predictive FE model for life prediction of solder joint in BGA 

package under prescribed loading conditions. 

3. To determine the damage mechanics-based model parameters for describing 

solder/pad interface failure process. 
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1.5 Scope of Work 

  

 The present study focuses on SJR issues and is limited to the following scope 

of work: 

1. SAC405 alloy is used as a demonstrator lead-free interconnect material. 

2. Published experimental data of lead-free solder material is gathered for 

verification and validation purposes.  

3. Unified inelastic strain model (Anand model) for describing the response of 

solder material is refined for Pb-free solder joints. 

4. Flip Chip Ball Grid Array (FCBGA) electronics packages with typical 

dimensions are used in FE modeling for predicting SJR. 

5. CZM is evaluated for application in predicting fracture of solder/pad interface 

system. 

 

 

 




