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ABSTRACT 

 

 

 

 

Turbine blades are the most common cause of failures in gas turbines. Failure 

modes are typically cracking from foreign object damage (FOD), high cycle stress 

(HCF), blade rubbing, degradation from erosion and corrosion.  Fault detection of 

blades is important function in reducing blade related failures.  This study involved 

the use of vibration analysis and dynamic testing of blades for failure detection.  

Current field inspections of blades are based on visual inspections only, and the 

intent here was to use impact testing of the blades during these inspections to 

determine cracked blade (from the vibration response). Vibration impact tests were 

undertaken using decommissioned turbine blades with and without cracks in the 

laboratory.  Four common crack patterns were deliberately induced to the turbine 

blades to investigate changes in the blades normal mode response.  Finite element 

analysis (FEA) of the blades was also undertaken.  FEA results were correlated to 

experimental results and these results showed that each crack pattern was unique and 

significant changes were found in higher modes. Dynamic vibration analysis was 

also undertaken in a laboratory testrig fitted with rotating model straight blades.   

Vibration measurements were undertaken on a baseline test case and other test 

conditions where the blades had induced cracks.   Steady state and transient vibration 

responses were obtained from the controlled tests. Vibration measurements were on 

the machine casing and on a blade (with an accelerometer surfaced mounted onto a 

rotating blade).  Order tracking analysis and continuous wavelet analysis were 

performed to the measured data.  Both techniques showed ability in detecting 

changes in vibration response on the blades and casing for blades with cracks. 

Results showed that significant changes were detected during transient analysis as 

compared to the steady state. Changes were noted in the vibration response 

corresponding to the machine running speed and blade passing frequencies.  Changes 

in wavelet maps were however qualitative in nature, which suggested that more work 

need to be undertaken for cracks severity assessment using wavelet maps. 
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ABSTRAK 

 

 

 

 

 Bilah turbin adalah salah satu punca utama yang menyebabkan kegagalan 

dalam turbin-turbin gas. Kegagalan biasanya terjadi disebabkan oleh kerosakan objek 

asing (FOD), tekanan kitaran tinggi (HCF), geseran bilah dan degradasi daripada 

hakisan dan kakisan. Kajian ini melibatkan penggunaan analisis getaran dan ujian 

dinamik bilah turbin untuk mengesan kegagalan bilah. Tujuan kajian ini adalah 

dengan menggunakan ujian impak bilah bagi menentukan kegagalan bilah (daripada 

tindakbalas getaran). Ujian impak getaran ini telah dijalankan dengan menggunakan 

bilah turbin yang mempunyai dan tidak mempunyai retakan. Empat jenis corak retak 

telah dikenakan pada bilah turbin bagi mengkaji perubahan pada bilah turbin itu 

ketika dalam mod yang biasa. Analisis unsur terhingga bilah turbin juga dijalankan. 

Keputusan analisis unsur terhingga telah dikorelasikan dengan hasil keputusan kajian. 

Keputusan ini menunjukkan bahawa perubahan setiap corak retakan adalah unik dan 

penemuan ketara telah ditemui dalam mod yang lebih tinggi. Analisis getaran 

dinamik telah dijalankan di alatan ujian yang dipasang dengan bilah turbin lurus 

yang berputar. Getaran mantap dan getaran fana diperolehi dari ujian yang dikawal 

itu. Pengukuran getaran dilakukan pada penutup mesin dan pada salah satu bilah 

(dengan satu meter pecutan yang dilekatkan pada bilah yang berputar). Analisis 

pengesanan arah (order tracking) dan analisis gelombang kecil (wavelet analysis) 

selanjar dilakukan pada data yang diperolehi. Kedua-dua teknik ini menunjukkan 

keupayaan dalam mengesan perubahan tindakbalas getaran. Keputusan menunjukkan 

perubahan yang ketara telah dikesan semasa analisis fana berbanding pada keadaan 

mantap. Perubahan telah dikenalpasti di dalam tindakbalas getaran berdasarkan 

kepada halaju mesin dan frekuensi halaju bilah. Perubahan dalam peta gelombang 

kecil bagaimanapun adalah secara semulajadi dan dicadangkan bahawa kajian yang 

lebih mendalam perlu dilakukan bagi mengesan retakan yang teruk dengan 

menggunakan peta gelombang kecil.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1      Overview 

 

 

Gas turbines are common but critical machines used in power generation, 

petrochemical and heavy industries. Unscheduled down time often result in 

economic losses exceeding RM1milliom per day [1]. With such economic losses 

quick diagnosis and trouble shooting is required. [2] Manufactures such as General 

Electric [3], recommends 3 types of maintenance inspections namely standby, 

running and disassembly inspections to prevent unscheduled down time. Turbine 

blades being key components of the gas turbine which suffers high mechanical 

loading due to drastic changes in both temperature and pressure. [4] These often 

result in mechanical failures such as cracking, blade rubbing, degradation etc which 

are often detected only during the Hot Gas Path Inspection under the disassembly 

inspection [3]. Figure 1.1 provided an overview of the work scope during the 

inspection. Minor repair could be carried at the same time. Tim J Carter (2004) 

reported that turbine blade suffered most damage from crack which were either 

caused by foreign object damage (FOD) or torsional forces. This is illustrated in the 

figure 1.2. This figure shows possible turbine blade failures and the percentage 

distribution. Cracks on surface, like which occurs on aerofoil & lashing area are not 

as harmful as compared those in the blade root and disk root area; as long the failure 



 2 

does not penetrate through the blade body. These are also relatively easier to be 

detected during the visual inspection by applying the Fluorescent Penetrate 

Inspection (FPI) or non- Destructive Inspection (NDI) [3]. Cracks adjacent the blade 

clamp area are potentially very serious as it is not so visual and are difficult to detect 

unless during the Major Inspection [3] where all turbine blades would be removed 

from the rotor. The percentage of blade root cracking is also significant. This is 

illustrated in figure 1.3. It had been reported that cracks in the air-flow lead and 

trailing edge also recorded high percentage. Normally the stress rupture crack will 

appear in these areas. The latter experiments would be based on these crack patterns. 

 

 

 

Figure 1.1 Key element for Hot Gas Path Inspection 
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Figure 1.2  Mechanism reported to have cause the turbine blade failures ( Dewey 

& Rieger 1982; Dewey & McClokes 1983; Dewey & Rieger 1983; Artens et al 

1984) 

 

 

 

 

Figure1.3  Location of LP turbine blade failures (Dewey & Rieger 1982; Dewey 

& McClokes 1983; Dewey & Rieger 1983; Artens et al 1984) 
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1.2 Subject Background 

 

 

A gas turbine is a complicated machine. A turbine blade has to withstand the 

vibratory stresses, flexural stresses, centrifugal force etc. Basically the vibratory 

stresses are induced by aerodynamic forces. These forces are introduced by the 

combusted gas that flow through the stages of blades. Centrifugal forces are the side 

effects of the gas turbine rotational movement. Increase of the rotational speed would 

double up the forces value; therefore proper blade design is very important. The 

flexural stresses are generated by the motion of the blade that causes an unsteady 

pressure field around the blade sustaining the vibration. This excitation is initialed by 

small mechanical or aerodynamic disturbances above the critical flow speed. 

  

 

 Turbine blade life cycle is influenced by factors which under two main 

categories: design and operation conditions; Operation condition are more critical 

category. Blades have to maintain its integrity under severe operation conditions 

which result in high mechanical stress and high thermal stresses [5]. 

 

 

 Turbine blades operate at high temperatures, typically up to 1000
0
C. At the 

same time blades are exposed to contamination issue mainly from burning fuel and 

intake air. Foreign object damage (FOD) is a common occurrence where blades are 

damages with material removed from impurities and foreign objects impinging on 

the blades.  

 

 

  Thermal stresses occur in the blade when the blade is experiencing the 

large scale thermal gradient. This often happen during the transient states like run up 

or coast down. This stress normally concentrated to the tip or edges or of the blade 

which results in crack on the blade. 
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 Blade vibrations are often examined under two different perspectives: self 

excited vibration and forced vibration. Self excited vibration is often known as 

flutter. It is an aero-elastic self-induced vibration with a sustained amplitude, 

normally seen at high speed rotation with no external forces involved. Force 

vibration is induced by flow disturbances when working fluids pass through the 

stages. This would results in an impulsive force to the blade body.  

 

 

 Blade vibration could only be measured from the casing and under such 

situation would not off any direct measurement of the blade induced vibration. Even 

though the blade vibration could not be measured directly, blade related diagnosis 

still could be done from examination of response related to blade pass frequencies 

(BPF).  

 

  

The BPF is the pulsation force which occurs in bladed assembly. This force is 

generated from the pressure fluctuation as a rotating vane or blade passes stationary 

components like stator or housing. The stationary component produces a non-

uniform flow disturbance in the gas field. In vibration analysis, the number of blades 

multiplied with the RPM of the rotor supporting the impeller physically defines the 

blade passing frequency (BPF). The amplitude corresponding to the BPF is small. An 

increase in the vibration amplitude of the BFP is usually due to: 

(i  ) A housing or rotor eccentricity 

(ii ) Vane or blade wear (abrasive materials) 

(iii) Bent, loose or misaligned housing diffuser vane 

(iv )  A resonance Excitation 
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1.3 Problem Statement 

 

 

 The manufacture’s Major Inspection undertaken for gas turbine is expensive 

and requires a long downtime. It is usually scheduled according to the 

manufacturer’s recommendations or based on findings of previous inspection results. 

This is normally undertaken 2-3 years after the turbine’s initial operation. With 

thermal stresses from periodic on-off, turbine blade cracks had known to occur 

rapidly with serious consequences prior to the Major Inspection. [6] 

 

  

 It is then very important to indicate the present of cracked blade from the 

non-invasive measurements or procedures such as vibration. The current operational 

vibration monitoring which mainly focus on overall vibration value, showed 

insufficient sensitivity in detecting the cracked blade. Vibration FFT plots obtained 

under steady state condition are also not sensitive enough for the detection of cracked 

blade. Sophisticated analysis method such as order tracking, power density spectrum 

and wavelet analysis could be considered to be used in maintenance inspection 

especially it shown to be able to detect crack blade. 

 

 

 The visual inspection undertaken during maintenance relies on visual means 

and human interpretation.  Minute cracks or blade root crack could be missed out 

easily during the visual inspection. A scientific based method such as the impact test 

could be used as a more reliable tool to assist the visual inspection during 

maintenance. 

 

 

 An understanding of dynamic behavior of a cracked blade needs to be 

obtained prior to application in the maintenance inspection. 
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1.4  Objectives of the study 

  

 

 The objective of this study was to assess the practicability of vibration based 

test method in detecting cracks in turbine blade. This can be explained as follow, 

1. To verify the effectiveness of vibration impact test to capture the turbine 

blade crack in a minor inspection. This required the study cracked blade 

response from the impact tests. 

2. To model a blade with or without cracks using FEA method. Computational 

results would be correlated against the measurement results. 

3. To study which vibration analysis methods (order tracking, FFT and wavelet) 

for a rotating blade assembly for the detection of a cracked blade from the 

measured vibration response. 

 

 

 

1.5  Scopes of the study 

 

 

The scope of this research were limited to the followings, 

1. The identification of a common crack patterns that occur in real blades. 

2. An experimental study for vibration response of stationary blades from 

impact test for blades with the common crack patterns..  

3. The comprehension of cracked blade effects from computational model and 

modal analysis. 

4. An experimental study of vibration measurement analysis for a rotating 

bladed assembly with induced cracks in a test rig. 

 

 

 

 

 

 

 




