
i

GOOGLE WEB TOOLKIT (GWT) AND JAVA EE - THE SYNERGY FOR

MODERN WEB APPLICATION DEVELOPMENT

FAIZ BASHIR MUHAMMAD

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Computer Science (Real Time Software Engineering)

Center for Advanced Software Engineering (CASE)

Faculty of Computer Science and Information System

Universiti Teknologi Malaysia

OCTOBER 2009

iii

To my uncle, Engr. Aliyu A. Aziz, who introduced me to

computers and the Java Language

iv

ABSTRACT

The Web has become ubiquitous and a very important platform for

applications. After the dot-com bubble burst in 2001, the way applications were

developed changed. Developers started using the web standards to implement

astonishing products that are light with rich and responsive user interfaces close to

those of desktops. Using JavaScript and XMLHttpRequest the browser can

communicate with the server to update just a portion of the web without refreshing

the whole page. These and other technologies gave birth to the term Ajax. Modern

Web Applications comprises of these client side technologies and server side

technologies to give a very rich and robust web application. However, JavaScript

which is a major technology for developing Ajax applications is not type safe and

creating and debugging such applications become very tedious. Google Web Toolkit

(GWT) was developed to address this problem with good support for Software

Engineering. Ajax applications are developed in Java similar to Swing applications

and GWT compiles it (Java) into JavaScript which can run on the browser. Java EE

has gained popularity and is a technology of choice for developing server side

functionalities. The Java EE container manages transactions, security, concurrency

and other functions so that the developer concentrates on the business logic of his

application. GWT Remote Procedures Call (RPC) which is based on Java EE Servlet

allows seamless integration between the client and Java EE codes on the server.

CASE Application Management System, as a case study for this project, is developed

using these two technologies. It shows how they integrate seamlessly for developing

Modern Web Applications.

v

ABSTRAK

Web semakin terdapat di mana-mana dan pelantar yang sangat penting bagi

sistem pengaplikasian. Setelah dot.com bubble meledak pada tahun 2001, cara kaedah

aplikasi dibangunkan telah berubah. Pembangun-pembangun aplikasi mula

menggunakan piawaian web dalam menghasilkan produk yang mengkagumkan iaitu

lebih mudah serta kaya dan antaramuka pengguna responsif yang dekat kepada desktop

tersebut. Penggunaan JavaScript dan XMLHttpRequest, membolehkan pelayar

berkomunikasi dengan pelayan bagi mengemaskinikan hanya sebahagian web tanpa

perlu memperbaharui keseluruhan mukasurat. Teknologi ini dan lain-lain teknologi

melahirkan terma Ajax. Aplikasi-Aplikasi Web Moden merangkumi teknologi-teknologi

aspek klien dan teknologi-teknologi aspek pelayan dalam menghasilkan web aplikasi

yang sangat kaya dan kukuh. Walaubagaimanapun, JavaScript yang merupakan teknologi

utama dalam membangunkan aplikasi-aplikasi Ajax adalah jenis tidak selamat dan proses

menciptakan dan nyahpijat aplikasi yang seumpamanya menjadi sangat merumitkan.

Google Web Toolkit (GWT) telah dibangunkan dalam menyelesaikan masalah ini dengan

sokongan bagus kepada Kejuruteraan Perisian. Aplikasi-aplikasi Ajax yang dibangunkan

dalam Java bersamaan kepada aplikasi-aplikasi Swing dan GWT kompilkannya (Java)

kepada JavaScript yang membolehkan ia dilancarkan atas pelayar. Java EE telah

mencapai kepopularan dan adalah teknologi pilihan dalam membangunkan kefungsian

aspek pelayan. Java EE container yang menguruskan transaksi, keselamatan,

concurrency dan fungsi-fungsi lain membolehkan pembangun aplikasi menumpukan

perhatian dalam logik bisnes aplikasinya. GWT Remote Procedures Call (RPC) adalah

berlandaskan Java EE Servlet membenarkan kelicinan pengintegrasian di antara klien

dan kod Java EE di atas pelayan. CASE Application Management System, adalah kajian

kes dalam projek ini, ia dibangunkan dengan menggunakan dua teknologi yang

dimaksudkan di atas. Ia menunjukkan bagaimana kelicinan integrasi teknologi-teknologi

tersebut untuk membangunkan Aplikasi-Aplikasi Web Moden.

vi

TABLE OF CONTENTS

CHAPTER TITLE PAGE

ABSTRACT iv

ABSTRAK v

LIST OF FIGURES ix

1 CHAPTER ONE 1

INTRODUCTION 1

1.1 Web 2.0 And Ajax 1

1.2 Modern Web Application 3

1.3 Google Web Toolkit (GWT) 4

1.3.1 GWT and Software Engineering 5

1.4 Java EE 6

1.5 The CASE Application Management System 7

1.6 Objectives 8

1.7 Scope 8

2 CHAPTER TWO 10

LITERATURE REVIEW 10

2.1 Introduction 10

2.2 Client-Side Technologies 10

2.2.1 JavaScript 10

2.2.2 Web 2.0 11

2.2.3 Ajax 13

2.2.4 Google Web Toolkit (GWT) 16

2.2.5 Summary 23

vii

2.3 The Server-Side Technology 23

2.3.1 Java EE 23

2.4 Modern Web Application 29

2.5 Tools and Development Environment 30

2.5.1 Unified Modeling Language (UML) 30

2.5.2 Netbeans Integrated Development Environment (IDE) 31

2.5.3 Eclipse Integrated Development Environment (IDE) 32

2.5.4 JUnit 32

2.5.5 Summary 33

3 CHAPTER THREE 34

METHODOLOGY 34

3.1 Introduction 34

3.2 Setting Up the Environment 34

3.3 Software Engineering 35

3.3.1 Model 35

3.3.2 Documentation 35

3.3.3 Testing 35

3.4 Implementation 36

3.4.1 The Client Side With GWT 36

3.4.2 Server Side With Java EE 37

3.4.3 Integration 37

3.4.4 Deployment 37

3.4.5 Challenges 38

4 CHAPTER FOUR 39

IMPLEMENTATION DETAILS 39

4.1 Introduction 39

4.2 Analysis, Design and Documentation 39

4.3 Setting-up the Development Environment 42

4.4 Client Side Implementation 44

4.4.1 CAMS User Interface 44

4.4.2 Application List 45

4.4.3 Windows and Dialogs 48

viii

4.5 Server Side Implementation 49

4.5.1 Managing Persistence 49

4.5.2 Transaction Management 56

4.5.3 Client and Server Sides Integration 57

4.5.4 Transferring Objects Between the Client and the Server 62

4.5.5 File Upload 64

4.7 Improving Performance 67

4.7.1 Caching 68

4.8 Testing 68

4.8.1 Unit Testing on the Server Side 68

4.8.2 Unit Testing on the Client Side 69

4.9 Deployment 70

4.10 Conclusion 72

5 CHAPTER FIVE 73

CONCLUSION 73

5.1 Summary 73

5.2 Shortcoming 75

5.3 Recommendations and Further Enhancements 76

5.4 Conclusion 76

REFERENCES 78

ix

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Workflow for Managing Applications 9

2.1 Traditional and Ajax Web Application Models 15

2.2 GWT Components 18

2.3 GWT RPC Model 22

2.4 Java EE Architecture 26

4.1 CAMS Use Case Diagram 40

4.2 CAMS High Level Architecture 41

4.3 Setting-up CAMS Development

Environment – Step 1 42

4.4 Setting-up CAMS Development

Environment – Step 2 43

4.5 Setting-up CAMS Development

Environment – Step 3 43

4.6 CAMS Development Environment Structure 44

4.7 CAMS Main User Interface 45

4.8 CAMS User Interface – Application List 48

4.9 CAMS User Interface – Add Application Dialog 48

4.10 CAMS User Interface – Candidate Details

and Status History 49

4.11 Glassfish Admin Interface 71

4.12 Specifying the Datasource in Glassfish 71

4.13 Setting-up the Database Properties in Glassfish 72

1

CHAPTER ONE

INTRODUCTION

Web applications which run on the browsers have seen massive acceptance

because of its platform independence and without the requirement of installing the

applications on client computers before using them. Users simply point to the address

of an application and start using it immediately. Several web technologies have

emerged to satisfy the requirements of web applications of good performance and

usability. CASE Application Management System (CAMS) is developed using some

of these technologies (Google Web Toolkit and Java EE) to achieve the features of a

modern web application. This chapter introduces the underlying technologies and the

goals and objectives of this work.

1.1 Web 2.0 And Ajax

The web has matured and seen significant transformation since its invention

in 1989 by Tim Berners Lee. Beginning as a document-oriented platform of

interlinked-hypertext documents, it gained popularity in the 1990s (a period called

the dot-com bubble) which burst in 2001 [1].

The burst has caused a shift in the web ecosystem. The way web applications

were designed and their business model had to change. Developers focused on

creating clean HTML, using elegant cascading style sheets (CSSs) and adding

touches of JavaScript. New technologies stopped emerging and implementation of

these basic web standards started maturing [2].

2

The new business model is called the Web 2.0, a term coined by Dale

Dougherty of O’Reilly Media in 2003 [3]. Web 2.0 was popularized by Tim O'Reilly

during the first Web 2.0 Summit organized by O'Reilly Media [1].

Tim defined Web 2.0 as a set of principles and practices that tie together, a

veritable solar system of sites that demonstrate some or all of those principles, at a

varying distance from that core [3].

These principles include sites using light programming models to provide rich

user experiences. Their users are part of the system developers and their continuous

contribution make the sites more valuable. This is called harnessing collective

intelligence (of the users). Web 2.0 sites have no limitation on the device they run.

Applications can be accessed via the PC, PDAs, mobile or even TV.

The Web became a de-facto standard as a platform for applications,

networking, collaboration and businesses. Rich applications (rich user experience)

was thus necessary. The combination of the web technologies to solve this problem

gave birth to Ajax (Asynchronous Javascript and XML) which is coined by Jesse

James Garrette. In his definition of Ajax he outlined that Ajax is not a technology,

rather it is a combination of technologies, each flourishing in its own right, coming

together in powerful new ways [4].

Ajax includes:

• standards-based presentation using XHTML and CSS;

• dynamic display and interaction using the Document Object Model;

• data interchange and manipulation using XML and XSLT;

• asynchronous data retrieval using XMLHttpRequest;

• and JavaScript binding binding everything together." (Jesse James Garrette)

Ajax caused an important change in web applications development. Rich

interfaces are developed in the client's browser using Javascript instead of template

generation from the server. The client side is decoupled from the server and it

became an application on its own [2].

3

1.2 Modern Web Application

With the rise of Web 2.0, new approach for developing web applications

became obvious. Ajax-based applications with high user experience and scalability

are required. Applications that fulfill Web 2.0 criteria powered by all the technologies

that provide rich user experience both at the client and server side can be referred to

as a Modern Web Application. Although there is no any trace for the origin of the

term, it used in published materials.

Modern web applications often contain three or more tiers. The client-side

which includes technologies such as HTML, JavaScript, and CSS. The server-side is

used to deliver content and scripts to the client while data is managed at the DBMS

layer [4].

The success of the modern web application highly depends on the browsers.

Modern web browsers supports the combination of these web standards and de-facto

HTML and XHMTL, which should be rendered in the same way by all browsers.

Modern Web browsers are composed of several parts. They have a rendering engine

to create the layout and appearance of a Web page, a scripting engine to interpret and

execute JavaScript (or similar scripting code) on a Web page, and a user interface that

includes page navigation controls, as well as many other features (e.g., history,

preferences, plugins) [5]. Modern web browsers should therefore be able to deliver

modern web applications that have the same functionality as rich clients such as

desktop. Modern web applications allow personalized dynamic content to be pulled

down by users according to individual preferences and settings. E.g. Google Maps,

Gmail and Yahoo Mail.

In essence, modern web applications are driven by JavaScript, modern

browsers, DOM, layout engine, better support for CSS standards, XMLHttpRequest,

Ajax and server interactions.

Javascript is a very important component in building modern web

applications. As stated earlier, on the client side complex JavaScript code

file:///wiki/Web_applications
file:///wiki/JavaScript
file:///wiki/HTML
file:///wiki/Multitier_architecture
file:///wiki/Multitier_architecture

4

manipulates the DOM to give a high user experience interface. Also with

XMLHttpRequest, the JavaScript can communicate with server to exchange data

with the client without the need of refreshing (posting) the whole page to the server.

Javascript is therefore highly dependent upon, hence the the Javascript code quickly

grows and become complex. To ensure the efficiency of the code and that it is bug

free becomes a very complex task. Javascript is not a type-safe language. It is also a

scripting language making testing difficult.

As the demand of rich Internet applications increases and Javascript

becoming a most-use tool but difficult to manage, solutions for this problem became

necessary. Several libraries such as Jquery, Dojo Toolkit, Scriptaculous that eases the

task were produced. While all these are going on, Google Web Toolkit emerged with

a promise of good management of the client-side code, as well as employing all the

Software Engineering principles.

1.3 Google Web Toolkit (GWT)

With the increase use of Ajax technologies to develop rich Internet

applications, re-usability and maintenance is an obvious requirement. Achieving

these goals with raw Ajax technologies is quite difficult. There is problem of

JavaScript code compatibility across all platforms; also the non-typed nature of

JavaScript makes it difficult for write and debug instantly.

GWT, launched in May 2006 by Google, was developed to address these

issues. It is a set of development tools, programming utilities and widgets for

developing Ajax-based rich Internet applications using Java instead of JavaScript [6].

GWT then cross-compiles the Java code into optimized JavaScript that automatically

works across all major browsers which gives you the added benefit of being able to

debug and step through your Java code line by line. The Java source code is compiled

into stand-alone JavaScript files [7]. Code re-usability, management and maintenance

were thus achieved just as any other Java code would be.

5

There are several benefits that can be deduced from GWT. In GWT official

website the ease of development is mentioned. There is the benefit of being able to

debug and step through your Java code line by line. When you are ready to deploy,

GWT compiles your Java source code into optimized, standalone JavaScript files.

The GWT compiler performs comprehensive static analysis and optimizations across

the entire GWT codebase which produces JavaScript that loads and executes faster

than equivalent handwritten JavaScript. The GWT compiler safely eliminates dead

code (unused classes, methods, fields, and even method parameters) to ensure that

your compiled script is the smallest possible. It also selectively inlines methods,

eliminating the performance overhead of method calls.

Cross-compilation affords you the maintainable abstractions and modularity

you need for development without incurring a runtime performance penalty [7].

1.3.1 GWT and Software Engineering

Google Web Toolkit is arguably the most powerful tool for creating Ajax

applications [2]. What makes GWT different from other JavaScript libraries is the

wealth of software engineering tools from Java that can be used for Ajax

applications. The GWT compiler ensures that your application contains only web-

standards, a good feature of modern web applications. No runtimes or plugins are

required.

To the browser it appears like any Ajax application, but to the developer it is

like building a regular desktop application. With GWT, the Ajax application

development process can leverage high-quality software engineering tools such as

JUnit for test-driven development and IDEs like Eclipse that provide superior

debugging support and compile-time error checking on the fly [2].

Other tools that can be leveraged by GWT include a user interface library of

widgets and panels, libraries to perform asynchronous server communication through

HTTP or remote procedure calls (RPCs), tools to interoperate with other web

applications using JavaScript, JSON, and XML, and access to a mature development

environment for software engineering [2].

6

1.4 Java EE

Modern Web Applications must deliver scalable, reliable, fast and secure

applications. On the server side therefore, there is a need for distributed,

transactional, and portable applications that leverage the speed, security, and

reliability of server-side technology [8]. To achieve this you need to implement and

manage the concurrency issues, transaction, locking, sessions and security. The main

challenge of every distributed system is to keep all the data synchronized and

consistent [9]. Implementing all these requires big investment in both resources and

time. The business logic of the application is also jeopardized; instead of spending

time on the logic, most time will be spent implementing distributed computing. To

address this problem standard frameworks are provided to manage concurrency,

transaction, security, etc.

Java EE has become a very popular and a widely used framework and

provides a simplified programming model to achieve this purpose.

It is an application development platform for building robust enterprise systems. It

includes numerous Java APIs and tools including Enterprise JavaBeans, JavaServer

Pages, and Servlets [10]. With Java EE, instead of coding, you can mostly rely on the

provided defaults or configure the desired behavior declaratively in XML files.

You will also have choice of Java EE vendors. Your business logic will be clearly

separated from infrastructure, which can be provided by (as of summer 2009) thirteen

certified application servers [9].

The current version of Java EE is version 5. It introduces a simplified

programming model over its previous versions which reduces development time,

application complexity and improves performance.

Java EE 5 introduces dependency injection which simplifies resource lookups by

components effectively hiding complex codes for finding resources from application

code.

Object/relational mapping (ORM) is simplified in Java EE. Annotation-based

programming can be used instead of verbose XML declarations. The Java Persistence

API is responsible for the ORM and can be used to manage relational data in

7

enterprise beans, web components, and application clients [8].

1.5 The CASE Application Management System

The CASE Application Management System (CAMS) would provide solution

for managing Msc and Phd applications submitted to CASE either through the

School for Postgraduate Studies (SPS) or directly to CASE. The system will manage

the details of applications, their statuses and provide reports of the applications.

Presently this is done manually. The work-flow for managing the application is

shown in figure 1-1. CAMS would therefore automate the process which include:

• Saving application information

• Updating the status of application as it is being processed

• Approving/Rejecting application by coordinators and the Director of CASE

• Generate comprehensive report of applications

• Generate memo for applications

• Manage statuses of registered applications and forward deferred or

applications with pending requirements such as English language to the

subsequent semester.

CAMS system would be operated by three actors: the Admission clerk that

receives applications, populate the details of the application and update application

statuses; the coordinators that review applications and approve or reject them; and the

director who makes the final approval of applications approved by coordinators.

CAMS system is a web-based system making it easily accessible by all the

actors of the system. The system is intended to achieve the features of modern web

applications, providing rich user experience, fast and good software engineering.

GWT would be used at the client side and Java EE at the server side to

simplify the task of achieving features of a modern web application. These

technologies would provide for easy and standard software engineering. Standard

documentation, software engineering tools, testing and debugging is the end result.

8

Java EE-based applications must run on dedicated web servers that support

Java EE commonly known as Java Application Servers. CAMS would therefore be

deployed on Sun's Glassfish Application server.

1.6 Objectives

Using CAMS as the case study, the objectives of this work include:

1. To show how to implement rich user interface on the client side using

GWT

2. To describe the implementation of server side functionalities with

support for transaction management, concurrency and Object

Relational Management (ORM) using Java EE

3. Describe how to seamlessly integrate the client and server sides using

GWT RPC

4. Show how to achieve big results with minimum effort (coding)

5. Describe how good software engineering practices are achieved using

GWT and Java EE in developing Modern Web Applications

1.7 Scope

CAMS is an Intranet web-based system, this work therefore is not sufficient

to show the scalability feature of modern web applications. The requirement is

satisfied by running CAMS on just one server and there is no need for distributed

computing, even though Java EE supports that.

9

Figure 1.1 Workflow for Managing Applications

