RELIABLE COMMUNICATIONS AT FREQUENCIES BANDS ABOVE 25 GHz IN THE TROPICS

FAIZAH BINTI ABU BAKAR

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering in Electrical (Electronic & Telecommunication)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2008

To my beloved family especially my husband, Muzamir bin Isa and my daughters, Zahirah binti Muzamir and Sakinah binti Muzamir

ACKNOWLEDGEMENT

First and foremost, all praise to Allah for giving me strength and opportunity to finish my master's study and to be able to prepare this thesis till the end. My sincere appreciation to my supervisor, Professor Dr. Tharek Abdul Rahman for his guidance, thought and encouragement. Many thanks also to Associate Professor Dr. Mohd Wazir bin Mustafa for helping us, Kulim's students a lot in our study time.

Especially to my husband and my children, thank you for your support and patience. Without you standing beside me through ups and downs, I would not make it till the end. To all my family especially my parents and my parents in law, thank you very much for all your kind help and support.

Last but not least, to all my friends at UTM and UniMAP, thank you.

May Allah bless all of you.

ABSTRACT

The use of frequencies in the higher bands could tap upon the large spectrum available for communication use. However, it suffers greater propagation losses, making them unsuitable for long range communication. In addition, heavy tropical rain further reduces the reliability of the link and additional link budget has to be set aside for rain fade in order to improve its reliability. Rain attenuation model that has been used widely is currently base on ITU-R model. It gives same rain rate for all places in Malaysia. However, previous study in Malaysia conducted by researchers in UTM shows that rain rate is not the same for different places in Malaysia. It is localized where some places experience heavier rainfall compared to other places. Hence, the ITU-R model does not give an accurate prediction of rain attenuation in Malaysia, where the attenuation is supposed to be localized base on the data of the rain rate. This project is aimed to develop a computer program in order to predict localized rain attenuation. The analysis of calculation to produce rain attenuation is done. The best reduction factor model is chosen to get the most accurate result. Then, the planning is done, followed by the design phase. The most challenging part, which is the development of the program, is done next. To verify the program built, it is tested by entering significant inputs and the outputs are analyzed. As a result, a computer program to predict rain attenuation in Peninsular Malaysia is successfully built. The results produced by the program are compared to the ITU-R model of rain attenuation. The differences are calculated and the outcome shows that ITU-R model is not suitable to be used as a rain attenuation method in Malaysia.

ABSTRAK

Penggunaan frekuensi di jalur lebih tinggi membolehkan spektra yang lebih lebar digunakan untuk komunikasi. Walau bagaimanapun, ia mengalami kehilangan perambatan yang lebih banyak, menjadikan ia tidak sesuai untuk komunikasi jarak jauh. Hujan yang lebat di kawasan tropika lebih memburukkan lagi keadaan dan tambahan bajet laluan harus disediakan untuk memperbaiki kebolehpercayaan isyarat. Model pelemahan hujan yang digunakan secara meluas sekarang adalah model daripada ITU-R. Ia memberikan kadar hujan yang sama bagi semua tempat di Malaysia. Walau bagaimanapun, kajian mendapati kadar hujan adalah terhad kepada kawasan yang kecil dan semua kawasan tersebut mengalami kadar hujan yang berlainan. Dengan ini, model ITU-R tidak memberikan telahan yang tepat bagi nilai pelemahan hujan di Malaysia kerana satu-satu bacaan hanya terhad kepada satu kawasan kecil sahaja. Projek ini bertujuan untuk membangunkan program simulasi untuk menganggarkan tahap pelemahan hujan di satu-satu kawasan yang terhad. Perkara pertama yang dilakukan ialah menganalisa kiraan untuk mendapatkan tahap pelemahan hujan. Kemudian, model faktor pengurangan yang terbaik dipilih untuk mendapatkan hasil yang tepat. Selepas itu, perancangan yang rapi dilakukan untuk menjayakan program ini, diikuti dengan fasa merekabentuk. Bahagian yang paling sukar iaitu membangunkan program menggunakan perisian MATLAB dilakukan setelah fasa rekabentuk selesai. Untuk mengesahkan kebolehpercayaan keluaran progam ini, ia diuji dengan memberikan masukan-masukan yang sesuai dan keluarannya dianalisa. Hasil akhir yang diperolehi ialah satu program untuk menganggar tahap pelemahan hujan di Semenanjung Malaysia telah berjaya dibangunkan. Keluaran-keluaran yang dihasilkan oleh program ini telah dibandingkan dengan keluaran daripada model pelemahan hujan ITU-R. Perbezaan-

perbezaan	nilai dikira	dan didapati mo	del pelemahan hujan	yang telah	dibangunkan ini
lebih	tepat	untuk	digunakan	di	Malaysia.

TABLE OF CONTENTS

CHAPTER

1

TITLE

PAGE

5-6

DECLARA	TION	ii
DEDICAT	ION	iii
ACKNOW	LEDGEMENTS	iv
ABSTRAC	Т	v
ABSTRAK		vi
TABLE O	F CONTENTS	viii
LIST OF 1	ABLES	xi
LIST OF F	IGURES	xii
LIST OF A	BBREVIATIONS	xiii
LIST OF S	YMBOLS	xiv
LIST OF A	PPENDICES	XV
INTRODU	CTION	1
1.1 Lite	rature review	1
1.1.	Effects of High Frequencies to	1-3
	Electromagnetic Wave	
1.1.1	2 Effects of Rain to Electromagnetic	3-4
	Wave in High Frequencies	
1.2 Prot	lem Statement	4-5
1.3 Res	earch Objectives	5

Thesis Outline

1.4

viii

ix

8

8-10

10-11

11-12

12

12-16

17-18

18-19

20 20

20

21

21

21

27

27

28-29

30-32

34-36

37-38

33

37

23-26

8

	2.1	Rain A	Attenuation Calculation
		2.1.1	Rain Attenuation Calculation for
			LOS (Terrestrial) microwave path
			2.1.1.1 Path Length Reduction
			Factor
			2.1.1.2 Moupfouma Model As
			a Reduction Factor
	2.2	Some	Models of Rain Attenuation
		Predic	tion
		2.2.1	ITU-R Model of Rain Attenuation
		2.2.2	Crane Model
		2.2.3	Comparison of ITU-R and Crane
			Model
3	RESE	ARCH	METHODOLOGY
	3.1	Phases	s of Methodology
		3.1.1	Analysis of Calculation
		3.1.2	Planning
		3.1.3	Design Phase
		3.1.4	Development and Testing Phase
	3.2	Introd	uction to MATLAB
4	RESU	LTS A	ND ANALYSIS
	4.1	Introd	uction
	4.2	Visual	Design
	4.3	Implei	nentation
	4.4	Progra	m Limitations
	4.5	Progra	ım User Guide
	4.6	Additi	onal Features of the Program
	4.7	Examp	ble of Program Output for Predicted

RAIN ATTENUATION PREDICTION

2

	Rain A	Attenuation	
4.8	Analy	sis of the Results	38
	4.8.1	Comparison of the Output of RAPS	1 39-40
		with Results from ITU-R Model of	
		Rain Attenuation	
	4.8.2	Comparison of the Output of RAPS	1 41-43
		with Results Produced Utilizing	
		ITU-R Reduction Factor but Using	
		the Local Data Rain	
CON	CLUSI	ON AND PROPOSED FUTURE	44
WOI	RKS		
5.1	Concl	usion	44
5.2	Propo	sed Future Works	45

REFERENCES

5

APPENDIX A-E

49-91

46-48

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Some of frequency dependent coefficient to calculate specific attenuation	15
4.1	Example of program output at three different locations in Peninsular Malaysia	37
4.2	Comparison between output from RAPS1 and ITU-R model of rain attenuation at 26 GHz	39
4.3	Comparison between output from RAPS1 and ITU-R model of rain attenuation at 38 GHz	39
4.4	Comparison of the output of RAPS1 with results produced utilizing ITU-R reduction factor at 26 GHz	41
4.5	Comparison of the output of RAPS1 with results produced utilizing ITU-R reduction factor at 26 GHz	42

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Electromagnetic wave	2
1.2	Rain rate (mm/h) exceeded for 0.01% of	6
	the average year	
3.1	Program design	21
3.2	Flow Chart of the Methodology	22
3.3	Screenshot of MATLAB	23
3.4	Screenshot of guide	25
4.1	Locations of rain rate collected	27
4.2	Introductory window	28
4.3	Main working window	29
4.4	Example of output (1)	31
4.5	Example of output (2)	32
4.6	'Error' message box (1)	34
4.7	'Error message box (2)	34
4.8	'Error' message box (3)	35
4.9	'Error' message box (4)	35
4.10	'Help' message box	35

LIST OF ABBREVIATIONS

MHz, <i>MHz</i>	-	Mega Hertz
GHz	-	Giga Hertz
RF	-	Radio Frequency
LOS	-	Line of Sight
ITU	-	International Telecommunication Union
UTM	-	Universiti Teknologi Malaysia
ITU-R	-	International Telecommunication Union Radio Section
GUI	-	Graphical User Interface
MATLAB	-	Matrix Laboratory
RAPS1		Rain Attenuation Prediction Software

LIST OF SYMBOLS

d, l, L	-	path length
<i>f</i> , <i>F</i>	-	frequency
Ls	-	Loss
λ	-	wavelength
С	-	speed of light
γ _R	-	specific attenuation
<i>k</i> , α	-	functions of frequency for ITU model
$d_{e\!f\!f}, L_{e\!f\!f}$	-	effective path length
r	-	reduction factor
$A_{0.01}$	-	rain attenuation exceeded for 0.01% of time
A_p	-	rain attenuation exceeded for p% of time
р	-	annual time percentage
p_w	-	worst-month time percentage
$R_{p,}R$	-	rain rate in millimeter per hour at p% probability
е	-	natural logarithm
pl	-	modified probability of occurrence
km	-	kilometers
dB	-	decibel

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	MATLAB Self Generated Code for Introductory Window	48-54
В	MATLAB Self Generated Code for Main Working Window	55-72
С	MATLAB Code Associated with 'Predict' Pushbutton of Main Working Window	73-79
D	MATLAB Code Associated with 'Calculate and Plot' Pushbutton of Main Working Window	80-87
Е	MATLAB Code for Hoplength Window	88-90

CHAPTER 1

INTRODUCTION

This chapter covers the literature review and the significance of this project. It also tells about the outline of this thesis.

1.1 Literature Review

1.1.1 Effect of High Frequencies to Electromagnetic Wave

Since communication at lower frequencies is getting congested, the use of frequencies in higher spectrum band is currently in demand by the designers. Higher bands provide wider spectrum for communication but in contrast it suffer greater propagation loss. This can be easily determined by the below mathematical formula for free space loss:

$$Ls = 32.45 + 20\log dkm + 20\log fMHz$$

Higher bands from 1 GHz to 300 GHz are call microwave. Microwave is form of electromagnetic energy and can be described with the term of radio frequency or RF. RF emission and associated phenomena can be discussed in terms of energy, radiation or fields. In term of radio wave propagation, we can define radiation as the propagation of energy through space in the form of waves or particles [1]. Figure 1.1 below illustrated radiation as waves of electric and magnetic energy moving together through space.

Figure 1.1 Electromagnetic wave

Electromagnetic energy can be characterizes by a wavelength and a frequency. The wavelength is the distance covered by a complete electromagnetic wave cycle, while the frequency is the number of electromagnetic waves passing a given point in a second. Electromagnetic waves travel through space at the speed of light. The wavelength and frequency of an electromagnetic wave are inversely related by a simple mathematical formula given below:

$$\lambda = \frac{c}{f}$$

where:

$$\lambda$$
 = wavelength
 c = speed of light
 f = frequency

The speed of light in a given medium does not change, resulting in shorter wavelength for high frequency electromagnetic waves. Hence, when operating at high

frequencies, rain becomes a major obstacle as it will scatter the signals when the size of the raindrops is larger than the waves. To make it worse, places experiencing heavy rainfall will suffer greater interference and consequently degrading the signal or waves.

1.1.2 Effect of Rain to Electromagnetic Wave in High Frequencies

When it comes to tropical countries like Malaysia, Indonesia and Thailand, the losses become higher because of heavy rain. It can degrade the radio wave propagation at frequencies 10 GHz and above [2]. To be more specific, propagation of radio waves through the atmosphere above 10GHz involves not only free space loss and loss due to rain, but other factors listed below also contribute to the additional loss [3]:

- i) The gaseous of the homogeneous atmosphere due to resonant and nonresonant polarization mechanism.
- ii) The inhomogeneties in the atmosphere
- iii) The particles due to fog, mist and haze (includes dust, smoke and salt particles in the air)

Earlier approach to deal with rain is on a basis of rainfall given in millimeters per hour. This was usually done with rain gauges, using collected rain averaging over a day or even periods of days. However, for path design above 10 GHz, such statistic are not sufficient where designers may want path availability better than 99.9% and do not want to design using conservative procedures.

A researcher, Hogg, suggests that the use of high speed rain gauges with outputs ready available in computer analysis [3]. These gauges can provide minute by minute analysis of the fall rate, unlike the conventional type of gauges. But it is desirable to have several years' statistics for a specific path to provide necessary and accurate information on fading caused by rainfall that will determine the parameters such as LOS repeaters, size of antenna and so on.

Realizing the importance of this rainfall data, a large body of information on point rainfall and rain rates has been accumulated since 1940 [3]. This information shows a great variation of short-term rainfall rates from one geographical location to another.

Researchers in countries experiencing heavy rain especially in South East Asia countries including Malaysia have been doing active research regarding rain and its effect to communication system for the past 10 years. The tropical climate makes the research topic relevant to get a better quality of communication in microwave bands throughout the country.

1.2 Problem Statement

Rain attenuation model that has been used worldly is currently base on ITU model. It gives same rain rate for all places in Malaysia. It classified Malaysia under P climatic region where the rain rate for 0.01% of the year ($R_{0.01}$) is given as 145 mm/h [3], [5], [6]. The latest ITU Recommendation notes peninsular Malaysia experiences 120 mm/h rain rate and West Malaysia 100 mm/h for 0.01% of the year [7]. Figure 1.2 shows the latest rain rates in Malaysia and in its neighbours given by ITU.

However, previous study in Malaysia conducted by researches in UTM shows that rain rate is not the same for different places in Malaysia. It is localized where some places experience heavier rainfall compared to other places. Therefore, the ITU-R model does not give an accurate prediction of rain attenuation in Malaysia, where the attenuation is supposed to be localized base on the data of the rain rate

1.3 Research Objectives

In accordance with active researches in rain that are being done in Malaysia and its relationship with communication, this project is aimed to develop a computer program in order to predict localized rain attenuation for terrestrial microwave links in Peninsular Malaysia. This program will be based on given data. Once the program has been developed, the result from that simulation of the program is compared with ITU-R rain attenuation model.

1.4 Thesis Outline

This thesis consists of five chapters. Chapter 1, which is this chapter, covers the literature review, the significance of this project and the outline of this thesis.

Chapter 2 gives a brief theory of rain attenuation prediction methods. This includes rain attenuation calculation for terrestrial microwave path, path length reduction factor models and rain attenuation models that are widely used nowadays. Comparison between those models is also done and the reasons why the appropriate models are chosen to complete this project are stated.

In Chapter 3, all the methodology adopted in making this project a success is explained. The phases of methodology are written one by one and are also explained briefly. A little bit of the MATLAB software that is used to build the program is also mentioned and explained.

Chapter 4 covers the results obtained from this project. The results include the program visual design, implementation, testing and user guide to use the program. Analysis of the results is also done by comparing them with the output from ITU-R model.

Conclusion about the research and the results obtained is discussed in Chapter 5. It also covers the proposed future works that can be implemented by future researchers to further enhance this project.

REFERENCES

- Lehpamer, H. Microwave Transmission Networks Planning, Design, and Deployment. United States: McGraw-Hill. 2004.
- Yunjiang Liu; Guoce Huang; Shunchun Zhen. Performance Analysis of Ka-Band Satellite Channel Capacity in the Presence of Rain Attenuation. Proceedings of the Microwave and Milimeter Wave Technology, 2004. ICMMT 4th International Conference. 18-21 Aug. IEEE. 2004. 175-177.
- Freeman, R.L. Radio System Design for Telecommunications. United States: John Wiley & Sons. 1997.
- Khajepiri, F.; Ghorbanii, A.; Amindavar, H. A new method for estimating rain attenuation at high frequencies. Proceedings of the 9th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory,2004. 11-14 Oct. IEEE. 2004. 43-46
- Yagasena, A.; Hassan, S.I.S. Worst-month rain attenuation statistics for satellite Earth link design at Ku-band in Malaysia. Proceedings TENCON 2000. Volume 24-27 Sept.IEEE. 2000. 122-125.
- Rec. ITU-R PN.837-1. Characteristic of precipitation for propagation modeling. PN Series Volume. ITU. Geneva. 1994.

- Rec. ITU-R P.837-4. Characteristics of precipitation for propagation modeling. ITU. Geneva. 2003.
- 8. Crane, K.R. Prediction of the Effects of Rain on Satellite Communication Systems. Proceedings of the IEEE, Vol. 65, No.3. IEEE. 1977. 456-474.
- 9. MR. PC+ (1995). "Microwave radio path calculations plus", Version 2.4, Harris Corporation, Farinon Division.
- Bernhardsen, Tor. Geographic Information Systems, An Introduction. John Wiley & Sons, Inc. Norway. 2001.
- Worboys, M, Duckham, M. GIS A Computing Perspective. CRC Press. US.2004.
- Islam, M.R.; Tharek, A.R.; Chebil, J. Comparison between path length reductionfactor models based on rain attenuation measurements in Malaysia. Asia Pacific Microwave Conference. 3-6 Dec. IEEE. 2000. 1556-1560.
- Moupfouma, F. Improvement of a rain attenuation prediction method for terrestrial microwave links. IEEE Transaction on Antennas and Propagation [legacy, pre-1988] Volume 32. Dec 1984. IEEE. 1368-1372.
- 14. Rec. ITU-R p.530-12. Propagation data and prediction methods required for the design of terrestrial line-of-sight systems. ITU. Geneva. 2007.
- Chebil J. Rain Rate and Rain Attenuation Distribution For Microwave Propagation Study in Malaysia. Ph.D. Thesis. Faculty of Electrical Engineering, University of Technology Malaysia (UTM). 1997

16. Chapman, S.J. MATLAB[®] Programming for Engineers. Second Edition. Canada: Brooks/Cole. 2002.