INVESTIGATION OF LASER CUTTING PARAMETERS ON SURFACE QUALITY OF STAINLESS STEEL

AZMAN BIN ANUAR

A project report submitted in partial fullfilment of the requirements for the award of the degree of Master of Engineering (Mechanical – Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2010

To my beloved family father and mother , my wife - Norhasniza , my kids -Muhammad Aqil Farihin and Nur Damia Harisa, and my siblings. Thank for all your support .

ACKNOWLEDGEMENT

First of all, I would like to thank Allah s.w.t for giving me strength and guidance to complete this project. I would like to express my sincere thanks to my supervisor Prof. Dr. Ashraf Hafiz Radwan and co-supervisor Dr.-Ing. Yupiter HP Manurung for the constant guidance, invaluable knowledge, and constructive ideas in leading us to accomplish this project

I would like to thank all staff in the Universiti Sains Malaysia especially to Mr. Mohzani and Mr. Fahmi who have provided with assistance on various occasions. Assistance given by my fellow postgraduate collegues Mr. Zaeime are also acknowledged.

I am indebted to Majlis Amanah Rakyat (Mara) for grating me the scholarship to pursue my study at the Universiti Teknologi Malaysia. Finally, I would like to extend my heartful thank you to all my lecturers in the Department of Manufacturing and Industrial Engineering of the Universiti Teknologi Malaysia, friends and family members who have given me moral support during my studies.

ABSTRACT

In this thesis, the optimal CO_2 laser cutting parameters on stainless steel AISI 304 with 2 mm in thickness were studied. The cut quality to achieve a uniform kerf with minimum kerf width for circular cuts of stainless steel sheets depends on appropriate selection of process parameters was investigated. The cutting parameters considered include laser output power level, cutting speed, cutting gas pressure, and focus length. The effect of the cutting parameters on the cut quality was further investigated by monitoring the kerf width, roundness, and diameter accuracy. The experiments were conducted by using the nitrogen gas assisted laser cutting, and the factorial analysis is employed to formulate an empirical formula for optimum.

ABSTRAK

Dalam tesis ini, mengkaji *CO2 laser cutting* parameter optimum pada *stainless steel AISI 304* dengan ketebalan 2 mm. Untuk permotongan yang berkualiti mencapai garitan seragam dengan *kerf width* bagi kepingan *stainless steel* yang tepat bergantung pada parameter proses. Parameter pemotongan dianggap meliputi tahap keluaran kuasa laser, kelajuan potong, pemotongan tekanan gas, dan panjang fokus. Pengaruh parameter pemotongan terhadap kualiti pemotongan itu berdasarkan penyelidikan lebih lanjut oleh pemantauan *kerf width*, kebulatan, dan diameter. Ekseperimen ini dijalankan dengan menggunakan laser cutting gas nitrogen dibantu dan dianalisa dengan faktoran untuk merumuskan *empirical formula* menjadi optimum.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	
		NOWI EDGEMENTS	
	ACK		1V
	ABS.	ГКАСТ	V
	ABS	ГКАК	vi
	TAB	LE OF CONTENTS	vii
	LIST	COF TABLES	xii
	LIST	COF FIGURES	XV
	LIST	COF SYMBOLS AND ABBREVIATIONS	xix
	LIST	COF APPENDICES	XX
1	INTF	RODUCTION	1
	1.1	Overview	1
	1.2	Project statement	2
	1.3	Objective	3
	1.4	Scope	3

LITERATURE REVIEW

4

2.1	Introd	luction	4	
2.2	Laser	Laser cutting		
	2.2.1	Definition of laser cutting	5	
	2.2.2	Principle of laser cutting	6	
	2.2.3	Laser cutting approach	7	
		2.2.3.1 Evaporative laser cutting	8	
		2.2.3.2 Laser fusion cutting	9	
		2.2.3.3 Reactive or oxygen assisted		
		laser cutting	10	
		2.2.3.4 Controlled fracture technique	11	
	2.2.4	CO ₂ laser cutting	14	
		2.2.4.1 Fast axial flow CO ₂ laser cutting	15	
		2.2.4.2 Diffusion cooled (slab) CO_2		
		laser cutting	16	
		2.2.4.3 Sealed off CO ₂ laser cutting	17	
	2.2.5	Gas assist on laser cutting	17	
		2.2.5.1 Oxygen	18	
		2.2.5.2 Nitrogen	19	
2.3	Laser	parameters	19	
	2.3.1	Beam parameter	20	
		2.3.1.1 Wave length	20	
		2.3.1.2 Power and intensity	22	
		2.3.1.3 Beam quality	23	
		2.3.1.4 Beam polarization	24	
	2.3.2	Process parameter	27	
		2.3.2.1 Continuous wave (cw) or		
		pulsed (p) laser power	27	
		2.3.2.2 Focal length of the lens	28	
		2.3.2.3 Focal position relative to		
		the material surface	29	
		2.3.2.4 Cutting speed	29	

2

		2.3.2.5 Process gas and gas pressure	30
		2.3.2.6 Nozzle diameter and	
		standoff distance	31
		2.3.2.7 Nozzle alignment	33
2.4	Mater	ial	34
	2.4.1	Stainless steel	35
2.5	Effect	t the cutting process	37
	2.5.1	Kerf width	37
	2.5.2	Diameter	39
	2.5.3	Roundness	40
2.6	Revie	w of previous studies	41
	2.6.1	Wedge cutting of mild steel by CO ₂	
		laser and cut quality assessment in	
		relation to normal cutting	41
	2.6.2	Experimental investigation into	
		CO ₂ laser cutting parameters	45
	2.6.3	Investigation of optimum condition	
		in oxygen gas assisted laser cutting	48

3 METHODOLOGY

51 3.1 Introduction 3.2 51 Machine parameters 3.3 Response parameter 52 3.4 Material 52 3.3.1 Stainless steel (AISI 304) 53 3.3.1.1 Composition of stainless steel (AISI 304) 53 3.3.1.2 Mechanical properties of stainless steel (AISI 304) 53 3.3.1.3 Thermal properties of stainless steel (AISI 304) 54

51

		3.3.1.4 Electric properties of	
		stainless steel (AISI 304)	55
	3.3.2	Sample of specimen	55
3.5	Machi	ine and equipment	56
3.6	Analy	rsis	59
	3.6.1	Statistical analysis	59
	3.6.2	Kerf width	60
	3.6.3	Roundness error	60
	3.6.4	Diameter accuracy	61
3.7	Exper	imental flowchart	61

4 **RESULTS AND DISCUSSIONS**

4.1	Introd	uction	62
4.2	Exper	imental results	62
	4.2.1	Laser cutting of stainless steel 304	63
4.3	Exper	imental result for kerf width	66
	4.3.1	Analysis of kerf width	66
		4.3.1.1 Cutting speed (B)	69
		4.3.1.2 Interaction graph between	
		power (A) and pressure (C)	70
		4.3.1.3 Interaction graph between	
		power (A) and focus length (D)	71
		4.3.1.4 Interaction graph between	
		pressure (C) and focus length (D)	72
		4.3.1.5 Perturbation plot for kerf width in	
		laser cutting process	73
	4.3.2	Empirical equations and graphical form for	
		kerf width model	74
4.4	Exper	imental result for roundness error	76
	4.4.1	Analysis of roundness	76
		4.4.1.1 Power (A)	79

		4.4.1.2 Interaction graph between	
		cutting speed(B) and pressure (C)	80
		4.4.1.3 Interaction graph between	
		cutting speed(B) and focus	
		length (D)	81
		4.4.1.4 Interaction graph between	
		pressure (C) and focus length (D)	82
		4.4.1.5 Perturbation plot for roundness	
		in laser cutting process	83
	4.4.2	Empirical equations and graphical form	
		for roundness model	84
4.5	Experi	imental result for diameter accuracy	86
	4.5.1	Analysis of diameter	86
		4.5.1.1 Interaction graph between	
		power (A) and focus length (D)	89
		4.5.1.2 Interaction graph between	
		cutting speed(B) and focus	
		length (D)	90
		4.5.1.3 Interaction graph between	
		pressure (C) and focus length (D)	90
		4.5.1.4 Perturbation plot for diameter	
		in laser cutting process	91
	4.5.2	Empirical equations and graphical form for	
		diameter model	92
4.6	Summ	ary of significant factors in laser cutting	
	proces	388	92
4.7	Confir	mation run	94
4.8	Discus	ssions	96
	4.8.1	Kerf width	96
	4.8.2	Roundness error	98
	4.8.3	Diameter accuracy	99

5.1	Conclusions	100
5.2	Recommendations	103

REFERENCES	1	04
Appendices A - C	109 - 12	20

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Various approaches of laser cutting	8
2.2	Laser cutting condition	43
2.3	Optimum experimental conditions for steel laser cutting	50
2.4	Optimum experimental conditions for mild steel laser	
	cutting	50
3.1	Machining parameter	52
3.2	Composition of stainless steel (AISI 304)	53
3.3	Mechanical properties of stainless steel (AISI 304)	54
3.4	Thermal properties of stainless steel (AISI 304)	54
3.5	Electric properties of stainless steel (AISI 304)	55
4.1	Factors and levels for laser cutting of stainless steel	
	304	63
4.2	Experimental plan for laser cutting stainless steel 304	64
4.3	Experimental results for laser cutting stainless steel	
	304	65
4.4	ANOVA table for kerf width in laser cutting process	67
4.5	ANOVA table for roundness in laser cutting process	77
4.6	ANOVA table for diameter in laser cutting process	87
4.7	Summary of significant factors in laser cutting	
	experiments	94

4.8	Analysis of comfirmation run experiment for kerf	
	width	95
4.9	Analysis of comfirmation run experiment for	
	roundness	95
4.10	Analysis of comfirmation run experiment for diameter	95

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Basic principle of laser cutting	6
2.2	General schematic of a laser-cutting process with a	
	coaxial gas jet to blow the molten material	7
2.3	A sketch of laser vaporization cutting	9
2.4	A sketch of laser fusion cutting	10
2.5	A sketch of laser oxygen cutting	11
2.6	Experimental setup for laser cutting using	
	controlled fracture technique	13
2.7	Mechanism of laser cutting by controlled fracture	
	for asymmetrical cutting	13
2.8	Model geometry for calculating temperature and	
	stress distribution during controlled fracture	
	cutting	14
2.9	Fast axial flow (FAF) laser with beam trajectory	
	planes oriented at 45° angle	16
2.10	Diffusion-cooled (slab) CO ₂ laser	17
2.11	Absorption phenomena of typical metals over a	
	range of different laser wavelengths	21
2.12	The relative absorption of energy for different	
	orientations of the cutting direction and direction	
	of polarization, whereby ψ is the angle between the	
	plane of polarization, p, and the cutting direction, c	25

2.13	Effects of polarization in cutting	26
2.14	Focusability of laser beams	28
2.15	Nozzle geometry – definitions	32
2.16	(a) The equilibrium set up when the gas jet and	
	laser beam are coaxial	
	(b) Nozzle-laser beam misalignment	33
2.17	(a) Variation of the kerf width with cutting speed	
	(b) Variation of the kerf width with laser output	
	power	
	(c) Variation of kerf width with energy coupling	
	factor	38
2.18	Perpendicularity tolerance of a straight laser cut	39
2.19	Sketch a diameter of a circle	40
2.20	Experimental setup for wedge and normal cutting	
	situations	43
2.21	Layout of neural network used the simulation	43
2.22	Schematic view of dross height and out of flatness	44
2.23	Experimental set-up	46
3.1	CO ₂ laser cutting	56
3.2	Profile projector	57
3.3	Roundness tester	57
3.4	Coordinate measurement machine	58
3.5	Design expert version 6.0.5 software	58
3.6	Flowchart outlining the analysis steps undertaken	59
3.7	A diagram of the measurement method of	
	roundness	60
3.8	Overall procedure for whole experimental work	61
4.1	Normal probability plots of residuals for kerf	
	width in laser cutting process	68
4.2	Residual vs predicted response for kerf width in	
	laser cutting process	68

4.3	Outlier T plot for kerf width in laser cutting	
	process	69
4.4	One factor plot for kerf width in laser cutting	
	process	70
4.5	Interaction between power and pressure on kerf	
	width(focus length = -2 mm and cutting speed =	
	850 mm/min)	71
4.6	Interaction between power and focus length on	
	kerf width(pressure = 11 bar and cutting speed =	
	850 mm/min)	72
4.7	Interaction between pressure and focus length on	
	kerf width(power =1000 watt and cutting speed =	
	850 mm/min)	73
4.8	Perturbation plot for kerf width in laser cutting	
	process	74
4.9	3D response surface for kerf width in laser cutting	
	process	75
4.10	Normal probability plots of residuals for roundness	78
4.11	Residual vs predicted response for roundness	78
4.12	Outlier T plot for roundness	79
4.13	One factor plot for Roundness in laser	
	cutting(cutting speed = 850 mm/min, pressure = 11	
	bar and focus length = -2 mm)	80
4.14	Interaction between cutting speed (B) and pressure	
	(C) on roundness(power =1000 watt and focus	
	length = -2 mm)	81
4.15	Interaction between cutting speed (B) and focus	
	length (D) on roundness(power =1000 watt and	
	pressure = 11 bar)	82
4.16	Interaction between pressure (C) and focus length	
	(D) on roundness(power =1000 watt and cutting	
	speed = 850 mm/min)	83

4.17	Perturbation plot for roundness in Laser Cutting	
	process	84
4.18	3D response surface for roundness in laser cutting	
	process	85
4.19	Normal probability plots of residuals for diameter	88
4.20	Residual vs predicted response for diameter	88
4.21	Outlier T plot for diameter in laser cutting process	88
4.22	Interaction between power (A) and focus length	
	(D) on diameter(cutting speed = 850 mm/min and	
	pressure = 11 bar)	89
4.23	Interaction between cutting speed (B) and focus	
	length (D) on diameter(power = 1000 watt and	
	pressure = 11 bar)	90
4.24	Interaction between pressure (C) and focus length	
	(D) on diameter(power = 1000 watt and cutting	
	speed = 850 mm/min)	91
4.25	Perturbation plot for diameter in laser cutting	
	process	92
4.26	3D response surface for diameter in laser cutting	
	process	93
4.27	Interaction between power and pressure on kerf	
	width (focus length= -1 mm and cutting speed =	
	850 mm/min)	97
4.28	Interaction between power and focus length on	
	kerf width(pressure=12 bar and cutting speed =	
	850 mm/min)	97

LIST OF SYMBOLS AND ABBREVIATIONS

λ	-	wavelength
K	-	beam quality factor
M ²	-	times diffraction limit factor
D	-	beam diameter at the optic
d_{f}	-	focused beam diameter
Z	-	depth of focus
f	-	focus length
F	-	focus length diveded by the beam diameter at the optic
$d_{ m o}$	-	beam waist diameter
ψ	-	angle between the plane of polarization and cutting direction
Р		plane of polarization
cw		continuous wave laser power
BPP		Beam Parameter Product
CO ₂		carbon dioxide
DPSSLs		diode pumped solid state lasers
HAZ		heat affected zone
LPSSLs		Lamp Pumped Solid State Lasers
Nd: YAG		Neodymium – Yttrium Aluminium Garnet
TEM ₀₀		lowest order beam mode/ diffraction limit
Yb: YAG		Ytterbium: Yttrium Aluminium Garnet

LIST OF APPENDICES

APPENDIX NO.	TITLE	PAGE
A1	Flowchart outlining the steps undertaken in	
	statistical analysis	110
B1	Specimen after machining workpiece 1 to	
	workpiece 4	111
B2	Specimen after machining workpiece 5 to	
	workpiece 8	112
B3	Specimen after machining workpiece 9 to	
	workpiece 12	113
B4	Specimen after machining workpiece 13 to	
	workpiece 16	114
B5	Specimen after machining workpiece 17 to	
	workpiece 20	115
C1	Dross for machining condition workpiece 1 to	
	workpiece 4	116
C2	Dross for machining condition workpiece 5 to	
	workpiece 8	117
C3	Dross for machining condition workpiece 9 to	
	workpiece 12	118
C4	Dross for machining condition workpiece 13 to	
	workpiece 16	119
C5	Dross for machining condition workpiece 17 to	
	workpiece 20	120

CHAPTER 1

INTRODUCTION

1.1 Overview

Laser cutting is a two-dimensional machining process in which material removal is obtained by focusing a highly intense laser beam on the workpiece. Laser cutting finds wide application in industry. This is mainly due to the ability of lasers to produce high quality cuts at reasonable production rates.[1]).

The production of lasers and laser systems for material processing has grown continuously over the last few years because of its economic benefits, such as high quality, high productivity, saving of the pre- and post-processing of the material, and minimum waste of base material. The industrial applications of material processing with laser machining systems are mainly laser cutting (39%), laser welding (20%), laser labelling (16%), laser micromachining (8%), and laser drilling (4%) [2].

Industrial applied materials, which can be machined by a laser beam, include steel, alloyed steel, aluminium, copper, ceramics, composite material, plastic, glass, and wood. The CO_2 laser and Nd:YAG laser (solid state laser) are the main lasers used for industrial cutting applications. The CO_2 laser is the most commonly used, especially for cutting of thick sections, because of its better beam quality compared

with the Nd:YAG laser of a similar power level and the CO_2 lasers are also available in higher output powers than the Nd:YAG lasers.[3]

Stainless steel is used extensively in a number of everyday applications in the home, industry, hospitals, food processing, farming, aerospace, construction, chemical, electronics, and energy industries; the austenitic grade of stainless steel is the most used by far. Cutting of stainless steel sheets is one of the primary requirements in the fabrication of most of the components. Laser cutting offers several advantages over conventional cutting methods such as plasma cutting.[3]

In the experimental part of this study, the cutting experiments covered cutting of austenitic stainless steel (grades AISI 304) of sheet thickness of 2.0 mm using the CO_2 laser cutting. The cut qualities were analyzed by measuring the kerf width, roundness and diameter.

The laser cutting parameters will be used for these experiments are power and cutting speed, pressure and focus length Because the previous researchers, prove this parameter affect to cutting quality of laser cutting.

1.2 Problem statement

Laser cutting finds wide application in industry. This is mainly due to the ability of lasers to produce high quality cuts at reasonable production rates. However, there are some problems with the process that require immediate attention, because no standard laser cutting setting parameters to archive the good cutting quality on stainless steel.

This material are common used in industry, home, hospitals, food processing, farming, aerospace, construction, chemical, electronics, and energy industries but

difficult to setting the parameter with good cutting quality by CO₂ Laser Cutting Machine.

1.3 Objective

To investigate the effect of independent factor such as machine power, cutting speed, pressure and focus length on cutting quality of stainless steel sheet with 2mm thickness using CO_2 laser cutting.

1.4 Scope

- a) These experiments are conducted by using of machine CO₂ laser cutting model Trumatic L2530 plus 2.0 kw.
- b) The investigated material is 2 mm thickness of stainless steel 304 sheet.
- c) The laser cutting parameters will be used for these experiments are machine power, cutting speed, pressure and focus length.
- d) The responses to be study are kerf width, roundness error and diameter accuracy.