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ABSTRACT

Today, improving the security of computer systems has become a vital and

challenging problem. Attackers can seriously damage the integrity of filesystems.

Attack detection is complex and time-consuming for system administrators, and it is

becoming more so. One of the means to detect intruder's activity is to trace all

unauthorized changes in a filesystem. Current user-space mood checkers, due to

being slow detectors, suffer from the opportunity gap that occurs between filesystem

checks. Basing on the principle of thinking like an attacker, this prototype is

developed to minimize the total time taken for checking by focusing on critical files.

The proposed technique will accelerate the checking process through acquiring

specific file extensions from the filesystem rather than targeting the entire filesystem.

Discrepancies in the filesystem are reported after comparing current files hashing

values with original hashing values. This prototype is configured to use variety of

hashing algorithms to measure the performance on different scales and to provide

various choices for users. Research results on Windows Server 2003 show that the

average total time taken for this prototype is in the range of three to four minutes.

The elapsed time of filesystem checking by Windows System File Check tool “SFC”

has been decreased to eighty five percent on this prototype.
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ABSTRAK

Hari ini, usaha untuk menambahbaik sistem keselamatan komputer telah

menjadi semakin rumit dan mencabar. Penyerang boleh memusnahkan sesebuah

integriti sistem fail secara kritikal. Pengesan serangan sangat kompleks dan

menjimatkan masa untuk pengurus sistem dan menjadi semakin baik. Salah satu cara

untuk mengesan aktiviti penceroboh ialah dengan mengesan semua perubahan yang

tidak dikenali di dalam sistem fail. Pemeriksa mud ruang-pengguna sekarang dengan

yang menjadi pengesan yang perlahan, dibebani oleh peluang ruang yang berada

diantara pemeriksaan sistem fail. Mengambilkira prinsip pemikiran penyerang,

prototaip ini dibangunkan untuk meminimumkan jumlah masa yang diambil untuk

pemeriksaan dengan menumpukan kepada fail yang kritikal. Tujuan teknik ini adalah

dengan mempercepatkan proses memeriksaan dengan mengumpul fail tambahan

yang tertentu di dalam sistem fail tersebut daripada mengsasarkan kesemua sistem

fail. Perbezaan di dalam sistem fail boleh dilaporkan dengan membandingkan nilai

fail semasa cincang dengan nilai cincang yang asal. Prototaip ini ditetapkan untuk

menggunakan pelbagai algoritma cincang untuk mengukur keupayaan dari skala

yang berbeza dan menyediakan pelbagai pilihan kepada pengguna. Keputusan kajian

dari Windows Server 2003 menunjukkan bahawa purata masa yang diperlukan oleh

prototaip ini adalah tiga hingga empat minit. Masa yang digunakan oleh sistem fail

ini yang diperiksa oleh peranti Windows System File Check “SFC” telah

dikurangkan kepada lapan puluh lima peratus jika menggunakan prototaip ini.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The health of a server needs to be assessed and protected in much the same

manner as the health of a person. The server's main task is to provide services to

other computer programs and their users, either in the same or other computers.

Monitoring is the use of automated processes to continually collect and analyze the

operation of critical server services. Monitoring is an important part of delivering a

high-quality messaging service and for achieving commitments of service level

agreements. The overall goal of monitoring is to avoid possible service outages by

predicting problems and by quickly noticing problems that cannot be predicted. This

can be accomplished by either continually polling the monitored component or by

receiving or detecting events from these components.

1.2 Problem Background

Effective front-line monitoring of a server means watching the details for a

large number of events and performance counters on potentially hundreds of servers.

Effective monitoring requires more than simply knowing whether services are

running and the databases are mounted. It is highly needed to know the details if it is

required to monitor a server in a proactive rather than a reactive manner. Without
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detailed and diligent monitoring, our first indication of a problem will likely be a

telephone call from an unhappy user or customer. At that point, system

administrators probably have a service interruption, and service interruptions are bad

news for an enterprise as an example.

The amount of hacking activity on the Internet has been revealed after one

company set up an anonymous “dummy test” server and found it was maliciously

attacked 467 times within 24 hours of being installed. That news has been published

on ZDNet website by Graham Hayday [17], the server which contained no data and

had no public profile, was attacked every single day over the next three weeks. All

these statistics show that servers are still targeted by attacks day after day.

Another evidence of the activities against servers that are derived from the

statistics that Cyber Security Malaysia website provides [23] proves that many

breaches have been growing on the recent years. System intrusions represent big

numbers year after year and that explain how much servers are suffering.

All those numbers and figures point that servers are still in need to be audited

and scanned regularly. It has been mentioned by Don Mosley [28] when he claimed

that the area of real-time Intrusion Detection and Prevention utilizing intelligent

routers or various network attached appliances has received much press in the last

few years. He continued “should any of these defenses provide less than 100%

effective coverage the user will be left unaware of any 'mischief' that might have

gotten through. There is still a need for non real-time scanning of system files to

determine any unauthorized modifications. This type of audit is often the only

effective way to spot malicious activity originating from inside the enterprise

network.”

After all, there is still a lack of that kind of scanning over filesystem to find

out any illegal alterations. This kind of audit is mostly the successful way to catch

unpleasant activities originating from inside and outside. Whilst, windows servers

are not really supported with many security features as many as what is there in
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Linux servers. One of the most important is the server monitoring. In order to

achieve better security, servers require monitoring in many aspects, one of which is

foremost is the filesystem.

1.3 Problem Statement

Online security concerns grow day after day as new viruses and worms are

released. Because of this, it is now more important than ever to monitor the server's

filesystem for signs of compromise. In order to accomplish that, this project will

answer the following questions; How to monitor the filesystem of Windows server

operating system? What are the critical files that it should monitor? In what way and

when does the server launch the alerts?

1.4 Project Objectives

The objectives of this project are intended to:

1. Investigate a method of server monitoring on Windows server

provided by Microsoft.

2. Design and develop a prototype of server monitoring that enhances the

investigated method from time perspective.

3. Test the prototype and compare the results to any available Windows

server monitoring system.
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1.5 Project Aim

The aim of the project is to develop the monitoring of filesystem integrity in

Windows server. As well as, is to minimize the total time that the filesystem integrity

checker takes in the checking process in order to avoid opportunity gab weakness.

1.6 Project Scope

The scope of this project is:

1. The study concentrates on Windows server 2003 only.

2. The process of the monitoring only focuses on configuration files in

the filesystem.

3. The proposed enhancement will concentrate only on accelerating the

checking process of the filesystem integrity checker.

1.7 Thesis Organization

The report is divided into 5 chapters.

1. Chapter 1 describes the introduction and background of the study, the

project objectives, scope, and the layout of the report.

2. Chapter 2 gives literature review on information that relate to this

research.

3. Chapter 3 demonstrates the project methodology.

4. Chapter 4 represents the design and implementation of this prototype.

5. Chapter 5 shows the results of this research and finding.

6. Chapter 6 is the conclusion and summary.
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