
A PROTOTYPE FOR FILESYSTEM INTEGRITY CHECKER IN USER-SPACE

MOOD

ALQAHTANI, SAEED IBRAHIM S

A project report submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Computer Science (Information Security)

Faculty of Computer Science and Information Systems

Universiti Teknologi Malaysia

OCTOBER 2009



iii

Dedicated to

My beloved parents, my darling siblings and to all whom were beside me



iv

ACKNOWLEDGEMENT

Having the chance to be in this honourable institute is an unforgettable

moments in my life. The Centre for Advanced Software Engineering at UTM was an

everyday opportunity to acquire the knowledge that I look for. Many thanks to each

lecturer in there; they were my guidance to achieve my goals.

I would like to use this opportunity to thank my supervisor, Dr. Md. Asri

Ngadi for his insights, patience, and helpful suggestion in guiding me through all the

way from the very beginning to the accomplishment of this project. All the thanks go

to Mr. Syaril Nizam Omar too, for being supporting and motivate all the time.



v

ABSTRACT

Today, improving the security of computer systems has become a vital and

challenging problem. Attackers can seriously damage the integrity of filesystems.

Attack detection is complex and time-consuming for system administrators, and it is

becoming more so. One of the means to detect intruder's activity is to trace all

unauthorized changes in a filesystem. Current user-space mood checkers, due to

being slow detectors, suffer from the opportunity gap that occurs between filesystem

checks. Basing on the principle of thinking like an attacker, this prototype is

developed to minimize the total time taken for checking by focusing on critical files.

The proposed technique will accelerate the checking process through acquiring

specific file extensions from the filesystem rather than targeting the entire filesystem.

Discrepancies in the filesystem are reported after comparing current files hashing

values with original hashing values. This prototype is configured to use variety of

hashing algorithms to measure the performance on different scales and to provide

various choices for users. Research results on Windows Server 2003 show that the

average total time taken for this prototype is in the range of three to four minutes.

The elapsed time of filesystem checking by Windows System File Check tool “SFC”

has been decreased to eighty five percent on this prototype.



vi

ABSTRAK

Hari ini, usaha untuk menambahbaik sistem keselamatan komputer telah

menjadi semakin rumit dan mencabar. Penyerang boleh memusnahkan sesebuah

integriti sistem fail secara kritikal. Pengesan serangan sangat kompleks dan

menjimatkan masa untuk pengurus sistem dan menjadi semakin baik. Salah satu cara

untuk mengesan aktiviti penceroboh ialah dengan mengesan semua perubahan yang

tidak dikenali di dalam sistem fail. Pemeriksa mud ruang-pengguna sekarang dengan

yang menjadi pengesan yang perlahan, dibebani oleh peluang ruang yang berada

diantara pemeriksaan sistem fail. Mengambilkira prinsip pemikiran penyerang,

prototaip ini dibangunkan untuk meminimumkan jumlah masa yang diambil untuk

pemeriksaan dengan menumpukan kepada fail yang kritikal. Tujuan teknik ini adalah

dengan mempercepatkan proses memeriksaan dengan mengumpul fail tambahan

yang tertentu di dalam sistem fail tersebut daripada mengsasarkan kesemua sistem

fail. Perbezaan di dalam sistem fail boleh dilaporkan dengan membandingkan nilai

fail semasa cincang dengan nilai cincang yang asal. Prototaip ini ditetapkan untuk

menggunakan pelbagai algoritma cincang untuk mengukur keupayaan dari skala

yang berbeza dan menyediakan pelbagai pilihan kepada pengguna. Keputusan kajian

dari Windows Server 2003 menunjukkan bahawa purata masa yang diperlukan oleh

prototaip ini adalah tiga hingga empat minit. Masa yang digunakan oleh sistem fail

ini yang diperiksa oleh peranti Windows System File Check “SFC” telah

dikurangkan kepada lapan puluh lima peratus jika menggunakan prototaip ini.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

TITLE i

DECLARATION ii

DEDICATION iii

AKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF APPENDICES xiii

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Background 1

1.3 Problem Statement 3

1.4 Project Objectives 3

1.5 Project Aim 4

1.6 Project Scope 4

1.7 Thesis Organization 5

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Overview of Servers 6

2.2.1 Hacked Servers: Some Statistics 7



viii

2.2.2 Preference of Windows 9

2.3 Filesystem 10

2.3.1 Filesystem Protection 11

2.4 Filesystem Integrity 12

2.5 Filesystem Integrity Checkers 13

2.5.1 User-Space File Integrity Checker 14

2.5.2 Kernel-Space File Integrity Checker 15

2.5.3 Non-Resident Checker 16

2.5.4 User-Space / Kernel-Space (Hybrid)

Checker
16

2.6 Thinking Like an Attacker 17

2.7 Hashing Algorithm 18

2.8 Existing Works 20

2.8.1 Tripwire 20

2.8.2 Osiris 21

2.8.3 Radmind 22

2.8.4 I3FS 22

2.8.5 DigSig 23

2.8.6 WLF 23

2.8.7 Integrity Checking and Restoring System

(ICAR)
24

2.9 Existing Work: Comparison Study 26

2.10 Summary 28

3 METHODOLOGY 29

3.1 Introduction 29

3.2 Operational Framework 29

3.2.1 Information Gathering & Analysis 30

3.2.2 Requirement Specification 32

3.2.3 Prototype Design 33

3.2.4 Prototype Development 35

3.2.5 Testing the Result 36



ix

3.3 Summary 37

4 PROTOTYPE DESIGN AND IMPLEMENTATION 38

4.1 Introduction 38

4.2 The Prototype Implementation 38

4.2.1 Preparing the Environment 39

4.2.2 Prototype Design Functions 40

4.2.2.1 Getting Files by Extension 40

4.2.2.2 Calculate File Hashes and the

Byte Array Converter
41

4.2.2.3 Acquire File Information 43

4.2.3 Joining the Code Parts Together 45

4.2.4 Setting up and Connecting the Database 45

4.2.5 Integrating and Testing the Whole Code 46

4.2.6 Graphical User Interface 47

4.3 Summary 48

5 RESULTS AND FINDINGS 49

5.1 Introduction 49

5.2 Faced Issues and Obstacles 49

5.3 Prototype Testing Result 51

5.4 Measuring the Prototype Performance 52

5.5 Comparing the Prototype with Windows SFC 54

5.6 Usage Limitation 56

5.7 Summary 56

6 CONCLUSION AND SUMMARY 57

6.1 Introduction 57

6.2 Project Summary 57

6.3 Future Work 59

6.4 Summary 59



x

REFERENCES 60

Appendices A – C 65 – 78



xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 OS users statistics 9

2.2 Comparisons between some Existed Work 27

3.1 Comparison between file integrity checker

approaches

31

5.1 Measuring time performance for each hashing

algorithm

53



xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 ICAR's file checking and restoring 24

3.1 Research Methodology Workflow 30

3.2 Simplifying File Integrity Checker 34

4.1 The test case 39

4.2 Get files by extension 40

4.3 Hashing function 42

4.4 File’s owner function 43

4.5 File’s info function 44

4.6 Prototype database 46

4.7 GUI 48

5.1 Reporting incidents from the test case 51

5.2 Prototype performance testing 53

5.3 Comparing time performance between hashing

algorithms

54

5.4 System file check from Windows 55



xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Recent Reported Incidents from MyCERT 65

B Table 2.2 Elements Clarification 67

C Prototype Entire Code 69



CHAPTER 1

INTRODUCTION

1.1 Introduction

The health of a server needs to be assessed and protected in much the same

manner as the health of a person. The server's main task is to provide services to

other computer programs and their users, either in the same or other computers.

Monitoring is the use of automated processes to continually collect and analyze the

operation of critical server services. Monitoring is an important part of delivering a

high-quality messaging service and for achieving commitments of service level

agreements. The overall goal of monitoring is to avoid possible service outages by

predicting problems and by quickly noticing problems that cannot be predicted. This

can be accomplished by either continually polling the monitored component or by

receiving or detecting events from these components.

1.2 Problem Background

Effective front-line monitoring of a server means watching the details for a

large number of events and performance counters on potentially hundreds of servers.

Effective monitoring requires more than simply knowing whether services are

running and the databases are mounted. It is highly needed to know the details if it is

required to monitor a server in a proactive rather than a reactive manner. Without



2

detailed and diligent monitoring, our first indication of a problem will likely be a

telephone call from an unhappy user or customer. At that point, system

administrators probably have a service interruption, and service interruptions are bad

news for an enterprise as an example.

The amount of hacking activity on the Internet has been revealed after one

company set up an anonymous “dummy test” server and found it was maliciously

attacked 467 times within 24 hours of being installed. That news has been published

on ZDNet website by Graham Hayday [17], the server which contained no data and

had no public profile, was attacked every single day over the next three weeks. All

these statistics show that servers are still targeted by attacks day after day.

Another evidence of the activities against servers that are derived from the

statistics that Cyber Security Malaysia website provides [23] proves that many

breaches have been growing on the recent years. System intrusions represent big

numbers year after year and that explain how much servers are suffering.

All those numbers and figures point that servers are still in need to be audited

and scanned regularly. It has been mentioned by Don Mosley [28] when he claimed

that the area of real-time Intrusion Detection and Prevention utilizing intelligent

routers or various network attached appliances has received much press in the last

few years. He continued “should any of these defenses provide less than 100%

effective coverage the user will be left unaware of any 'mischief' that might have

gotten through. There is still a need for non real-time scanning of system files to

determine any unauthorized modifications. This type of audit is often the only

effective way to spot malicious activity originating from inside the enterprise

network.”

After all, there is still a lack of that kind of scanning over filesystem to find

out any illegal alterations. This kind of audit is mostly the successful way to catch

unpleasant activities originating from inside and outside. Whilst, windows servers

are not really supported with many security features as many as what is there in



3

Linux servers. One of the most important is the server monitoring. In order to

achieve better security, servers require monitoring in many aspects, one of which is

foremost is the filesystem.

1.3 Problem Statement

Online security concerns grow day after day as new viruses and worms are

released. Because of this, it is now more important than ever to monitor the server's

filesystem for signs of compromise. In order to accomplish that, this project will

answer the following questions; How to monitor the filesystem of Windows server

operating system? What are the critical files that it should monitor? In what way and

when does the server launch the alerts?

1.4 Project Objectives

The objectives of this project are intended to:

1. Investigate a method of server monitoring on Windows server

provided by Microsoft.

2. Design and develop a prototype of server monitoring that enhances the

investigated method from time perspective.

3. Test the prototype and compare the results to any available Windows

server monitoring system.



4

1.5 Project Aim

The aim of the project is to develop the monitoring of filesystem integrity in

Windows server. As well as, is to minimize the total time that the filesystem integrity

checker takes in the checking process in order to avoid opportunity gab weakness.

1.6 Project Scope

The scope of this project is:

1. The study concentrates on Windows server 2003 only.

2. The process of the monitoring only focuses on configuration files in

the filesystem.

3. The proposed enhancement will concentrate only on accelerating the

checking process of the filesystem integrity checker.

1.7 Thesis Organization

The report is divided into 5 chapters.

1. Chapter 1 describes the introduction and background of the study, the

project objectives, scope, and the layout of the report.

2. Chapter 2 gives literature review on information that relate to this

research.

3. Chapter 3 demonstrates the project methodology.

4. Chapter 4 represents the design and implementation of this prototype.

5. Chapter 5 shows the results of this research and finding.

6. Chapter 6 is the conclusion and summary.



60

REFERENCES

1. Apvrille, A, Gordon, D, Hallyn, S, Pourzandi, M., and Roy, V. DigSig:

Runtime authentication of binaries at kernel level. In Proceedings of the 18th

USENIX Large Installation System Administration Conference. (LISA 2004),

November 2004. Pre-print.

2. Aranya, A., Wright, C., and Zadok, E. (2004). Tracefs: A File System to

Trace Them All. Proceedings of the Third USENIX Conference on File and

Storage Technologies. USENLX.

3. Bace, R, and Mell, P. Intrusion Detection Systems. NIST Special Publications

SP 800-31, 2001.

4. Beattie, S, Black, A, Cowan, C, et al. (2000). CryptoMark: Locking the

Stable door ahead of the Trojan Horse. Technical report.

5. Berndtsson, M. and Hansson, J. (2008). Thesis Projects: A Guide for Students

in Computer Science and Information Systems. (2ndedition.) London:

Springer-Verlag.

6. Blaze, M. (1993). A cryptographic file system for Unix. In 1st ACM

Conference on Communications and Computing Security. ACM.

7. Brenner, B. SearchSecurity Information Resource. Report: Attackers Socking

it to Servers, Websites. Retrieved April 15, 2009. From:

http://searchsecurity.techtarget.com/news/article/0,289142,sid14_gci1083102

,00.html

8. Catuogno, L., and Visconti, I. (2002). A Format-Independent Architecture for

Run-Time Integrity Checking of Executable Code. In Proceedings of the

Third Conference on Security in Communication Networks. Dipartimento di

Informatica ed Applicazioni, Universita di Salerno.

http://searchsecurity.techtarget.com/news/article/0


61

9. Christensen, S, Sorensen, K, and Thrysoe, M. (2004). Umbrella: We can’t

prevent the rain... - But we don’t get wet! Master’s thesis, Aalborg

University.

10. Craig, W and McNeal, P. (2003). RadMind: The Integration of Filesystem

Integrity Checking with File System Management. In Proceedings of 17th

USENIX Large Installation System Administration Conference. LISA.

11. Danseglio, M. Securing Windows Server 2003. (1st edition). Gravenstein:

O’Reilly Media. 2004

12. Daugherty, M. (2004). Monitoring and Managing Microsoft Exchange Server

2003. Hewlett-Packard Development Company.

13. DISA for the DOD: DISA Field Security Operation. Web Server: Security

Technical Implementation Guide. (Dec 2006).

14. Dunlap, J. K. and Karels, J. M. Name Server Operation Guide for BIND.

Release 4.9.4. Berkeley. Retrieved March 20, 2009. From:

http://www.dns.net/dnsrd/docs/bog/bog.html.

15. Filesystems: Information on File Systems. Retrieved March 18, 2009. From:

http://filesystems.palconit.com/

16. Forristal, J, Schuh, J and Shipley, G. Network Computing. Think Like an

Attacker. Retrieved March 18, 2009. From:

http://www.networkcomputing.com/showArticle.jhtml?articleID=163105313

17. Hayday, G. (2003). ZDNet Tech News, Blogs and White papers for IT

Professional. Exposed Server: Magnet for Hack Attackers. Retrieved April

15, 2009. From http://news.zdnet.com/2100-1009_22-127291.html

18. Jones, D. and Rouse, M. Microsoft Windows Server 2003 Delta Guide. (2st

edition). New Jersey: SAMS. 2003

19. Kaczmarek, J and Wróbel, M. (2008). Modern Approach to File System

Integrity Checking. Proceedings of the 2008 1st International Conference on

Information Technology. Gdansk Poland: IEEE press.

20. Kim, G. and E. Spafford. (1994). Experiences with Tripwire: Using Integrity

Checkers for Intrusion Detection. In the Proceedings of the Usenix System

Administration, Networking and Security. SANS III.

21. Krebs, B. The Washington Post: Security Fix. Hundreds of Thousands of

Microsoft Web Servers Hacked. Retrieved April 15, 2009. From:

http://www.dns.net/dnsrd/docs/bog/bog.html
http://filesystems.palconit.com/
http://www.networkcomputing.com/showArticle.jhtml
http://news.zdnet.com/2100-1009_22-127291.html


62

http://voices.washingtonpost.com/securityfix/2008/04/hundreds_of_thousand

s_of_micro_1.html

22. Lettice, J. (2004). Security Report: Windows vs. Linux. Retrieved March 18,

2009. From:

http://regmedia.co.uk/2004/10/22/security_report_windows_vs_linux.pdf

23. Malaysian Computer Emergency Response Team. MyCERT Statistics from

2006-09. Retrieved April 15, 2009. From:

http://www.mycert.org.my/en/services/statistic/mycert/2009/main/detail/625/i

nde``x.html

24. Microsoft Help and Support. Limitations of the FAT32 File System in

Windows XP. Retrieved March 19, 2009. From:

http://support.microsoft.com/kb/314463

25. Microsoft Tech Net. Windows Server 2003 Operating System. Retrieved

April 15, 2009. From http://technet.microsoft.com/en-

us/windowsserver/bb429524.aspx

26. Pegley, N. TechiWarehouse. Types of Servers. Retrieved March 18, 2009.

From: http://www.techiwarehouse.com/cms/engine.php?page_id=fb1f7b2a

27. Radack, S. (2009). The Cryptographic Hash Algorithm Family: Revision of

the Secure Hash Standard and Ongoing Competition for New Hash

Algorithm. Retrieved from:

http://csrc.nist.gov/publications/nistbul/March2009_cryptographic-hash-

algorithm-family.pdf

28. Mosley, D. (2006). Implementation of a File Integrity Check System. East

Carolina University.

29. Motara, Y and Irwin, B. (2005). Information Security South Africa (ISSA).

File Integrity Checkers: State of the Art and Best Practices. Sandton

Conference Centre: Johannesburg. July 2005.

30. Nowicki, B. (1094). NFS: Network File System Protocol Specification.

Technical report, Sun Microsystems, Inc., March 1989.

31. Parmjit, S. et al. (2006). A comprehensive guide to writing a research

Proposal.

32. Patil, S., Kashyap, A, Sivathanu., G and Zadok, E. (2004). In the Proceedings

of the 18th USENIX Large Installation System Administration Conference.

http://voices.washingtonpost.com/securityfix/2008/04/hundreds_of_thousand
http://regmedia.co.uk/2004/10/22/security_report_windows_vs_linux.pdf
http://www.mycert.org.my/en/services/statistic/mycert/2009/main/detail/625/i
http://support.microsoft.com/kb/314463
http://technet.microsoft.com/en-
http://www.techiwarehouse.com/cms/engine.php
http://csrc.nist.gov/publications/nistbul/March2009_cryptographic-hash-


63

I3FS: An In-Kernel Integrity Checker and Intrusion Detection File System.

Atlanta, GA: LISA.

33. Samhain Labs. Samhain: File System Integrity Checker. Retrieved March 21,

2009. From: http://samhain.sourceforge.net.

34. Sandberg, R., Coldberg, D., Kleiman, S., Walsh, D., and Lyon, B. (1986).

Design and implementation of the sun network filesystem. USENIX.

35. Serafim, V, and Weber, R. The SOFFIC Project. Technical report, UFRGS

Security Group - GSeg. Universidade Federal do Rio Grande do Sul

(UFRGS), Porto Alegre, RS, Brazil, 2002.

36. Shepler, S, Callaghan, B, Robinson, D et al. RFC 3010 - NFS version 4

Protocol. Technical report, Sun Microsystems, Inc.; Hummingbird Ltd.;

Zambeel, Inc.; Network Appliance, Inc., December 2000.

37. Skoudis, E and Liston, T. (2006). Counter Hack Reloaded: A Step-by-step

Guide to Computer Attacks and Effective Defence. (2nd edition.) New Jersey:

Prentice Hall PTR.

38. Stein, C., Howard, J., and Seltzer, M. (2001). Unifying file system protection.

In proceedings of the general track: 2002 USENIX Annual Technical

Conference. Berkeley, USENIX Association.

39. Tiensivo, A. Securing Windows Server 2008: Prevent Attacks from Outside

and Inside your Organization. (1st edition). Burlington: Syngress. 2008

40. The Computer Technology Documentation Project: Windows 2000 File

Systems. Retrieved March 19, 2009. From:

http://www.comptechdoc.org/os/windows/win2k/win2kfiles.html

41. Tomonori, F and Masanori, O. (2003). Protecting the integrity of an entire

file system. Proceedings of the First IEEE International Workshop on

Information Assurance. IEEE press.

42. Tripwire, Inc. Tripwire for Servers Datasheet. Technical report, Tripwire, Inc,

2005.

43. Wang, X., Yin, Y and Yu, H. (2005). In Advances in Cryptology. Finding

collisions in the full SHA-1. Vol3621 of Lecture Notes in Computer Science.

Springer-Verlag, Berlin, Germany, 2005.

44. Williams, M. (2002). Anti-Trojan and Trojan Detection with In-Kernel

Digital Signature testing of Executables. Technical report, Security Software

Engineering: NetXSecure NZ Limited.

http://samhain.sourceforge.net
http://www.comptechdoc.org/os/windows/win2k/win2kfiles.html


64

45. Williams, R. and Walla, M. The Ultimate Windows Server 2003 System’s

Administrator Guide. (1st edition). Boston: Addison-Wesley Professional.

2004

46. W3schools web developer site. Web Statistics and Trends: OS Platform

Statistics. Retrieved April 15, 2009. From:

http://www.w3schools.com/browsers/browsers_os.asp

http://www.w3schools.com/browsers/browsers_os.asp



