EFFECT OF PROCESS PARAMETERS ON SURFACE ROUGHNESS PRODUCED BY TURNING BORING OPERATION

AHMAD DZIA'UDDIN BIN MOHAMED

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical - Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2010

DEDICATION

First of all, all the praises and thanks be to Allah S.W.T for His Love,
This thesis is dedicated to my family, *To my beloved parents*,
Mohamed bin Samat, Che Wa bt Yussof *My supportive wife*,
Asehara bt. Meor Ahmad *My wonderful brothers and sister*,
Wan Abd Ghani Mohamed, Mazzlan Mohamed, Razman Mohamed, Siti Asiah

Mohamed, Badruldin Mohamed, Mohamed Kamal Mohamed

ACKNOWLEDGEMENTS

I would like to thank Allah Almighty for blessing me and giving me strength to accomplish this thesis. A special thanks and deep gratitude to my supervisor, Professor Dr. Noordin bin Mohd Yusof who greatly helped in guiding and assisting me in every way throughout this entire project.

Many thanks to all the technicians and staff from KKTM Balik Pulau, Mr. Ashamudin Technician in Material Failure Testing and Mr. Mohzani lecturer Department Mechanical Engineering from USM, Mr. Zulkifli b. Mohamad HOD Mechanical Engineering and technical staff Alicona lab UiTM Shah Alam for their cooperation and assisting me in the various laboratory tasks.

I like to express my appreciation to my beloved wife Asehara bt Meor Ahmad and my three children, Nurulain, Nurul Izzati and Nurul Asyikin for their patience, support, encouragement, belief and trust. I *w*ill forever remain grateful for their sacrifices.

Finally, thank you to MARA and all the other people who have supported me during the course of this work. Thank You!

ABSTRACT

Critical quality measure and surface roughness (Ra) in mechanical parts depends on turning parameters during the turning process. Researchers have predicted and developed various models to determine the optimum turning parameters for the required surface roughness. The main objective of this study is to investigate the different cutting tool length parameter effect of surface roughness in CNC Turning boring operation for an aluminium 6061 workpiece. A fractional factorial design is use to evaluate the effect of five (5) independent variables (cutting speed, feed rate, depth of cut, tool length and diameter of boring bar) on the resulting first cut surface roughness (Ra). Vibration or chatter in internal turning operation is a frequent problem affecting the result of the machining and in particularly, the surface finish. This study found that using short tool length always produce a good surface roughness and that only slight improvement on surface roughness can be achieved by properly controlling the cutting parameters and/or the diameter size of boring bar. This study also found that using a long tool length may result in vibration that could be efficiently controlled by the use of larger diameter size of boring bar. With such a long tool length, the cutting variables become important factors to control in order to significantly improve surface roughness result with both diameter sizes of boring bars. A highly accurate prediction model for surface roughness is proposed for each types of boring bar.

ABSTRAK

Ukuran kualiti yang kritikal pada kesudahan permukaan (Ra) adalah bergantung kepada parameter pemesinan semasa proses pemesinan larik dilakukan. Para penyelidik telah membuat jangkaan dan berbagai model baru dibangunkan bagi parameter yang optimum untuk kesudahan permukaan yang dikehendaki. Objektif utama penyelidikan ini adalah untuk menyelidiki tentang perbezaan panjang matalat boleh memberi kesan kepada kesudahan permukaan di dalam operasi melubang bahan aloi aluminium 6061 pada mesin CNC larik. Fractional factorial design digunakan untuk menilai kesan lima (5) parameter bebeza (kadar pemotongan, kadar hantaran, kedalaman pemotongan, panjang tool dan diameter matalat melubang) ke atas nilai kesudahan permukaan pada pemotongan yang pertama. Getaran adalah masalah yang sering berlaku dalam operasi melarik profil dalam dan memberi kesan pemesinan yang besar pada kesudahan permukaan. Dalam penyelidikan ini didapati penggunaan matalat yang pendek akan sentiasa memberikan kesudahan permukaan yang baik dan kesudahan permukaaan akan boleh dipertingkatkan lagi dengan mengawal keadaan pemotongan dan saiz diameter matalat melubang. Dengan menggunakan matalat yang panjang, didapati pembolehubah bagi pemotongan menjadi faktor yang utama untuk dikawal bagi memberikan kesan utama dalam memperbaiki kesudahan permukaan bagi kedua-dua saiz matalat melubang. Model jangkaan yang berketepatan tinggi untuk kesudahan permukaan telah dicadangkan untuk setiap saiz matalat melubang tersebut.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
		DECLARATION	ii
		DEDICATION	iii
		ACKNOWLEDGEMENTS	iv
		ABSTRACT	V
		ABSTRAK	vi
		TABLE OF CONTENTS	vii
		LIST OF TABLES	Х
		LIST OF FIGURES	xi
		LIST OF SYMBOLS	XV
		LIST OF APPENDICES	xvi
1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	3
	1.3	Objective of the Study	4
	1.4	Significance of the Study	5
	1.5	Scope of Study	6
	1.6	Overview of the Methodology	7
	1.7	Thesis Organization	8
2	LITE	RATURE REVIEW	9
	2.1	Theory of Metal Cutting	9
		2.1.1 Orthogonal Cutting	11
		2.1.2 Oblique Cutting	12
	2.2	Metal Cutting in Turning Operation	12

2.3.	Tool Geometry	13
2.4	Turning Cutting Data	15
2.5	Boring Operation	18
2.6	Cutting Forces in Boring Operation	19
2.7	Holding the Boring Bar	21
2.8	Surface Roughness in Turning	25
2.9	Factors Affecting Surface Roughness	27
	2.9.1 Nose Radius	26
	2.9.2 Feed Rate	28
	2.9.3 Depth of Cut	28
	2.9.4 Cutting Speed	28
	2.9.5 Built-Up Edge	29
	2.9.6 Material Side Flow	28
	2.9.7 Chip Morphology	30
2.10	Wear Mechanism	30
2.11	Chip Formation	33
2.12	Literature Review on Surface Roughness in	36
	Turning Operation	
2.13	Summary of Literature Review	44
METI	HODOLOGY	45
3.1	Introduction	45
3.2	Research Methods and Procedure	46
3.3	Machines and Equipment	47
3.4	Measurement Equipment and Setup	49
	3.4.1 Surface Roughness Measurement	49
	3.4.2 Tool Wear Measurement	51
3.5	Workpiece Material	53
3.6	Tool Cutting Material	55
3.7	Machining Parameters	57
3.8	Cutting Condition	57
3.9	Workpiece Preparation	58
3.10	Measure Surface Roughness	60
3.11	Analyze of Tool Wear	61

3

	3.12	Analyze of Chips Formation	62			
	3.13	Experimental Design	62			
		3.13.1 Test for Significance of the Regression Model	65			
		3.13.2 Test for Significance on Individual Model	65			
		Coefficient				
		3.13.3 Test for Lack-of-Fit	66			
4	EXPI	ERIMENTAL RESULTS	68			
	4.1	Introduction	68			
	4.2	Experimental Results	70			
	4.3	ANOVA Analysis	71			
	4.3.1 Confirmation Run					
4.3.2 Optimization in Range of Surface Roughness						
	4.4 Tool Wear Mechanism					
	4.5 Chip Formation					
5	DISC	CUSSION	94			
	5.1	Introduction	94			
	5.2	Surface Roughness in Turning Boring Operation	95			
	5.3	Tool Wear Mechanism	98			
	5.4	The Effect of Tool Wear on the Surface Roughness	101			
6	CON	CLUSION AND RECOMMENDATIONS	102			
REFERENCES			105			

Appendices A - C 108 - 118

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Summary of finding related to the boring operation and surface roughness	41
3.1	Typical composition of aluminium alloy 6061	54
3.2	Physical properties of pluminium alloy 6061	54
3.3	Mechanical properties aluminium alloy 6061	54
3.4	Machining parameter	57
3.5	Level of independent variables	58
4.1	Experimental plan for surface roughness by turning	69
	boring operation	
4.2	Experimental result of surface roughness by turning	70
	boring operation	
4.3	ANOVA table for surface roughness	71
4.4	Experimental plan for confirmation run	81
4.5	Result of conformation test	81
4.6	Experiment plan for optimization test	83

LIST OF FIGURES

FIGURE	NO	TITLE	PAGE
2.1		Basic machining operation and important parameter	10
2.2		Cutting process, (a) Orthogonal cutting (b) Oblique cutting	11
2.3		Conventional lathe machine	13
2.4		Turning tool nomenclatures	14
2.5		The main cutting data/tool elements for turning tool applications	17
2.6		Internal turning operation	19
2.7		Radial and tangential cutting forces deflect the boring bar during machining, often necessitating cutting edge compensation and tool damping.	20
2.8		The way a boring bar is clamped is decisive as regards performance and result	23
2.9		Solid bars overhang	23
2.10		Chip evacuation is a critical factor for successful boring.	24
2.11		Tool wear phenomena	32
2.12		Features of single-point wear in turning. (ISO proposed standard)	33
2.13		Three basic types of chips	34
2.14		Chips are broken (a) on their own (b) against the tool (c) against workpiece	35
2.15		Chip formation varies with depth of cut, entering angle, feed, material and tool geometry	35
3.1		Overall research methodology	46

3.2	An internal turning setup with a workpiece clamped in a shuck to the left and a boring bar clamped in a clamping housing to the right	47
3.3	Machine CNC Turning DMG CTX 310	48
3.4	Surface roughness tester	50
3.5	Measuring setup	50
3.6	Optical Nikon microscope c/w Image analyzing software	51
3.7	Optical 3D measurement Infinite Focus	52
3.8	Solid steel boring bar with cermet insert	55
3.9	Cermet insert Specification	55
3.10	Boring bar specification	56
3.11	U-drill and insert specification	56
3.12	Dimension of workpiece before experiment cut	59
3.13	View of boring operation on a workpiece	59
3.14	Machining the workpiece	60
3.15	Surface roughness measurement of work sample	61
4.1	Normal probability plots of residuals for surface finish in turning boring operation.	73
4.2	Plots of residuals vs. predicted response for surface finish in turning boring operation.	74
4.3	Outlier T plot for surface finish in turning boring operation.	74
4.4	Cutting speed factor influence on Ra in turning boring operation	76
4.5	Feed rate factor influence on Ra in turning boring operation	76
4.6	Boring bar length factor influence on Ra in turning boring operation	76
4.7	Boring bar diameter factor influence on Ra in turning boring operation	77

4.8	Influence of interaction machining parameters on Ra in turning boring operation.	78
4.9	Perturbation graph for Ra in turning boring operation. $(bd = 12 mm)$	78
4.10	Perturbation graph for Ra in turning boring operation. (bd = 16 mm)	79
4.11	Surface and contour plot on Surface finish	80
4.12	Plot for optimum cutting parameter in range.	83
4.13	Initial tool wear for boring bar Ø16 mm with tool overhang 55 mm.	85
4.14	Initial tool wear for boring bar Ø16 mm with tool overhang 60 mm.	85
4.15	Initial tool wear for boring bar Ø16 mm with tool overhang 65mm.	86
4.16	Initial tool wear for boring bar Ø12 mm with tool overhang 55mm.	86
4.17	Initial tool wear for boring bar Ø12 mm with tool overhang 65mm.	87
4.18	Initial tool wear for boring bar Ø12 mm with tool overhang 60mm.	87
4.19	ISO-based chip forms classification	88
4.20	Chips formation using bar diameter 16 mm, bar length 55 mm.	89
4.21	Chips formation using diameter 16 mm, bar length 65mm.	90
4.22	Chips formation with cutting data Diameter 12 mm, Bar length 55 mm	91
4.23	Chips formation using Diameter 12, Bar length 65	92
4.24	Chips formation using bar length 60	93
5.1	Surface finish result using cutting data $cs=150$ m/min, f=0.1 mm/rev, doc = 0.1 mm, bd=16 mm, bl=55 mm.	97

5.2 Surface finish result using cutting data cs=250 m/min, 97 f=0.2 mm/rev, doc = 0.25 mm, bd=12 mm, bl=655 mm.

5.3	Material stick on top face insert	99
5.4	Built up edge on rake side	100
5.5	Crater wear on rake side	100
5.6	Marks on surface finish cause of material adhered on to the tool continuously ploughed on the machined surface	101

LIST OF SYMBOLS

ANOVA	-	Analysis of Variance
Al	-	Aluminium
ECEA	-	End Cutting Edge Angle
SCEA	-	Side Cutting Edge Angle
Sqrt	-	Square root
doc	-	Depth of Cut
CS	-	Cutting Speed
f	-	Feed rate
bd	-	Bar Diameter
bl	-	Bar Length
F	-	Force
Fc	-	Cutting Force
Ft	-	Tangential Force
Fr	-	Radial Force
Ν	-	Revolution per Minute
Ra	-	Surface Roughness
Т	-	Tool Life
V	-	Cutting Speed
С	-	Taylor's constant
n	-	Taylor's exponential
α	-	Rake Angle
Ø	-	Diameter
υ	-	Cutting Velocity

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A-1	Unmodified ANOVA table for turning boring operation	105
B-1	Box-cox plot for turning boring operation	106
B-2	Initial tool wear for cutting Al 6061, times 6s.	107
B-3(a)	Surface finish after turning boring operation sequence	108
	followed experimental plan	
B-3(b)	Surface finish after turning boring operation sequence	109
	followed experimental plan	
B-4	Result of chip formation	110
C-1	Chip formation chart	111
C-2	Recommendation of tool overhang for internal turning	112
C-3	Factor that effect vibration tendencies positively and	113
	negatively, vibration tendency grow towards the right	
C-4(a)	Table of tool wear	114
C-3(b)	Table of tool wear	115

CHAPTER 1

INTRODUCTION

1.1 Background

In machining operation, the quality of surface finish is an important requirement of many bored work pieces and parameter in manufacturing engineering. It is characteristic that could influence the performance of mechanical parts and the production cost. Various failure, some time catastrophic, leading to high cost, have been attribute to the surface finish of the component in question. For these reasons there have been research developments with the objective of optimizing the cutting condition to obtain a surface finish.

During an internal turning operation, the cutting tool and the boring bar are subjected to a prescribed deformation as a result of the relative motion between the tool and work-piece both in the cutting speed direction and feed direction. As a response to the prescribed deformation, the tool is subjected to traction and thermal loads on those faces that have interfacial contact with the work-piece or chip. In the metal-cutting process, during which chips are formed, the work-piece material is compressed and subjected to plastic deformation. In internal turning, the metal-cutting process is carried out in pre-drilled holes or holes in cast, etc. The dimensions of the work-piece hole generally determine the length and limit the diameter or cross-sectional size of the boring bar. Usually, a boring bar is long and slender and is thus sensitive to excitation forces introduced by the material deformation process in the turning operation. The boring bar is generally the weakest link in the boring bar – clamping system of the lathe. The boring bar motion may vary with time. This dynamic motion originates from the deformation process of the work material. The motion or vibration of the boring bar influences the result of the machining in general, and the surface finish in particular.

With external turning, the tool overhang is not effect by the length of work piece, and the size of tool holder is selected to withstand the forces and stresses which arise during the operation. With boring – internal turning, the choice of tool very much restricted by the component's hole diameter and length, as the depth of the hole determines the overhang.

A general rule, which applies to all machining is to always minimize tool overhang and to select the largest possible tool size in order to obtain the best possible stability and thereby accuracy. The stability is increased when the larger boring bar diameter is used, but possibilities are often limited, since the space allowed by the diameter of the hole in the component must be taken into consideration for swarf evacuation and any radial movement.

The limitation with regard to stability in boring mean that some extra care must be taken with production planning and preparation. Selecting the right boring bar for the operation, applying it correctly and clamping it properly has considerable effect on keeping tool deflection and vibration to a minimum and consequently the quality of the hole being machined. Previous studies proved the significant impact of DOC, machining speed, and rake angles on surface roughness. The few studies that have studied boring bar length that effect of cutting stability or vibration during boring operation. But very few researchers have studied the interaction effect of boring bar length and bar diameter. The combination of both of these factors suggests a significant weight in the relationship. All the previous studies on predicting surface roughness have not included boring bar diameter as a major factor that affects surface roughness.

1.2 Problem Statement

The determination of optimal cutting condition for specified surface roughness and accuracy of product are the key factors in the selection of machining process. In Turning operations, and especially boring operations, are associated with serious vibration-related problems. To reduce the problem of vibration and ensure that the desired shape and tolerance are achieved, extra care must be taken with production planning and in the preparations for the machining of a work-piece. A through investigation of the vibrations involved is therefore an important step toward solving the problem.

Researches have been done to improve cutting tool material, tool geometry and cutting parameter to optimize the machining process. The diameter and length of boring bar are the most important factor has to be considering in boring operation, following the other cutting parameter such as cutting speed, feed rate and depth of cut. The wrong selection of combination cutting parameter will occurs the bad cutting condition e.g. vibration that effect the poor surface finish. Different workpiece material with different property and microstructure give different effect to the cutting tool performance. In lathe boring operation, we found no adequate empirical model for prediction of surface roughness.

In turning operation, the performances of cutting tools are depending on a few cutting conditions and parameters. The proper selection of feed rate has direct effect to the product surface roughness. Turning process by maximizing cutting speed and depth of cut will optimize the cutting process and minimize the production cost. The tool life, machined surface integrity and cutting forces are directly dependent on cutting parameters and will determine the cutting tool performances. The study of surface roughness form will resolve the characteristic and phenomena happening during the machining process. The questions to be answered at the end of the study are how does the boring bar tool length and diameter influence the surface roughness during internal turning operation?

1.3 Objective of the Study

The study was carried out to evaluate the effects of different cutting tool length on workpiece for internal cutting profile with turning operation, where the surface roughness values were statistically comparable and to find out the optimum cutting condition by analyzing the different cutting tool length to get the lowest surface roughness in turning an Aluminium alloy 6061 solid bar.

Objective of this study are follow:

- To evaluate the effects of different process parameter on internal turning operation.
- To develop a mathematical model for predicting surface roughness for internal turning operation by using design of experiment approach.
- Study the initial tool wear during internal turning operation.
- Study of chip formation to relate the reaction occurring between cutting condition and chip during cutting.

1.4 Significance of the Study

Machining operations tend to leave characteristic evidence on the machined surface. They usually leave finely spaced micro-irregularities that form a pattern known as surface finish or surface roughness. The quality of the finished product, on the other hand, relies on the process parameters; surface roughness is, therefore, a critical quality measure in many mechanical products.

In the turning operation especially boring operation, chatter or vibration is a frequent problem affecting the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. In order to achieve sufficient process stability, the metal removal rate is often reduced or the cutting tool changed. But as productivity is normally a priority in manufacturing, this is the wrong route to go.

Instead the means of eliminating vibration and being able to machine at high rates should be examined. For these reason there have been research development with the objective of optimising cutting condition to obtain a surface finish with making the process more stable. To study the optimum tool length and diameter of boring bar used during cutting process will reduce the machining cost by reducing of changing the cutting tool and to increase the metal removal rate.

1.5 Scope of the Study

The study has been conducted on the following scopes:

- (i) CNC Turning machine will be employed.
- (ii) Aluminum alloy solid bar Al 6061 will be used as workpiece material.
- (iii) Two different diameters boring bar size 16 .0 mm and 12.0 mm with carbide cutting tool insert will be used at various tool lengths.
- (iv) Cutting speed, feed and depth of cut are the other process factors investigated.
- (v) Performance will be primarily in terms of surface roughness, chip formation and initial tool wear will also be briefly discussed.
- (vi) Design of Experiment technique will be used

The following methodology has been used as a guide in the study to achieve the study objectives.

- (i) Selecting the proper cutting parameters based on literature reviews and manufacturer recommendations.
- (ii) Plan and design reliable experimental techniques.
- (iii) Workpiece preparation
 - Using CNC Turning and purpose tooling to machine the workpiece.
- (iv) Experimental trials consisting of:
 - Surface finish measurement using stylus instrument.
 - Chip morphology and tool wear mechanism studies using microscope
- (v) Data analysis and validation.
 - Evaluate the effect of tool length on the surface finish
 - Evaluate the effect of diameter boring bar on the surface finish
 - Evaluate the initila tool wear
 - Evaluate the of chip formed produce by internal turning process

1.7 Thesis Organization

The thesis is divided into six chapters. Chapter 1 provides a general overview of the study. Chapter 2 was organized to summarize the literature reviews of the related topic to guide the study towards achieving the objective. The experimental set up and techniques used are explained in Chapter 3. All the experiment data and result will be presented in Chapter 4. Chapter 5 will discuss the results and comparison will be made to the work done in previous research. The conclusions of the study and the recommendations for future work will be given in chapter 6