Six Sigma Approach to Real Time Cast In-Situ Slab Concreting Process Improvement

Seyed Ali Mousavi Niaraki

A PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE (CONSTRUCTION MANAGEMENT)

> FACULTY OF CIVIL ENGINEERING UNIVERSITI TEKNOLOGI MALAYSIA

> > April, 2010

ABSTRACT

The best way of construction processes improvement is by problem solving approaches. Before problems start to emerge in construction phases. In accordance to experiencing in real time problem solving approaches in other industries processes this study suggest that its time to go toward other industries experiences in real time problem solving. Proposing check sheet for real time problem solving within Six Sigma by; Identifying problem's root causes and taking preventive actions before facing problem during construction phase, is main target of this study. This study were conducted as project experience and data gathering from interview with related experts. For achieving this goal, study adopting cast in-situ slab concreting quality improvement. Finding root causes of plastic crack in cast in-situ slab concreting and eliminating them in first place by applying Six Sigma tools and techniques.

ABSTRAK

Cara terbaik proses perbaikan pembinaan adalah dengan pendekatan penyelesian masalah.Sebelum masalah mulai muncul dalam fasa pembinaan, Sesuai untuk yang mengalami masalah pendekatan penyelesaian real time dalam industri lain proses kajian ini menunjukkan bahawa masa untuk pergi ke arah pengalaman industri lain dalam penyelesaian masalah real time. Mengajukan helai semak untuk menyelesaikan masalah real time dalam Six Sigma oleh; Mengidentifikasi akar penyebab masalah dan mengambil tindakan preventif sebelum menghadapi masalah selama fasa pembinaan, merupakan target utama dari kajian ini. Studi ini dilakukan sebagai pengalaman projek dan pengumpulan data dari wawancara dengan para ahli berkaitan. Untuk mencapai matlamat ini, kajian mengadopsi cor concreting peningkatan high in-situ slab. Mencari akar penyebab retak plastik di cor concreting slab-situ dan menghilangkan mereka di tempat pertama dengan menerapkan Six Sigma dan alat teknik.

CONTENTS

CHAPTER

PAGE

TITLE

DESCRIPTION

DECLARATION

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

ABSTRAK

CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF APPENDICES

CHAPTER 1

INTRODUCTION

1.1	Introduction	1
1.2	Problem statement	2
1.3	Objectives of the Research	3
1.4	Scope of the Study	3

CHAPTER 2 LITERETURE REVIEW

2.1

2.1	Construction Process	4
	2.1.1 Background of CPI	4
	2.1.2 CPI Tools & Techniques	5
2.2	Six Sigma	8
	2.2.1 Historical Background of Six Sigma	8
	2.2.2 What is Six Sigma?	12
	2.2.2.1 Why Six Sigma?	14
	2.2.3 Six Sigma Problem Solving Process	20
	2.2.4 DMAIC	21
	2.2.5 Six Sigma Champion	21
	2.2.5.1 Master Black Belt	22
	2.2.5.2 Black Belt	23
	2.2.5.3 Green Belt	23
	2.2.5.4 Yellow Belt	24
2	2.2.6 Six Sigma Principles & Metrics	24
2	2.2.7 Six Sigma as a Quality Movement	28
	2.2.7.1 (1.5 Sigma)	29
	2.2.7.2 (3 Sigma (TQM))	29
	2.2.7.3 (3 Sigma with 1.5 Sigma Shift)	31
	2.2.7.4 (4.5 Sigma)	32

2.2.7.5 (4.5 Sigma with 1.5

Sigma Shift)	32
2.2.7.6 (6 Sigma)	33
2.2.8 Six Sigma in Construction	35
2.2.8.1 Pervious Application of	
Six Sigma in Construction	37
2.3 Cast-In-Situ Concreting Process	37
2.3.1 Design of Mix & Reinforcing	38
2.3.2 Ready-Mix & Hand-Mix	38
2.3.3 Workability of Concrete	39
2.3.4 Access to Site	40
2.3.5 Formwork	40
2.3.6 Placement	41
2.3.7 Curing	42
2.4 Reinforced Concrete Cracks	45
2.4.1 Structural Cracks	45
2.4.2 Application Based Cracks	45
2.4.2.1 Fresh Concrete Cracks	45
2.4.2.2 Settlement Cracks	46
2.4.2.3 Plastic Shrinkage Cracks	46
2.4.2.4 Over Aged Concrete Cracks	48

CHAPTER 3 RESEARCH METHODOLOGY

3.1 Introduction	50
3.2 Method of Data Collection	50
3.3 Data Collection	50

CHAPTER 4 DATA ANALYSIS

4.1	Introduction	53
4.2	DPMO Calculation of Current	
	Cast-In-Situ Slab Concreting Process	54
4.3	Identify Causes & Root Causes of	
	Plastic Crack in Cast-In-Situ Slab	
	Concreting Process	61
4.4	Identify Potentials Level of	
	Each Root Causes	68
4.5	Identify Frequency Level of	
	Each Root Causes	69
4.6	Proposed Check Sheet for Real Time	
	Improving Cast-In-Situ Slab	
	Concreting Process	70

4.7 Explanation of Items of Proposed	
Check Sheet	74
4.8 Explanation of Proposed Check Sheet	75

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion	77
5.4 Recommendation	77

REFERENCES	79

APPENDICES

81

LIST OF TABLE

TABLE NO.	TITLE	PAGE
Table 2.1	Contrasting Six Sigma and Total Quality Management	17
Table 2.2	Simplified Sigma Conversion Table	27
Table 4.1	Root Causes of Plastic Crack in Cast-In-Situ Slab	
	Concreting Process	66
Table 4.2	Percentage of each category in each potential level	
	according to number of root causes in each category	
	which is placed in each potential level	68
Table 4.3	Percentage of each category in each frequency level	
	by considering number of root causes which is placed	
	in each frequency level	69

LIST OF FIGURE

FIGURE NO.	TITLE	PAGE
Figure 2.1	Traditional bell curve of normal distribution of data	14
Figure 2.2	3.4 deviate from either side of the average	15
Figure 2.3	Process of introducing Six Sigma	18
Figure 2.4	Systematic and scientific approach of Six Sigma	18
Figure 2.5	1.5 Sigma	29
Figure 2.6	3 Sigma (TQM)	30
Figure 2.7	3 Sigma with 1.5 Sigma Shift	31
Figure 2.8	4.5 Sigma	32
Figure 2.9	4.5 Sigma with 1.5 Sigma Shift	33
Figure 2.10	6 Sigma	34
Figure 2.11	Six Sigma's Structured Methodology (DMAIC)	35
Figure 2.12	Operations involved in traditional concrete	
	Construction (schematic)	44
Figure 2.13	Classifications of Cracks in Reinforced Concrete	49
Figure 3.1	Methodology Flow	52
Figure 4.1	Concerting process	55
Figure 4.4	Cracks which is investigated from the site	58
Figure 4.5	Fish Bone Diagram	62

Figure 4.6	Pareto Chart	67
Figure 4.7	Proposed Check Sheet	71

LIST OF APPENDICES

APPENDICES	TITLE	PAGE
А	Questionnaire Form A	82
А	Questionnaire Form B	89
В	Six Sigma Conversion Table	96

CHAPTER 1

INTRODUCTION

1.1 Introduction

In the recent years, construction projects have turned into a more complicated, dynamic and interactive scenario. Project managers are constantly required to speed-up reflective decision-makings on time. Construction is an experience-based discipline, knowledge or experience accumulated from pervious projects, plays very important role in successful performance of new works. If experience and knowledge are shared, then the same problems in construction projects will not be repeated.

Several enabling activities should be considered to help to achieve the ultimate goal of efficient experience and knowledge reuse; experience and knowledge should be preserved and managed; that is, they should be captured, modeled, stored, retrieved, adapted, evaluated and maintained and updated (Bergmann, Ralph (2002). The reuse of information and knowledge minimizes the need to refer explicitly to past projects; reduces the time and cost of solving problems, and improves the quality of solutions during the construction phase of a construction project. The knowledge can be reused and shared among the involved engineers and experts to improve the construction process and reduce the time and cost of solving problems.

Only in recent years has sparing the six-sigma method been utilized by some of the major players in the construction sector. While traditional quality programs have

focused on detecting and correcting mistakes, six-sigma encompasses something broader: it provides specific methods to re-create the process itself so that the defects are never produced in the first place. The concept seeks to continually reduce variation in processes with the aim of eliminating defects from every transaction (Hahn et al., 1999; Tennant, 2001). The main advantage of the six-sigma method is that it shares much of the same values and uses similar tools to TQM. The tools are nothing new, but the strategic way that the six-sigma programme proactively uses them, within its structured framework, is what generates improved results. (Hagemeyer, C; Gershenson, J.K; Johnson D.M, 2006).

By considering previous project experiences we can find problematic element of defects in previous project learn it, and find the defect's root causes by eliminating root causes in current project systematically. For achieving this goal this study has choose Six Sigma problem solving approach.

1.2 Problem Statement

In accordance real time delay and defect problem. Approaches of "quality record and document" and "corrective and preventive actions" with different objectives, major process, information requirements industries processes is use in the project. The study suggest that several amount of defect and late delivery of project in times need to be learned.

1.3 Objectives

- 1- To identify and analyze the root causes of plastic crack to Six Sigma problem solving approach.
- 2- To propose check sheet for real time problem solving cast in situ slab concreting process from the outputs of pervious problem and solutions.

1.4 Scope of Study

In this research cause of different nature of construction projects like dam, road, air port, high rise building, office buildings project and further; researcher has selected office building construction. With focusing on cast in situ slab concreting process. In this research, researcher has concentrated on DMAIC methodology of Six Sigma problem solving approach. The study conducting site survey on construction project in Universiti Teknologi Malaysia (UTM).

References

Bamford, D.R; Greatbanks R.W. The use of quality management tools and techniques: a study of application in everyday situations. International Journal of Quality & Reliability Management, 22(4):376-392, 2005.

Bergmann, Ralph (2002), Experience Management: Foundations, Development Methodology, and Internet-Based Applications, Springer, Germany.

Eckhouse, 2003. In Pursuit of Perfection. Bechtel Briefs, August. Available online via !http://www.bechtel.com/sixsigma.htmO (accessed March.2, 2004).

Hagemeyer, C; Gershenson, J.K; Johnson D.M. Classification and application of problem solving quality tools: A manufacturing case study. The TQM Magazine, 16(5):455-483, 2006.

Hahn, G., Hill, W. and Hoerl, R. (1999) The impact of six sigma improvement – a glimpse into the future of statistics. The American Statistician, 53(3), 208–15.

Harry, M., and Schroeder, R. ~2000!. Six Sigma: The breakthrough management strategy revolutionizing the world's top corporations, Doubleday, New York.

Hart, A. (1992), Knowledge Acquisition for Expert Systems. 2 nd ed., McGraw-Hill, New York.

Hagemeyer, C; Gershenson, J.K; Johnson D.M. Classification and application of problem solving quality tools: A manufacturing case study. The TQM Magazine, 16(5):455-483, 2006.

Klefsjo, B., Wiklund, H. and Edgman, R. (2001) Six sigma seen as a methodology for total quality management. Measuring Business Excellence, 5(1), 31–5.

Li, H. and Love, P.E.D. (1998) Developing a theory of construction problem solving, Construction Management and Economics, Vol. 16, No. 6, 721-727.

Love, P.D., Edum-Fotwe, F., Irani, Z. Management of knowledge in project environments, International Journal of Project Management, Vol. 21, No 3, 2003, pp. 155-156.

Nadica Hrgarek and Kerri-Anne Bowers, Integrating Six Sigma into a Quality Management System in the Medical Device Industry, JIOS, VOL. 33, NO. 1 (2009).

Pfeifer, T; Reissiger, W; Canales C. Integrating six sigma with quality management systems. The TQM Magazine, 16(4):241-249, 2004.

Robinson, H.S. Knowledge Management practices in large construction organizations, Engineering, Construction and Architectural Management, Vol. 12, No 5, 2005, pp. 431-445.

Stewart, Rodney A. and Spencer, Clinton A.(2006)'Six-sigma as a strategy for process improvement on construction projects: a case study', Construction Management and Economics, 24:4, 339 — 348.

Tennant, G. (2001) Six Sigma: SPC & TQM in Manufacturing and Services, Gower Publishing, Hampshire.

Wantanakorn, D., Mawdesley, M. and Askew, W. (1999) Management errors in construction. Engineering, Construction and Architectural Management, 6(2), 112–20.

Yu, W.D., Lin, C.T., Yu, C.T., Liu, S.J., Luo, H.C., and Chang, P.L. (2007) Integrating emergent problem-solving with construction knowledge management system," Proceedings of the CME 25 Conference, July 16~18, 2007, University of Reading, UK, 10 pp.

Ma, Y., Tan, M. & Wu, K. (2002). Effect of different geometric polypropylene fibers on plastic shrinkage cracking of cement mortars, Materials and Structures 35 : 165-169.

Branch, J., Rawling, A., Hannant, D.J. & Mulheron, M. (2002). The effects of fibers on the plastic shrinkage cracking of high strength concrete, Materials and Structures 35 : 189-194.

Concrete Q & A, "Estimating Evaporation Rates to Prevent Plastic Shrinkage Cracking", Concrete International, March 2007

Menzel, Carl; "Cause and Prevention of Cracks Developing in Plastic Concrete," Portland Cement Association, Annual Meeting 1954.