BUILDING PERFORMANCE WITH DIFFERENT BEDROCK RESPONSE SPECTRUM

NIK ZAINAB BINTI NIK AZIZAN

This report is submitted in partial fulfillment of the requirement for the award of the Master in Civil Engineering (Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > APRIL 2010

ABSTRACT

Response spectrum is a very useful tool in earthquake engineering for estimating the performance of structures. In this research, attenuation equation will be used to find the spectral acceleration of bedrock to predict reliable and more accurate ground motions as far 600 km from potential earthquake sources. According to historical records, the earthquakes that influenced Peninsular Malaysia are originated from two earthquake faults: the Sumatra subduction zone and Sumatra great fault zone. The worst earthquake ever occurred in Sumatra subduction zone is identified as $M_w = 9.11$ and M_w = 7.81 for Sumatra fault zone. These data were then used to predict the spectral acceleration of bedrock in Malaysia using Probabilistic Seismic Hazard Analysis (PSHA). The maximum response spectrum of bedrock from Sumatra subduction zone for megathrust is 67 gals, benioff is 60 gals and fault zone is 90 gals for site location in Kuala Lumpur while for Pulau Pinang the values of response spectrum from Sumatra subduction zone for megathrust is 57.5 gals, benioff is 47.78 gals and fault zone is 58.33 gals. Performance of building shows that the values of moment for combination load 2 increases about 15.07 percents for column 1 and approximately 4.70 percents for beam 2. Based on the results the performances of building during earthquake loadings are larger than without earthquake loading.

ABSTRAK

Reaksi spektrum merupakan alat yang sangat berguna dalam kejuruteraan gempa untuk menganggarkan prestasi struktur. Dalam kajian ini, persamaan pengecilan akan digunakan untuk mencari percepatan spektral di batuan dasar untuk meramalkan gerakan tanah yang lebih tepat sejauh 600 km dari sumber gempa yang berpotensi. Menurut catatan sejarah, gempa bumi yang mempengaruhi Semenanjung Malaysia ini berasal dari dua sesar gempa iaitu di zon subduksi dan zon sesar Sumatera Sumatera. Gempa bumi terburuk yang pernah terjadi di zon subduksi Sumatera dikenalpasti sebagai Mw= 9,11 dan Mw = 7.81 untuk zon sesar Sumatera. Data-data ini kemudian digunakan untuk meramalkan percepatan spektrum di batuan dasar di Malaysia menggunakan analisis dengan kaedah kebarangkalian (PSHA). Reaksi spektrum maksimum di batuan dasar dari zon subduksi Sumatera megathrust adalah 67 Gals, Benioff / intraslab adalah 60 Gals dan zon sesar adalah 90 Gals untuk lokasi di Kuala Lumpur sedangkan untuk Pulau Pinang nilai reaksi spektrum dari zon subduksi Sumatera megathrust adalah 57.5 Gals, Benioff / intraslab adalah 47,78 Gals dan zon sesar adalah 58,33 Gals. Prestasi bangunan menunjukkan bahawa nilai momen untuk beban gabungan 2 meningkat sekitar 15.07 peratus untuk tiang 1 dan anggaran 4.70 persen untuk rasuk 2. Berdasarkan keputusan prestasi bangunan apabila beban gempa yang lebih besar daripada tanpa gempa.

TABLE OF CONTANTS

CHAPTER

1

2

TITLE

DEC	LARATION	ii
DED	ICATION	iii
AKN	IOWLEDGEMENTS	iv
ABS'	TRACT	v
ABS'	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	COF TABLES	X
LIST	COF FIGURES	xi
LIST	TOF SYMBOLS	XV
LIST	COF APPENDICES	xvi
INTI	RODUCTION	1
1.1	Background	1
1.2	Problem Statement	4
1.3	Objective of the Study	4
1.4	Scope of the Study	5
LITI	ERATURE REVIEW	6
2.1	The Approach for Seismic Hazard Analysis	
	(SHA)	6

2.2	Previo	ous Research on Earthquake in Malaysia	14
2.3	Histor	ical Tremor in Peninsular Malaysia	23
THE	ORETI	CAL BACKGROUND	27
3.1	Introd	uction	27
3.2	Plate 7	Tectonics	28
	3.2.1	Sumatra Subduction	32
	3.2.2	Sumatra Fault	33
3.3	Earthq	juake Size	34
	3.3.1	Earthquake Intensity	34
	3.3.2	Earthquake Magnitude	41
	3.3.3	Earthquake Energy	46
3.4	Seismi	ic Hazard Estimations	47
	3.4.1	Observation Method	48
	3.4.2	Statistical Method	48
	3.4.3	Deterministic Seismic Hazard	
		Estimation (DSHA)	48
	3.4.4	Probabilistic Seismic Hazard Analysis	
		(PSHA)	50
3.5	Attenu	ation Relationship	51
	3.5.1	Petersen et al. (2004)	53
	3.5.2	Azlan et al. (2005)	54
	3.5.3	Campbell (2003)	55
	3.5.4	Abrahamson & Silva (1997)	56
	3.5.5	Young et. al. (1997)	58
	3.5.6	Toro, Abrahamson & Schneider (1997)	59
MET	THODO	LOGY	61
4.1	Collec	cting Data and Drawing	61
4.2	Collec	cting Attenuation Equation	65
4.3	Probal	bilistic Seismic Hazard Analysis (PSHA)	67

3

4

	4.4 Finite Element Modelling (FEM)	74
5	RESULTS AND ANALYSIS	75
6	CONCLUSION	94
	REFFERENCES	96
	APPENDICES	99

LIST OF TABLES

NO TABLE

TITLE

2.1	Strengths and limitations of Deterministic Seismic	11
	Hazard Assessment and Probabilistic Seismic Hazard	
	Assessment (USACE, 1999)	
3.1	The Rossi-Forel Intensity Scale	35
3.2	Modified Mercalli Intensity Scale	37
3.3	The European Macroseismic Scale	40
3.4	Relation between Richter Magnitudes and Earthquake	42
	Effects	
3.5	Summary of attenuation functions	52
3.6	Coefficients of Attenuation Equations Derived by	59
	Young et al (1997)	
4.1	Coordinate for earthquake sources and site locations	62
4.2	The distance of sources to site location and the depth	62
	of epicenter to sources	
4.3	Table of several worldwide attenuation functions	66
4.4	Combination loads	74
5.1	Attenuation Equation	76
5.2	Maximum value for PGA	77
5.3	Results for Shear Force and Moment with different	81
	mechanisms, locations, loadings and capacity	

LIST OF FIGURES

NO TAB	LE
--------	----

TITLE

1.1	Schematic of plate tectonic	2
1.2	Schematic illustration of wave propagation through	3
	engineering bedrock and soil surface	
2.1	Dominance of deterministic and probabilistic	12
	approaches (McGuire, 2001a)	
2.2	Maximum observed earthquake intensity in Peninsular	17
	Malaysia from 1805 to 1983 (from Malaysian	
	Meteorological Service, 1994)	
2.3	Maximum observed earthquake intensity in Sabah and	18
	Sarawak (1884–1983) (from Malaysian Meteorological	
	Service, 1994)	
2.4	Seismotectonic map of Peninsular Malaysia (JPKM,	18
	1994)	
2.5	Seismotectonic map of East Malaysia (JPKM, 1994)	19
2.6	Seismic hazard map in Continental Asia (Zhang, et al.,	20
	1999)	
2.7	Seismic hazard map around Northern Sumatra	21
	prepared by USGS-NEIC (2003)	
2.8	Peak Ground Acceleration (PGA) contour based on	22
	deterministic method (Adnan et al., 2002)	

2.9	Slight tremor in Penang due to an earthquake on 22	25
	January 2003 had caused panic among residents of the	
	high-rise buildings	
2.10	Cracks on one apartment in Gelang Patah, Johor Bahru	26
	after an earthquake on 25 July 2004	
3.1	Tectonic setting around Peninsular Malaysia (Huchon	28
	and Le Pichon, 1984)	
3.2	The major tectonic plates in the world (Kramer, 1996)	29
3.3	Interrelationship among spreading ridge, subduction	29
	zone, and transform fault plate boundaries (Kramer,	
	1996)	
3.4	Illustration of several types of fault movement	31
3.5	Location of the four largest earthquakes in Sumatra	33
	subduction zone	
3.6	Saturation of various magnitude scales: M_w (moment	45
	magnitude), M_L (Richter local magnitude), M_s (surface	
	wave magnitude), mb (short period body wave	
	magnitude), m_B (long-period body wave magnitude),	
	and M_{JMA} (Japanese Meteorological Agency	
	magnitude). (After Idriss, 1985)	
3.7	Relative energy of various natural and human-made	47
	phenomena	
4.1	Location for subduction zone	63
4.2	Location for fault zone	63
4.3	Front view of building	64
4.4	Side view of building	64
4.5	Cross section view of building	65
4.6	The basic elements of Probabilistic Seismic Hazard	68
	Assessment	
4.7	Illustration of conditional probability of exceeding a	69
	particular value of a ground motion parameter	

(Kramer, 1996)

4.8	Examples of variations of source to site distance for	72
	different source zone geometries (Kramer, 1996)	
5.1	Macrozonation map for the Peninsular Malaysia	77
	$(T_R=500 \text{ year})$	
5.2	Response Spectrum for Subduction (Megathrust)	78
	Location in Kuala Lumpur	
5.3	Response Spectrum for Subduction (Megathrust)	78
	Location in Pulau Pinang	
5.4	Response Spectrum for Subduction (Benioff) Location	79
	in Kuala Lumpur	
5.5	Response Spectrum for Subduction (Benioff) Location	79
	in Pulau Pinang	
5.6	Response Spectrum for fault zone Location in Kuala	80
	Lumpur	
5.7	Response Spectrum for fault zone location in Pulau	80
	Pinang	
5.8	Building of School	83
5.9	Dead Load Diagram	84
5.10	Live Load Diagram	84
5.11	Axial Force Combination Load 1	86
5.12	Axial Force Combination Load 2	86
5.13	Moment combination 1	87
5.14	Moment combination 2	87
5.15	Shear Force Combination 1	88
5.16	Shear Force combination load 2	88
5.17	Shear Force at columns for fault zone in Kuala Lumpur	89
5.18	Moment at columns for fault zone in Kuala Lumpur	90
5.19	Shear Force at beams for fault zone in Kuala Lumpur	90
5.20	Moment at beams for fault zone in Kuala Lumpur	91

5.21	Shear Force at columns for fault zone in Pulau Pinang	91
5.22	Moment at columns for fault zone in Pulau Pinang	92
5.23	Shear Force at beams for fault zone in Pulau Pinang	92
5.24	Moment at beams for fault zone in Pulau Pinang	93

LIST OF SYMBOLS

-	Coefficient
-	Depth
-	Stiffness
-	Mass
-	Earthquake magnitude
-	Body wave magnitude
-	Surface wave magnitude
-	Moment magnitude
-	North
-	Peak Ground Acceleration
-	Closest distance to the zone of rupture
-	Source to site diatance
-	South
-	Return Period
-	Mean annual exceedance

LIST OF APPENDICES

APPENDIX

TITLE

А	Calculation For Probabilistis Seismic Hazard Analysis	99
В	Detailing Of Drawing For School Building	108
С	Calculation of Loadings	113
D	Calculation of Potential for School Building Structure	118

CHAPTER 1

INTRODUCTION

1.1 Background

An earthquake is the result of a sudden release of energy in the Earth's crust that creates seismic waves. Earthquakes are recorded with a seismometer, also known as a seismograph. The moment magnitude of an earthquake is conventionally reported, or the related and mostly obsolete Richter magnitude, with magnitude 3 or lower earthquake being mostly imperceptible and magnitude 7 causing serious damage over large areas.

At the earth's surface, earthquake manifests themselves by shaking and sometimes displacing the ground. When a large earthquake epicenter is located offshore, the seabed sometimes suffers sufficient displacement to cause a tsunami. The shaking in earthquakes can also trigger landslides and occasionally volcanic activity. The major tectonic activity occurring in Malaysia surrounding Indonesia is due to the convergence of three major plates. The Eurasian, Pasific and Australian-Indian plates, along with some minor plates, are all actively moving towards each other in the Southeast Asia region (Figure 1.1). The Indian Ocean floor is sliding to the north under the islands of Java and Sumatra, resulting in a large subduction zone. Most earthquake events within Indonesia occur in the Sunda subduction system. Seismic events of the Sunda system are concentrated at shallow depths mostly above 30km.

Figure 1.1 Schematic of plate tectonic

Peninsular Malaysia is located on a stable part of the Eurasian Plate, buildings on soft soil are occasionally subjected to tremors due to far-field effects of earthquake in Sumatra (Balendra et al. 1990). In the last few years, tremors were felt several times in tall buildings in Kuala Lumpur due to large earthquake in Sumatra. The mechanism for such tremors is illustrated in Figure 1.2. The seismic waves, generated from an earthquake in Sumatra, travel long distance before they reach Malaysia bedrock. The high frequency earthquake waves damped out rapidly in the propagation while the low frequency or long period waves are more robust to energy dissipation and as a result they travel long distances.

Thus the seismic waves reaching the bedrock of Malaysia Peninsula is rich in long period waves, and significantly amplified due to resonance when they propagate upward through the soft soil sites with a period close to the predominant period of the seismic waves. The amplified waves cause resonance in buildings with a natural period close to the period of the site, and the resulting motions of buildings are large enough to be felt by the residence.

1.2 Problem Statement

The magnitude of ground motion at varying distance from the Sumatra earthquake sources is determined from attenuation models. Statistical regression analysis could be used to develop such attenuation models (Youngs 1997, Sadigh 1997; Petersen et al. 2004; Azlan et al. 2005; Campbell 2004). However, as there were not enough strong motion data in this region relating the ground acceleration with magnitude and distance, this conventional empirical modeling approach was not feasible.

The bedrock motions can be significantly amplified when the natural period of the soft soil is close to the predominant natural period of the bedrock motions, and can be further enlarged if the building possesses a natural period which is close to the natural period of the site. For this research to find out natural period and performance of the building with different mechanism and fault distances.

1.3 Objective of the Study

The objectives of the research are:

- To identify suitable attenuation equation.
- To find response spectrum of bedrock.
- To find performance of building with different response spectrum.

1.4 Scope of the Study

The scope of research would cover as mention below:

- Performance of attenuation equation with different mechanisms and fault distance
- Performance of PGA and response spectrum of bedrock.
- Performance of building with different response spectrum

REFERRENCES:

- Abrahamson, N.A. (2004), "Approaches to Developing Design Ground Motions. San Francisco, U.S. unpublished."
- Adnan, A., Marto, A., and Norhayati (2002), "Development of Seismic Hazard Map for Klang Valley. World Engineering Congress. Sarawak." Structure Earthquake Engineering Research, Faculty of Civil Engineering, Universiti Teknologi Malaysia.
- Adnan, A, Hendriyawan, Marto, A., and Irsyam, M. (2006), "Development of Synthetic Time Histories at Bedrock for Kuala Lumpur." Structure Earthquake Engineering Research, Faculty of Civil Engineering, Universiti Teknologi Malaysia.
- Adnan, A, Hendriyawan, Marto, A., and Irsyam, M. (2005), "Selection and Development of Appropriate Attenuation Relationship for Peninsular Malaysia. Proceeding Malaysian Science and Technology Congress 2005. Mid Valley, Kuala Lumpur." Structure Earthquake Engineering Research, Faculty of Civil Engineering, Universiti Teknologi Malaysia.
- Atkinson, G.M. and Boore, D.M. (1997). "Some Comparisons Between Recent Ground Motion Relations." Seismological Research Letters. Vol. 68. No. 1.
- Behrooz Tavakoli and Shahram Pezeshk, "Empirical-Stochastical Ground Motion Prediction for Eastern North America." Department of Civil Engineering, The University of Memphis

- Balendra, T., Tan, K.W., & Kong, S.K. (1999). Vulnerability of Reinforced Concrete Frames in Low Seismic Region, When Designed According BS 8110. Earthquake Engineering and Structural Dynamics. 28, 1361 – 1381.
- Balendra, T, & Li, Z. (2008). Seismic Hazard of Singapore and Malaysia. Earthquake Engineering in the law and moderate seismic regions of Southeast Asia and Australia (2008).
- Campbell, K.W. (2003). Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in Eastern North America. *Bulletin of the Seismological Society of America*. Vol. 93, pp. 1012–1033.
- Hendriyawan (2007). Seismic Macrozonation of Peninsular Malaysia and Microzonation of Kuala Lumpur City Center and Putrajaya, Thesis Doctor of Philosophy in Civil Engineering, Universiti Teknologi Malaysia.
- Kenneth W. Campbell and Yousef Bozorgnia (2006), "Next Generation Attenuation (NGA) Empirical Ground Motion Models: Can They Be Used in Europe?" First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland.
- Megawati, K., Pan, T.C. & Koketsu, K. (2003). Response Spectral Attenuation Relationships for Singapore and the Malay Peninsular due to Distant Sumatra-Fault Earthquakes. Earthquake Engineering and Structural Dynamics. 32, 2241-2265.
- Megawati, K., Pan, T.C. & Koketsu, K. (2005). Response Spectral Attenuation Relationship for Sumatran-Subduction Earthquake and the Seismic Hazard Implications to Singapore and Kuala Lumpur. Soil Dynamics and Earthquake Engineering. 25,11-25.

- Nor Azizi Bin Yusoff (2002). Development of Peak Ground Acceleration Map and Response Spectrum Using Deterministic Seismic Hazard Analysis for Malaysia. Thesis Doctor of Philosophy in Civil Engineering, Universiti Teknologi Malaysia.
- Steven L. Kramer (1996). Geotechnical Earthquake Engineering, University of Washington, Practice-Hall International Series in Civil Engineering and Engineering Mechanics.