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ABSTRACT 

 

 

 

 

Electrical discharge machining (EDM) which is very prominent amongst the 

non conventional machining methods is expected to be used quite extensively in 

machining titanium alloys due to the favorable features and advantages that it offers.  

This thesis presents the EDMing of titanium alloy (Ti-6246) using copper 

impregnanted graphite electrode with diameter of 8 mm. The main purpose of this 

study was to investigate the influenced of various parameters involved in EDM on 

the machining characteristics, namely, material removal rate (MRR), electrode wear 

ratio (EWR), surface roughness (Ra) and overcut. 

 

In this investigation, the machining trials were performed using a Sodick 

linear motor EDM sinker series AM3L The experimental plan for the processes were 

conducted according to the design of experimental (DOE) and the results were 

statistically evaluated using analysis of variance (ANOVA). Results showed that 

current was the most significant parameter that influenced the machining responses 

on EDM of Ti-6246. 

 

Confirmation tests were also conducted for the selected conditions for each 

machining characteristics in order to verify and compare the results from the 

theoretical prediction using Design Expert software and experimental confirmation 

tests. Overall, the results from the confirmation tests showed that the percentage of 

performance was acceptable due to all results obtained were within the allowable 

values which was less than 15% of marginal error. 
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ABSTRAK 

 

 

 

 

Proses pemesinan nyahcas elektrik (EDM) yang agak dominan di antara 

proses pemesinan bukan konvensional dijangkakan akan bertambah meluas 

penggunaannya disebabkan sifat-sifat dan kelebihan yang dihasilkan keatas 

bendakerja. Kajian yang dijalankan ini adalah mengenai pemesinan EDM sinker 

terhadap bahan aloi titanium (Ti-6246) dengan menggunakan copper impregnanted 

graphites yang berdiameter 8 mm sebagai elektrod. Tujuan utama kajian ini adalah 

untuk mengkaji kesan beberapa parameter yang terlibat dalam EDM proses terhadap 

kriteria pemesinan seperti kadar pembuangan bahan (MRR), nisbah kehausan 

elektrod (EWR), kekasaran permukaan (Ra) dan ‘overcut’. 

 

Dalam kajian ini, pemesinan yang dijalankan ke atas titanium dilakukan 

menggunakan Sodick linear motor EDM series AM3L. Ujian pemesinan untuk 

kedua-dua proses telah dinilai secara statistik menggunakan analisa variasi 

(ANOVA). Keputusan menunjukkan arus lektrik merupakan parameter yang paling 

signifikan yang mempengaruhi tindak balas pemesinan EDM ke atas Ti-6246. 

 

Ujikaji pengesahan juga telah dijalankan bagi tujuan pengesahan dan 

perbandingan keputusan di antara nilai ramalan teori menggunakan perisian Design 

Expert dengan nilai yang diperolehi dari ujikaji. Secara keseluruhan, keputusan 

pengesahan ujikaji menunjukkan bahawa kesemua peratusan ralat perbezaan yang 

diperolehi berada di dalam lingkungan nilai yang dibenarkan iaitu peratus ralat 

kurang daripada 15%. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

The use of light, thin and compact mechanical elements has recently become 

a global trend. The search for new, lightweight material with greater strength and 

toughness has led to the development of new generation of materials such as titanium 

and nickel alloys, although their properties may create major challenges during 

machining operations. Having greater hardness and reinforcement strength, these 

materials are difficult to machine by the traditional methods. Although these 

materials can be machined conventionally, sub surface damages such as 

metallurgical alterations, work hardening, delimitation and microcracks and others 

can occur under certain circumstances which cause a detrimental effect on the 

performance of the machined component. Since the cost of using conventional 

machining is generally prohibitive, non-conventional machining such as electric 

discharge machining (EDM) and laser machining probably amongst the ideal 

technique in dealing with these materials. 

 

Most titanium alloys and component design characteristics make them 

expensive to be machined and historically, titanium has been perceived as a material 

that is difficult to machine (Ezugwu, E.O and Wang, Z.M. 1997). Due to titanium's 
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growing acceptance in many industries, along with the experience gained by 

progressive fabricators, a broad base of titanium machining knowledge is now exist. 

It was reported that commercially pure grades of titanium [ASTM B, Grades 1, 2, 3, 

4] (ASM International, 1988) can be machined much easier than aircraft alloys.  

 

Although titanium alloys is tough it can experienced sub-surface damaged 

during machining operations. Damage appears in the form of microcracks, built up 

edge, plastic deformation, heat affected zones and tensile residual stresses (Sharif, 

1999; and Hong et al., 2001). In service, these can lead to degraded fatigue strength 

and stress concentration. 

 

Non-traditional machining of metal removal such as EDM expected to be 

used extensively years to come, because it’s favorable results. It is particularly useful 

for rapid removal of metal of free form surface or complex shaped parts, thin 

sections, and from large areas down to shallow depths. This process has less 

damaging effect on the mechanical properties of the metal (Rival, 2005). 

 

 

 

 

1.2 Background of Research 

 

 

EDM is a non-traditional concept of machining which has been widely used 

to produce dies and molds. It is also used for finishing parts for aerospace and 

automotive industry and surgical components. This technique has been developed in 

the late 1940s (Norliana Mohd Abbas et al., 2006).where the process is based on 

removing material from a part by means of a series of repeated electrical discharges 

between tool called the electrode and the work piece in the presence of a dielectric 

fluid (Norliana Mohd Abbas et al., 2006). 

 

This process is finding an increasing demand owing to its ability to produce 

geometrical complex shapes as well as its ability to machine hard materials that are 

extremely difficult to machine when using conventional process. EDM has proved its 
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capability especially in the machining of super tough, hard and electrically 

conductive materials such as the new space age alloys (Rival, 2005). The process 

variables include not only the electrical but also non-electrical parameters, which 

have received quite a substantial amount of research interest. 

 

Optimum selection of process parameters is very much essential, as this is a 

costly process to increase production rate considerably by reducing the machining 

time. Several researchers carried out various investigations for improving the process 

performance. As EDM is a very complex and stochastic process, it is very difficult to 

determine optimal parameters for best machining performance, i.e., productivity and 

accuracy (T. A. El-Taweel, 2009). Material removal rate, tool wear, surface finish 

and also overcut are most important output parameters, which influence the cutting 

performance. But these performance parameters are conflicting in nature. The higher 

the MRR, the better, whereas the lower the tool wear, the better. In a single objective 

optimization, there exists only one solution. But in the case of multiple objectives, 

there may not exist one solution, which is the best with respect to all objectives. In 

EDM process, it is difficult to find a single optimal combination of process 

parameters for the performances parameters, as the process parameters influence 

them differently. Hence, there is a need for a multi-objective optimization method to 

arrive at the solutions to this problem. 

 

The published literature indicates that few studies have been reported for the 

optimization of process parameters in EDM. Therefore, this study is aims at 

investigating the best performance of various input process parameters in EDM die-

sinking process of Ti-6246. Further, no technology tables or charts are available for 

EDM of titanium alloy (Ti-6246) using copper graphite electrode. Therefore, it is 

imperative to develop a suitable technology guideline for appropriate machining of 

Ti-6246. Electrodes with copper graphite, peak current, servo voltage, pulse on time 

and pulse off time are considered as input EDM machining parameters. The process 

performance such as material removal rate (MRR), surface roughness (SR), overcut 

and electrode wear rate (EWR) were evaluated.  
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1.3 Statement of the research problem 

 

 

How does a new developed electrode performed when EDM alpha beta 

titanium alloy Ti-6246 with respect to material removal, electrode wear, dimensional 

hole accuracy and surface finish. 

 

 

 

 

1.4 Research Question 

 

 

a. What are the machining parameters that influence the EDMing of Ti-6246 

using copper impregnanted graphite electrode.  

b. What are the significant parameters that influence to the responce during 

EDM of Ti-6246. 

c. What correlations exist among the parameters and machining responses and 

also how to quantify. 

d. What mathematical model is suitable to represent the performance evaluation 

of EDMing Ti-6246.  

 

 

 

 

1.5 Objectives 

 

 

The objectives of the study are: 

 

a) To evaluate the performance of copper Impregnated graphite electrode when 

Electro-Discharge Machining Ti-6246 with respect to various machining 

responses. 
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b) To determine the significant parameters that influences the machining 

responses during Electro-Discharge Machining of Ti-6246. 

c) To establish mathematical model for the MRR, EWR and surface finish 

during EDM of  Ti-6246 using DOE approach.  

 

 

 

 

1.6 Scope of study 

 

 

a) Machining responses to be investigated are material removal rate (MRR), 

electrode wear rate (EWR), surface roughness (SR) and overcut. 

b) Electro-Discharge Machining (Die sinking) AM3L SODICK will be 

employed. 

c) Alpha-beta alloy, Ti 6Al 2Sn 4Zr 6Mo (Ti-6246) will be selected as 

workpiece material. 

d) Copper impregnated graphite will be used as the EDM electrode. 

e) Kerosene will be used as the dielectric fluid. 
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ABSTRACT

The purpose of this study is to investigate the behaviour of a solid particle

suspended in a two-dimensional viscous flow. The flow considered takes place in a

closed square cavity, driven along its upper face by a translating lid. Second order

upwind Lattice Boltzmann method computations are performed to characterize the

fluid flow. The center locations of the fluid flow are first being track to simulate the

path of the solid particle before the particle are introduced. The particle phase was

modelled using the Lagrangian–Lagrangian (L–L) approach where the solid particles

are treated as points moving in the computational domain as a result of the fluid

motion. Slightly buoyant solid particle are then inserted in the cavity with flow at

steady state condition. Different cases were considered, where the Reynolds number

of the flow ranging in 130, 470, 860 and 3200 were used. The calculated solid

particle motions are then compared with slightly denser particle with Reynolds

number of 470. The results obtain shows that the slightly denser particle tends to

move slightly downwards in the two-dimension cavity than the slightly buoyant

particle. Solid particle trajectories are otherwise found to align closely with center

location of the transient flow. The solid particle orbits, however, are not evenly

distributed within the cavity, and gathered closer to the edge of the cavity as the

Reynolds and Stokes numbers increase.
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ABSTRAK

Kajian in dilakukan bertujuan mengkaji kesan zarah pepejal tergantung di

dalam aliran tepu dua dimensi. Aliran ini dilaksanakan didalam sisipan segi empat

tepat rongga persegi dua dimensi dengan penutup bergerak. Persamaan ‘Second

order upwind’ dengan Kaedah Lattice Boltzmann computasi dijalankan untuk

menentukan ciri-ciri aliran bendalir. Lokasi pusat bagi aliran bendalir pertama di

kesan bagi menjalankan simulasi pergerakan zarah pepejal sebelum zarah pepejal di

masukkan kedalam rongga segi empat tepat. Fasa zarah pepejal di modelkan

menggunakan kaedah ‘Lagrangian–Lagrangian (L–L)’ dimana zarah pepejal ini di

definasikan sebagai titik yang bergerak didalam ruang komputasi akibat kesan

daripada pergerakan bendalir. Zarah pepejal yang menghampiri ringan bendalir

kemudiannya dimasukkan kedalam rongga persegi dengan bendalir bergerak di

dalam keadaan stabil. Beberapa kes telah di ambil kira, dimana penggunaan number

Reynolds 130, 470, 860 dan 3200 digunakan. Pergerakan zarah pepejal yang telah

dikaji kemudiannya dibandingkan dengan zarah pepejal yang sedikit lebih berat

dengan menggunakan number Reynolds 470 untuk perbandingan. Keputusan yang

diperolehi menunjukkan zarah pepejal yang sedikit lebih berat mengalami penurunan

sedikit kebawah di dalam rongga segi empat dua dimensi berbanding zarah pepejal

yang sedikit ringan daripada bendalir. Pergerakan zarah pepejal selainnya

menunujukan trend yang sama dengan pergerakan lokasi pusat aliran bendalir.

Walaubagaimanapun, orbit zarah pepejal menunjukkan pembahagian yang berlainan

didalam rongga segiempat tepat dan mengelilingi bahagian hujung bucu pada sisi

empat rongga apabila nombor Reynolds dan nombor Stokes meningkat.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Governing equations for fluid flow can be described by three equations which

is continuity, momentum and energy equation. The famous incompressible Navier-

Stokes equation represents a local conservation law for the momentum in the system.

This equation only partially addresses the complexity of fluids in engineering

applications. The equation is so complex that currently there is no analytical solution

except for a small number of special cases [1].

To solve the Navier-Stokes equation numerically is very challenging task.

The only reliable information pertaining to a substantial process of fluid dynamics is

usually given by an actual experiment using full scale equipments. However, in most

cases, such experiment would be very costly and often impossible to conduct [1].

In order to simulate fluid flows using computer, continuity equation and the

famous Navier-Stokes equation need to be solved with infinite accuracy.

Researchers and engineers need to discretise the problem by using a specific method

before they can solve the problem.
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As years passes by, high speed digital computers were developed.

Researchers gain new essential tools that can solve engineering problems using

computational methods called Computational fluid Dynamics. Computational Fluid

Dynamic (CFD) is a powerful tool in simulating fluid flow problems. Some CFD

technique such as Finite Difference Method, Finite Element Method and Finite

Volume Method are used nowadays by computer simulations to solve the Navier-

Stokes equation numerically.

The numerical simulation begins with creating a computational grid. Grid is

the arrangement of these discrete points throughout the flow field [2]. Depending on

the method used for the numerical calculation, the flow variables are either

calculated at the node points of the grid or at some intermediate points as well. The

spacing between grid points requires a fine space in order to attain a high degree of

accuracy. However, this requires more computer memory which means more

computational time is required.

A rectangular lattice with fixed spacing between node points in each

dimension is the simplest computational grid. Apart from that, there are a number of

methods that use unstructured grids where the density of the node points is not

constant throughout the regions. The density is higher when higher accuracy is

required in the specified region.

Within recent years, A new method called the lattice Boltzmann method

(LBM) has engrossed much attention in computational fluid dynamics. LBM has

emerged as a powerful and alternative approach in solving various fluid flow

phenomena.
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1.2 Lattice Boltzmann Method

Many methods have been introduced such as the finite difference, finite

element, and finite volume technique for solving Navier stokes equation. Another

different approach to the usual computational fluid dynamics (CFD) is the Lattice

Boltzmann Method (LBM). LBM has been established to be successful in

simulations of fluid flow and other types of complex physical system such as in

porous media [3] and turbulence [4]. It is also capable for simulating multiphase and

multi component fluid flow involving complex interfacial dynamics. It is a discrete

computational method based on the Boltzmann equation that was improved from

lattice gas automata (LGA).

The main idea of the Lattice Boltzmann Method is to produce simplified

kinetic models that integrate the critical physics of microscopic processes so that the

macroscopic averaged properties meet the terms with the desired macroscopic

Navier-Stokes equations. In other words, the objective is to derive the macroscopic

equations for the microscopic dynamics in terms of statistics rather than solving the

macroscopic equations. The concept of particle distribution has been developed in

the field of statistical mechanics to describe the kinetic theory of liquids and gases.

The single-particle distribution is then applied in the lattice Boltzmann

scheme. The degree of freedom for particle distribution was reduced from the

substantial world to a computationally controllable numeral in the simulation while

still maintaining dependability with the range treatment of the substantial world.
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1.3 Comparison between Traditional CFD and Lattice Boltzmann Method

Table 1 below shows one major comparison between Traditional CFD and

Lattice Boltzmann Method (LBM):-

Table 1.1: Comparison of Traditional CFD and LBM

Traditional CFD Lattice Boltzmann Method (LBM)

 Traditional CFD generally starts

from non linear partial differential

equation (PDEs). These PDEs are then

discretized either by finite differences,

finite element finite volume or spectral

methods. The result of discretization

into Ordinary Differential Equations

(ODEs) or algebraic equations are then

solved by standard numerical methods.

 LBM generally starts from

discrete microscopic model. It is

constructed by deriving

corresponding macroscopic

equations using multi-scale analysis

to preserve the desired quantities for

example the mass and momentum

for Navier-Stokes equation.

1.4 Advantages of Lattice Boltzmann Method

There are several advantages of using Lattice Boltzmann method. The list

below shows the advantages of Lattice Boltzmann Method comparing to the

traditional CFD method:-

i) The algorithm is simple and can be apply with a kernel of just a few

hundred lines and modified to fit application such as complex

simulations.
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ii) Allows an efficient parallelization of the simulations even on parallel

machines with moderately slow interconnection system due to the

regular lattice and to the simply limited dynamics that involve only a

contact of each lattice node with its nearest neighbor nodes at each

iteration step.

iii) LBM is useful for applications such as multiphase flows, where as the

two phases can represent with the same fluid model. The interface

between the phases is handled automatically as an element for the

model. Different news though for the traditional CFD, a PDE has to

be written down for each of these two phases, as well as for the

interaction of the phases on its frequent interfaces. This execute of

this PDE model will require an advanced software engineering

method to track the position of the interface and executing its

dynamics.

iv) The estimated advantage of LBM compared to conventional CFD is

that, no discretization of the macroscopic continuum equations needs

to be provided. Hence, the LBM does not need to consider explicitly

the distribution of pressure on interfaces of refined grids since the

implicitly is included in the computational scheme.

1.5 Lid-Driven Cavity and Fluid Particle Flows

Many Researchers has been focusing on lid driven cavity flow as the main

research area ever since rotating flows of viscous fluids has been applied in various

industrial applications. Although it is a simple geometry, but lid- driven cavity flow

may involves in high degree of complexity. It is crucial for analyzing fundamental

aspects of recirculation fluids.
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The study of wall bounded fluid particle flows has been done by many

researchers to represent industrial system for example the fluidized beds, pneumatic

or slurry transport of powders, coal combustion, dust explosion, catalytic reactions

and many other industrial applications.

Researchers such as Frank et al [5] simulated the motion of solid particles in

a horizontal two-dimensional turbulent channel flow based on the lagrangian

approach. P. Kosinski et al [6] did a study on the simulation of solid particles

behavior in a driven cavity flow using the Eularian-Lagrangian approach while S.J

Tsrong et al. [7] study the behavior of macroscopic rigid spheres in lid driven cavity

flow experimentally. Yet still remain no research done with lattice Boltzmann

method to study the behavior of particles in rotating fluid flows. Thus the main

subject of this study is to investigate the behavior of the particles and the particle

influence on the fluid using Lattice Boltzmann numerical scheme.

1.6 Objectives

The objective of this study is to develop a Lagrangian-Lagrangian based

numerical scheme to simulate the behavior of solid particles in a lid driven cavity.

1.7 Scope

The scopes of this study are as follows:-

i) Implementing Lattice Boltzmann Method to simulate velocity

and pressure fields
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ii) By applying the Second Newton Law to trace the position of

the solid particle in lid-driven cavity flow.

iii) By evaluating the behavior of solid particles in 2-D lid-driven

cavity flow

iv) Evaluate the simulations using Reynolds Number ranging

from 100 to 1000 and compare the obtained results using

lattice Boltzmann scheme to the benchmark (where driven

cavity is used as a benchmark) results gain in the literature

(Navier-Stokes Schemes).
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