SIMULATION OF METAL STAMPING FOR PANEL FRONT DOOR INNER PART FOR NEW AUTOMOTIVE MODEL DEVELOPMENT

MOHD ARIFFIN BIN MESUAN

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical - Advance Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2010

"Dedication"

To my beloved mother and father Azizah Ahmad Mesuan Rasid

My beloved wife and childrens Sit Mariaton Abd Moksin Nurin Batrisyia Muhammad Safir Haziq Muhammad Wafiq

ACKNOWLEDGEMENT

In the preparation of this work, I am indebted to many people for their kind cooperation, generous assistance and encouragement. First of all, I would like to express my appreciation and gratitude to Allah the Almighty for his guidance and protection in allowing me to complete this thesis without any significant problems. In this opportunity, I would like to express my sincere appreciation to my supervisor Associate Professor Hamidon Musa for the excellent supervision, guidence and continous encouragement throughout the study.

It is a pleasure to acknowledge Mr Nazrul from SIRIM for assistance and guidence in using AUTOFORM software. Finally, special thanks and appreciation for my beloved wife Siti Mariaton Abd Moksin and my children Nurin Batrisyia, Muhammad Safir Haziq and Muhammad Wafiq for their support and kindness which without it I would not be able to persevere till the end of this thesis.

My sincere appreciation also extends to all my friends and my colleague who have contributed directly or indirectly to the success of this project.

ABSTRACT

The development of metal stamping part in the automotive industry is become more challenging due to the need of all car makers to reduce the development lead time for new model as well as to reduce the body car weight in order to reduce the fuel consumption. In order to reduce the lead time, forming simulation software is used whereas Tailored Welded Blank (TWB) material is used to reduce the weight, part quantity and overall manufacturing cost. In this study the panel front door inner part is selected by reason of its potential of using TWB material. Foming simulation software is used due to its ability to analyze and to predict the quality of stamping part after the stamping process is done. The software used are CATIA and AUTOFORM. CATIA software is used to create detail radius and also the shape of the study part while AUTOFORM software is used to analyze and to predict the result of panel quality so that if there is any problem occur it can be solve at the early stage. Analysis is then done on the formability, thinning condition and surface quality such as crack and wrinkle to determine the problem at the early stage of new model development. In this part study to counter the crack problem, the dies face and draw bead shape are modified while the crack problem at the inner area is solved by introducing the 'lance cut' at15mm from die close condition. The cost merit of using TWB material for panel front door inner is proven.

ABSTRAK

Pembangunan produk logam tekanan di dalam industri otomotif menjadi semakin mencabar dikalangan pengeluar kereta dari segi keperluan mengurangkan masa pembangunan untuk model baru selain untuk mengurangkan berat badan kereta dan seterusnya dapat mengurangkan penggunaan bahan api. Sehubungan dengan itu perisian simulasi telah dibangunkan dan digunakan untuk mengurangkan masa pembangunan manakala bahan 'Tailored welded blank (TWB)' pula digunakan untuk mengurangkan berat badan kereta, jumlah produk logam dan kos pengeluaran secara keseluruhannya. Di dalam kajian ini produk yang dipilih adalah bahagian dalam pintu hadapan kereta kerana ia berpotensi untuk menggunakan bahan TWB. Perisian simulasi pembentukan digunakan kerana ia berupaya untuk menganalisa dan menjangkakan kualiti produk logam tekanan selepas proses tekanan. Perisian yang digunakan adalah CATIA dan AUTOFORM. CATIA adalah perisian yang digunakan untuk membuat jejari produk secara terperinci dan bentuk produk yang akan dikaji. AUTOFORM pula adalah perisian yang digunakan untuk menganalisa masalah dan menjangkakan masalah kualiti produk seterusnya penyelesaian masalah boleh dilakukan pada peringkat awal dan pembangunan. Kebolehan pembentukan, keadaan kenipisan bahan dan kualiti produk seperti pecah dan berkedut dikaji untuk menentukan punca masalah pada peringkat awal pembangunan model baru kereta. Masalah kepecahan di bahagian dalam hadapan pintu kereta diatasi dengan mengubah bentuk permukaan acuan dan bentuk 'draw bead'. Kepecahan di bahagian dalam bahagian yang dikaji pula dilakukan dengan melakukan 'lance cut' pada kedudukan 15mm dari bahagian bawah acuan.Penggunaan bahan TWB di bahagian dalam pintu hadapan telah terbukti dapat menjimatkan kos pengeluaran sesebuah kereta.

TABLE OF CONTENTS

CHAPTER

PAG	FΕ
-----	----

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS AND SYMBOLS	xiv
LIST OF APPENDICES	XV

1. INTRODUCTION

1.1	Background	1
1.2	Problem Statement	2
1.3	Objective of The Study	2
1.4	Scope of The Study	3
1.5	Thesis Organization	3

2. LITERATURE REVIEW

3.

2.1	Tailored Welded Blank TWB) 4		
2.2	Forming Simulation		
2.3	Formability		
2.4	Defect-defect in Metal Stamping Process	13	
	2.4.1 Crack	13	
	2.4.2 Wrinkles	15	
	2.4.3 Spring Back	16	
	2.4.4 Shock Line	18	
	2.4.5 Skid Line	19	
	2.4.6 Warping	20	
2.5	AUTOFORM Software	20	
2.6	Summary of Literature Review	22	
RESE	ARCH METHODOLOGY	26	
3.1	Introduction	26	
3.2	Forming Simulation Model	28	
3.3	Initial Run of forming Simulation and Propose Solution		
	For Problem	30	
3.4	Output for Forming Simulation Result	32	
3.5	Part Selected for Cost Analysis Study		
	3.5.1 Part Selected for Tailored Welded Blank		
	Material (TWB)	33	
	3.5.2 Part Selected for Normal Material		
	(Conventional Method)	35	
3.6	Cost Analysis	38	
		38	
	3.6.1 Production Volume	50	
	3.6.1 Production Volume3.6.2 Economic Condition	39	

		3.6.4	Reject Cost Rate	40
		3.6.5	Warranty Cost	40
		3.6.6	Capital Expenditure	40
		3.6.7	Processing Cost	40
		3.6.8	Finance Expenses	41
4.	FOR	MING S	SIMULATION AND COST STUDY	42
	4.1	Introdu	uction	42
	4.2	Formi	ng Simulation	42
		4.2.1	Forming Limit Diagram (FLD)	44
	4.3	Formi	ng Simulation before Improvement	45
		4.3.1	Formability Result before Improvement	46
		4.3.2	Thinning Result before Improvement	48
	4.4	Formi	ng Simulation after Improvement	51
		4.4.1	Formability Result after Improvement	53
		4.4.2	Thinning Result after Improvement	56
	4.5	Cost A	Analysis Study	59
		4.5.1	Cost Analysis Study on TWB Material	59
		4.5.2	Cost Analysis Study on Normal Material	60
		4.5.3	Cost Analysis Study on Sub Assembly of	
			Panel front door inner	61
5.	DISC	USSIO	N OF RESULTS	63
	5.1	Introdu	uction	63
	5.2	Forma	bility Condition of Simulation	63
	5.3	Thinni	ing Condition of Simulation	71
	5.4	Cost N	Aerit in Stamping Operation Process	76
	5.5	Cost n	nerit in Sub Assembly of Panel Front Door Inner	78
	5.6	Summ	ary	80

6. CONCLUSIONS		81	
	6.1	Conclusions	81
	6.2	Recommendations for Future Work	82
REFERENCES		84	

APPENDICES A-B

87-101

LIST OF TABLES

TA	BL	Æ	NO	
----	----	---	----	--

TITLE

PAGE

2.1	TWB material application in Malaysia automotive	
	Industries	6
3.5.1	List of part for panel front door inner model A	35
3.5.2	List of part for panel front door inner model B	37
3.6.1	Estimated production volume	39
3.6.2	Foreign exchange rate	39
4.1	TWB material specification	43
4.5.1	Summary of the cost for TWB material part of	
	Model A	60
4.5.2	Summary of the cost for Normal material part	
	Model B	61
4.5.3	Cost for sub assembly for panel front door inner	62
4.5.4	No of spot welding and cycle time	62

LIST OF FIGURES

FIGURE NO	TITLE	PAGE

2.1	Example of application of Tailored welded blank on	
	side panel outer part	5
2.2	Exploded view of current and potential TWB material	
	application in automotive	7
2.3.1	The forming limit diagram for several blank	12
2.3.2	The forming limit diagram. Plotted result of the etched	
	circle measurement after forming	12
2.4.1	Drawing crack	14
2.4.2	Stretching crack	14
2.4.3	Elongation flange cracks	15
2.4.4	Flexural crack	15
2.4.5	Wrinkle problem	16
2.4.6	Spring back	17
2.4.7	Shock line	18
2.4.8	Skid line defect	19
2.4.9	Warping defect	20
3.1	Research Methodology flow diagram	27
3.2	Panel front door inner in with complete surface and radius	28

3.3	Simulation model in AUTOFORM	30
3.4	Simulation result for initial stage (Formability)	31
3.5	Simulation result for initial stage (Thinning)	31
3.5.1	Exploded view for panel front door inner model A	
	(TWB material)	34
3.5.2	Sub assembly of panel front door inner model A	
	(TWB material)	34
3.5.3	Exploded view for panel front door inner model B	
	(Normal material)	36
3.5.4	Sub assembly of panel front door inner model B	
	(Normal material)	36
4.1	TWB material (before stamping)	43
4.2	Forming Limit Diagram (FLD) for TWB material	44
4.3	Draw bead outline	45
4.4	Draw bead shape	45
4.5	Dies face condition before improvement	46
4.6	Simulation result for formability at bottom touch at	
	initial stage	47
4.7	Simulation result for formability at 5mm up from	
	bottom touch at initial stage	47
4.8	Simulation result for formability at 10mm up from	
	bottom touch at initial stage	48
4.9	Simulation result for thinning at bottom touch at	
	initial stage	49
4.10	Simulation result for thinning at 5mm up from	
	bottom touch at initial stage	50
4.11	Simulation result for thinning at 10mm up from	
	bottom touch at initial stage	50
4.12	Dies face condition after improvement	51

4.13	Draw bead condition after improvement	52
4.14	Lance cut position	53
4.15	Simulation result formability at bottom touch for	
	after improvement dies face	54
4.16	Simulation result formability at 5mm up from bottom	
	touch for after improvement dies face	55
4.17	Simulation result formability at 10mm up from bottom	
	touch for after improvement dies face	55
4.18	Forming limit diagram for after improvement dies face	56
4.19	Simulation result of Thinning at bottom touch for after	
	improvement dies face	57
4.20	Simulation result of Thinning at 5mm up from bottom	
	touch for after improvement dies face	57
4.21	Simulation result of Thinning at 10mm up from bottom	
	touch for after improvement dies face	58
5.2.1	Die face shape before and after improvement	64
5.2.2	Draw bead shape before dies face improvement	65
5.2.3	Draw bead condition after dies face improvement	65
5.2.4	Comparison formability condition at bottom touch	67
5.2.5	Comparison formability condition at 5mm up from	
	Bottom touch	68
5.2.6	Comparison formability condition at 10mm up from	
	Bottom touch	69
5.2.7	Lance cut introduction	70
5.2.8	Forming limit diagram for initial stage simulation	71
5.2.9	Forming limit diagram for after improvement stage	
	Simulation	71
5.3.1	Comparison thinning condition at 10mm up from	
	Bottom touch	73

5.3.2	Comparison thinning condition at 5mm up from		
	Bottom touch	74	
5.3.3	Comparison thinning condition at bottom touch	75	
5.4.1	Comparison no of part and no of process	76	
5.4.2	Comparison of cost panel front door inner	78	
5.5.1	Comparison no of spot welding and cycle time	79	
5.5.2	Comparison of cost for sub assembly process of		
	Panel front door inner	80	

LIST OF ABBREVIATIONS AND SYMBOLS

CO_2	-	Carbon dioxide
Dep	-	Depreciation
FC	-	Financial Charge
FLC	-	Forming Limit Curve
FLD	-	Forming Limit Diagram
FO	-	Fixed Overhead
Min	-	Minute
MPa	-	Mega Pascal
Nd:YAG	-	Neodymium-doped Yttrium Aluminium Garnet
n value	-	Exponent Hardening
r value	-	Lankford Coefficient
RM	-	Ringgit Malaysia
R	-	Reject
VO	-	Variable Overhead
W	-	Warranty

LIST OF APPENDICES

TITLE

APPENDIX

A1	Simulation Data	87
A2	FLC for TWB material	88
A3	FLD of initial stage at bottom touch condition (0 mm)	89
A4	FLD of initial stage at 5 mm up from bottom touch	
	condition	90
A5	FLD of initial stage at 10 mm up from bottom touch	
	condition	91
A6	Dies face condition at initial stage	92
A7	Draw bead condition at initial stage (Simulation &	
	actual shape)	93
A8	FLD after improvement dies face at bottom touch	
	condition (0 mm)	94
A9	FLD after improvement dies face at 5 mm up from	
	bottom touch condition	95
A10	FLD after improvement dies face at 10 mm up from	
	bottom touch condition	96
A11	Dies face condition after improvement	97

PAGE

A12	Draw bead condition after improvement dies face	
	(Bead 4)	98
A13	Draw bead condition after improvement dies face	
	(Bead 5)	99
A14	Draw bead condition after improvement dies face	
	(Bead 6)	100
B1	Cost for panel front door inner using TWB material	
	of Model A	101
B2	Cost for panel front door inner using normal material	
	of Model B	101

CHAPTER 1

INTRODUCTION

1.1 Background

In the automotive industry, the sheet metal forming process has been widely applied for making car body components especially in metal part components such as door panel, under body structure, side body panel and upper body structure. In traditional manufacturing processes, design, selection of material, determination of dimension and shape of the blank material and stamping process planning will be determine with several tryout processes. This "trial and error" process result having a lot of resources consumption, high production cost and will effect long development cycle. The foundation of a finite element software simulation analysis system of sheet metal forming fulfills the "trial and error" processes with the computer. The use of forming simulation method can be lead the cost saving in prototype tool construction and die tryout stages and then this simulation can significantly reduce the overall development time and increase product quality.

Severe competition in the automotive industry forces the car makers to come up with the innovative solution to reduce manufacturing cost, improving product performance and to reduce total vehicle weight. One of the strategies is to reduce metal body part with introduction of the tailored welded blank material (TWB) for the certain metal body part. The development of TWB material can offer a unique opportunity to meet all these goals simultaneously. "The advantages of using TWB material in automotives industry is the reduction of product weight and this hence fuel consumption is lowered (Narayanan and Narasimhan, 2008)."

1.2 Problem Statement

Based on the literature review of the past research on metal stamping simulation and tailored welded blank, the following item can be concluded:

- i. Lack of the result regarding forming simulation of TWB material that can be used as a basis for the next new model development.
- ii. Cost comparison study in manufacturing process and raw material between conventional material type or method and tailored welded blank material is not available.
- iii. The traditional way in the new car model development required a long period of period of trial and error during tryout stage. Therefore with using computer simulation that activity can be reduced and countermeasure of problem during trial stage can be determined during this forming simulation stage.

1.3 Objective of The Study

The objectives of this research are stated below:

- i. To conduct sheet metal forming simulation study on an automotive part for a new car development.
- To provide feedback and solution or countermeasure at the early stage of new model development.

iii. To identify the cost saving using Tailor Welded Blank (TWB) material compared with conventional material type or method for the identified part.

1.4 Scope of The Study

This study has been conducted based on the following scopes:

- i. The sheet metal stamping simulation will be conducted using the AUTOFORM software.
- The part chosen for this case study is the Panel Front Door Inner, which is potentially suitable for TWB application.
- iii. The study was limited to formability, thinning condition and panel quality such as crack and wrinkle.
- iv. The study on cost comparison between TWB material and normal material for Panel front Door inner and surrounding part related, the cost related directly to the stamping operation will be considered.

1.5 Thesis Organization

This thesis is divided into the six chapters. The chapter one is provided overview of the studied. The chapter two was summarize of the literature review of the tailored welded blank, forming simulation and related topic that guided the study towards achieving the thesis objective. The chapter three was research methodology for this forming simulation. All the simulation result data and cost analysis will be presented in the chapter four. In the chapter five discussions on the result of forming simulation and cost comparison will be discussed. The conclusion of the study and the recommendation for future work will be given in the chapter six.