n-PENTANE ORIGINATED PROTONIC ACID SITES OVER ZINC PROMOTED HZSM-5

MALIK MUSTHOFA

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Chemistry)

> Faculty of Science Universiti Teknologi Malaysia

> > JULY 2009

Teristimewa untuk; ibunda Siti Mulyani, Bp. Zaed Nurul Hadi (alm) dan semua kakakku belahan jiwa tersayang, Tri Margiyati Sucini, penyejuk mataku, Innaa Munaadiyah, buah hatiku, Muhammad Mas'uud Elfarisi, semoga semua ini diridhoi dan diberkahi Alloh SWT.

ACKNOWLEDGEMENT

Thanks to Allah who has given me the opportunity and will to perform this Master project. I wish to express my sincere appreciation to my supervisor, Assoc. Prof. Dr. Sugeng Triwahyono, for professional advices, encouragements, guidance, critics and friendship. Besides, I would like my truthful to my co-supervisor, Assoc. Prof. Dr. Aishah Abdul Jalil, for knowledge, guidance, motivation, and for supporting me throughout the undertaking of this research.

Grateful acknowledge to the Ministry of Science, Technology and Innovation (MOSTI) Malaysia for financial support through EScience Fund Research Grant, No. 03-01-06-SF0020. I am very thankful to my research friend, especially to Aini Mohamed Rozali, Nur Hanis Hayati Hairom, Ainul Hakimah Karim, and Imam Sumpomo for giving me knowledge, assistances, information, opinions, and for their contribution in my research. My appreciation also goes to all of the members of Department of Chemistry and all staff of Ibnu Sina Institute for Fundamental Science Studies, especially to Lim Kheng Wei, Mohd Nazri Nawi, and Wan Aklim Nursalafiany Wan Ahmad, for the supports, and good relationship.

I am also indebted to Muhammadiyah University of Surakarta (UMS) for agreement, supports and attentions. My sincere appreciation also extends to my parents, family, and those who provide assistance in this research either intentionally or unintentionally at various situations and occurrences during the progress of this research.

ABSTRACT

The formation of protonic acid sites from hydrogen and *n*-pentane over Zn/HZSM-5 was evidenced by pyridine adsorption IR spectroscopy. The results showed that protonic acid sites were formed by heat treatment of Zn/HZSM-5 in the presence of molecular hydrogen which started at room temperature with a concomitant elimination of Lewis acid sites. Removal of molecular hydrogen decreased the protonic acid sites and restored the Lewis acid sites to its original intensity at 573 K. These phenomena are consistent with the concept of 'molecular hydrogen-originated protonic acid sites' in which the process is initiated by dissociation of hydrogen molecules to hydrogen atoms, spilling over onto the HZSM-5 and followed by surface diffusion. Then hydrogen atom converts into a proton by releasing electron to Lewis acid site. The formation of protonic acid sites on Zn/HZSM-5 induced by molecular hydrogen is a reversible process. The protonic acid sites were also formed from *n*-pentane on Zn/HZSM-5. Lewis acid sites were converted to protonic acid sites when the sample was heated in *n*-pentane, and the formed protonic acid sites were subsequently eliminated by removal of *n*-pentane with a restoration of Lewis acid sites. These are essentially the same as a formation of protonic acid sites from molecular hydrogen. It is plausible that the formation of protonic acid site was initiated by dissociation of *n*-pentane to form hydrogen atom and certain molecule. Then, the hydrogen atom spills over onto the HZSM-5 followed by surface diffusion to form protonic acid sites by releasing electron to the Lewis acid sites. The formed protonic acid sites which act as active sites played significant role in the reactions of *n*-pentane.

ABSTRAK

Pembentukan tapak asid protonik daripada hidrogen dan n-pentana atas Zn/HZSM-5 telah dibuktikan melalui penjerapan piridin menggunakan spektroskopi Hasil kajian menunjukkan bahawa tapak asid protonik terbentuk inframerah. manakala tapak asid Lewis tersingkir apabila Zn/HZSM-5 dipanaskan bermula pada suhu bilik dalam kehadiran molekul hidrogen. Penyingkiran molekul hidrogen ini mengurangkan tapak asid protonik dan mengembalikan tapak asid Lewis kepada kepekatan asalnya pada suhu 573 K. Fenomena ini didapati menepati konsep 'molecular hydrogen-originated protonic acid sites' di mana ia dimulakan dengan pemisahan molekul hidrogen kepada atom hidrogen yang melimpah ke atas HZSM-5 dan diikuti dengan penjerapan di permukaannya. Atom hidrogen ini seterusnya bertukar menjadi proton dengan memindahkan elektron kepada tapak asid Lewis. Pembentukan tapak asid protonik pada Zn/HZSM-5 yang dijana oleh molekul hidrogen ini merupakan proses berbalik. Tapak asid protonik juga didapati terbentuk daripada n-pentana pada Zn/HZSM-5. Pada mulanya, tapak asid Lewis akan ditukarkan kepada tapak asid protonik apabila sampel dipanaskan dalam *n*-pentana, seterusnya tapak asid protonik yang terbentuk itu dihapuskan dengan menyingkirkan *n*-pentana untuk menjanakan semula tapak asid Lewis. Ini bertepatan dengan pembentukan tapak asid protonik daripada molekul hidrogen. Dengan ini pembentukan tapak asid protonik berkemungkinan dimulakan dengan penguraian npentana bagi membentuk atom hidrogen dan molekul tertentu. Kemudian, atom hidrogen akan melimpah ke atas HZSM-5 diikuti dengan pembauran permukaan untuk membentuk tapak asid protonik dengan membebaskan elektron kepada tapak asid Lewis. Tapak asid protonik yang terbentuk bertindak sebagai tapak aktif yang berperanan penting dalam tindak balas *n*-pentana.

TABLE OF CONTENTS

CHAPTER			TITLE	PAGE
	TITLE	2		
	DECLA	ARAT	ION	ii
	DEDIC	CATIO	DN	iii
	ACKN	OWLI	EDGEMENTS	iv
	ABSTR	RACT		v
	ABSTR	RAK		vi
	TABLE	E OF (CONTENTS	vii
	LIST O	OF FIG	GURES	Х
	LISTS OF SYMBOLS LIST OF ABBREVIATIONS			xiii
				xiv
	LIST O	OF AP	PENDICES	XV
1	INTRODUCTION			
	1.1 R	Researc	h Background	1
	1.2 O	Objectiv	ve of Research	3
	1.3 Se	cope o	f Research	3
2	LITER	RATUR	RE REVIEW	
	2.1 Is	someriz	zation of Saturated Straight Alkane	4
	2.2 Se	olid A	cid Catalysts for Alkanes Isomerization	5
	2	2.2.1	Friedel-crafts Catalysts	6
	2	2.2.2	Chlorinated Alumina	6
	2	2.2.3	Zirconia-based Catalyst	6
	2	2.2.4	Zeolite Material-based Catalyst	7

		2.2.4.1 HZSM-5	9
2.3	<i>n</i> -Pent	tane Isomerization	10
2.4		on Mechanism of <i>n</i> -Pentane Isomerization	12
	2.4.1	Reaction Pathway of Monofunctional Mechanism	12
	2.4.2	Reaction Pathway of Bifunctional Mechanism.	13
2.5	Role o	of Hydrogen on the Isomerization of Alkanes	14
2.6		yst Preparation	16
EXP	PERIMI	ENTAL	
3.1	Prepar	ration of Catalysts	18
	3.1.1	Preparation of HZSM-5	18
	3.1.2	Synthesis of Zn/HZSM-5	18
	3.1.3	Preparation of Zr(OH) ₄	19
	3.1.4	Synthesis of Pt/SO ₄ ²⁻ -ZrO ₂	19
3.2	Characterization		
	3.2.1	X-Ray Diffraction (XRD) Analysis	19
	3.2.2	BET Surface Area Analysis	20
	3.2.3	Fourier Transform Infra Red (FTIR) Spectroscopy	20
	3.2.4	Qualitative Analysis of Zn and Pt by Energy Dispersive	21
		X-ray (EDX)	
	3.2.5	Infra Red (IR) of Pyridine Adsorption	21
	3.2.6	Ammonia Temperature Programmed Desorption (TPD)	22
3.3	Cataly	tic Testing	23
3.4	Forma	tion of Protonic Acid Sites	23
RES	ULTS A	AND DISCUSSION	
4.1	Charae	cterization of Catalysts	26
	4.1.1	X-Ray Diffraction (XRD) Analysis	26
	4.1.2	Fourier Transform Infra Red (FTIR) Spectroscopy	28
	4.1.3	BET Surface Analysis	30
	4.1.4	FESEM and EDX Analysis	30
	4.1.5		22

4.1.5Distribution of Acid Sites324.1.6Nature of Acidity34

	4.2	n-Penta	ane Isomerization on Zn/HZSM-5	38
	4.3	Format	ion of Protonic Acid Sites	39
		4.3.1	Hydrogen Molecule Originated Protonic Acid Sites	39
		4.3.2	n-Pentane Originated Protonic Acid Sites	43
		4.3.3	Hydrogenation of Chemisorbed Pyridine	49
5	CON	CLUSI	ON AND FUTURE WORK	
	5.1	Conclu	sion	52
	5.2	Future	Work	53
REFFERENC	CES			54
APPENDICE	S			60

LIST OF FIGURES

FIGURE NO.	FIG	URE	NO.
------------	-----	-----	-----

TITLE

PAGE

2.1	The isomerization of <i>n</i> -pentane.	4
2.2	Acid sites on the surface of zeolite.	8
2.3	Structure of ZSM-5.	9
2.4	The possibilities of structure of Zn species in	10
	Zn/HZSM-5.	
2.5	Monofunctional mechanism of <i>n</i> -pentane	13
	isomerization.	
2.6	Bifunctional mechanism of <i>n</i> -pentane isomerization	14
2.7	Model for the generation of protonic acid sites of	16
	solid acid catalyst.	
3.1	Formation of protonic acid sites apparatus.	25
4.1	XRD patterns of HZSM-5 and Zn/HZSM-5.	27
4.2	XRD pattern of Pt/SO_4^2 -ZrO ₂ .	27
4.3	FTIR spectra of HZSM-5 and Zn/HZSM-5.	29
4.4	FTIR spectra of Pt/SO_4^{2-} -ZrO ₂ .	29
4.5	FESEM image of Zn/HZSM-5	30
4.6	EDX analysis for Zn/HZSM-5	31
4.7	FESEM image of PSZ	31
4.8	EDX analysis for PSZ	32
4.9	Ammonia TPD plots of HZSM-5, Zn/HZSM-5 and	34
	Pt/SO_4^2 -ZrO ₂ .	

4.10	IR spectra of (a) HZSM-5 after treated at 623 K, (b)	35
	Pyridine adsorbed on HZSM-5, (c) Pyridine adsorbed	
	on Zn/HZSM-5at 423 K followed by removal of	
	physisorbed of pyridine at 598 K.	
4.11	A) IR spectra of pyridine adsorbed on Zn/HZSM-5	36
	pretreated at 598 K followed by removal of	
	physisorbed of pyridine at a) 423 K, b) 473 K, c) 523	
	K and d) 598 K. B) The fraction of acid sites after	
	heating in the presence of hydrogen at different	
	temperature.	
4.12	The IR spectra of (a) Pt/SO_4^{2-} -ZrO ₂ treated at 623 K	37
	and pyridine adsorbed on Pt/SO_4^{2-} -ZrO ₂ .	
4.13	Activity and selectivity of Zn/HZSM-5 for n-pentane	39
	isomerization in the presence and absence of	
	hydrogen.	
4.14	IR spectra of pyridine adsorbed on Zn/HZSM-5. (A)	41
	Spectral changes when pyridine-preadsorbed sample	
	was heated in hydrogen at b) 298 K, c) 323 K, d) 348	
	K, e) 373 K and f) 398 K. a) Before exposure to the	
	hydrogen. (B) The change of spectrum (f) when	
	hydrogen was removed at g) 323 K, h) 373 K, i) 423	
	K, j) 473 K, k) 523 K and l) 573 K.	
4.15	The fraction of acid sites (A) after heating in the	42
	presence of hydrogen and B) removal of hydrogen at	
	different temperature. White square and circle are	
	Lewis and protonic acid sites before exposure to the	
	hydrogen, respectively.	
4.16	Proposed mechanism for formation of protonic acid	43
	sites from molecular hydrogen over solid acid	
	catalyst.	
4.17	IR spectra of pyridine adsorbed on Zn/HZSM-5. (A)	44
	Spectral changes when pyridine-preadsorbed sample	
	was heated in dried <i>n</i> -pentane a) room temperature, b)	

	323 K, c) 373 K, d) 473 K and e) 578 K. (B) Spectral	
	changes when the sample of the spectrum (e) was	
	heated in a removal of dried <i>n</i> -pentane at f) 323 K, g)	
	373 K, h) 473 K, i) 573 K and j) 623 K.	
4.18	The fraction of acid sites (A) after heating in the	45
	presence of <i>n</i> -pentane and B) removal of dried <i>n</i> -	
	pentane at different temperature.	
4.19	IR spectra of pyridine adsorbed on Pt/SO ₄ ²⁻ -ZrO ₂ .	47
	(A) Spectral changes when pyridine-preadsorbed	
	sample was heated in dried <i>n</i> -pentane a) 373 K, b)	
	393 K, c) 423 K, d) 473 K, e) 528 K and f) 573 K. (B)	
	Spectral changes when the sample of the spectrum (f)	
	was heated in a removal of dried <i>n</i> -pentane at g) 373	
	K, h) 423 K, i) 473 K, j) 523 K and k) 573 K.	
4.20	The fraction of acid sites (A) after heating in the	48
	presence of <i>n</i> -pentane and B) removal of dried <i>n</i> -	
	pentane at different temperature.	
4.21	Speculated mechanism for formation of protonic acid	48
	sites from <i>n</i> -pentane over solid acid catalyst.	
4.22	Spectral changes for pyridine adsorbed on Zn/HZSM-	51
	5 caused by heating in hydrogen at a) room	
	temperature, b) 373 K, c) 523 K and d) 573 K.	

LIST OF SYMBOLS

θ	-	Angle
3	-	Extinction coefficient
K	-	Kelvin
e	-	Electron

LIST OF ABBREVIATIONS

RON	-	Research Octane Number
ZSM-5	-	Zeolite Socony Mobil-Five
XRD	-	X-Ray Diffraction
FTIR	-	Fourier Transform Infra Red
TPD	-	Temperature-Programmed Desorption
CFR	-	Continuous Flow Reactor
L	-	Lewis
В	-	Brønsted
Ру	-	Pyridine
BET	-	Brunauer, Emmet and Teller
n	-	Normal
i	-	Iso

LIST OF APPENDICES

APPENDICES		TITLE	PAGE
A	List of publication		60

CHAPTER 1

INTRODUCTION

1.1 Research Background

The considerable need for high quality fuel in an era of pressing environmental concern demands the resurgence in chemical processes and catalysts science. It has given challenges and opportunities in these research areas to obtain a sustainable process and catalysts with high activity and selectivity as well as acceptable poison resistance.

A lot of research projects on the chemical processes and catalysis science have been done in order to enhance the quality of gasoline. The skeletal isomerization of hydrocarbon was recommended as the important processes to produce high quality gasoline by improving its research octane number (RON) [1-3]. The effective catalysts for this process such as solid acid catalysts based on metal oxide and zeolitic materials therefore were extensively observed as well. These solid acid catalysts were more favourable as compared to the liquid catalysts which cause significant corrosion and environment problems [3-5]. Moreover these types of solid acid catalyst have been widely applied in the petroleum industries.

Solid acid catalysts such as ZSM5 and/or Beta zeolite-based catalysts and chloride alumina–based catalysts are conventionally available for the skeletal isomerization of alkanes. Although zeolite-based catalysts have an outstanding tolerance of feedstock poisons, high temperature is still required. The chlorinated

alumina–based catalysts suffer from extreme sensitivity to all kinds of feed contaminants [2, 3]. Recently, zirconia-based catalysts such as Pt/SO_4^{2-} -ZrO₂ and Pt/WO_3 -ZrO₂ were reported as efficient catalysts for the skeletal isomerization of alkanes. Moreover, Pt/SO_4^{2-} -ZrO₂ has been used as catalyst for industrial processes and Pt/WO_3 -ZrO₂ has been proposed as alternative catalyst for isomerization of alkanes [1, 4-5]. However, Pt/SO_4^{2-} -ZrO₂ and Pt/WO_3 -ZrO₂ were less selective for production of clean gasoline by the skeletal isomerization of n-heptane. Okuhara [3] reported that metal loaded-zeolite based catalysts such as Pt/HZSM-5, Pd-H β , and Pt/H- β have great potential for production of clean gasoline by the skeletal isomerization of clean gasoline by the skeletal for production of clean gasoline by the skeletal isomerization of *n*-heptane. These solid acid catalysts were more active and selective for isomerization of *n*-heptane due to the effect of pore structure.

 Pt/SO_4^{2-} -ZrO₂ and Pt/WO_3 -ZrO₂ possess a high and stable activity for the isomerization of alkanes when the reaction is conducted in the presence of hydrogen. *Hattori* and co-workers [6-7] suggested that these catalytic performances were due to the generation of protonic acid sites from hydrogen molecule and became active sites for isomerization of alkanes. Moreover, hydrogen stream is required in the isomerization of heptane by Pt/HZSM-5, Pd-H β , and Pt/H- β to enhance and stabilize the activity of catalysts [3].

However, recently Iglesia *et al.* [8] reported that the isomerization of *n*-alkane to produce *iso*-alkene occurs in the absence of hydrogen on Fe/HZSM-5. They proposed that reaction via dehydrogenation of *n*-alkane to form hydrogen molecule and *n*-alkene and then molecular hydrogen reacts with *n*-alkene to produce *iso*-alkene. Based on that report, then we postulated that the active sites for isomerization can be formed from the reactant *i.e.* alkanes. However, the direct evidences and detail mechanism of the formation of active sites from reactant in the active detail reaction are not observed yet.

Therefore, we intended to study the formation of protonic acid sites from reactant *i.e.* alkanes over solid acid catalyst.

1.1 Objective of Research

The objective of this research is to elucidate the generation of protonic acid sites from *n*-pentane over Zn/HZSM-5 solid acid catalyst.

1.3 Scope of Research

This research enclosed the synthesis and characterization of catalysts as well FTIR study of pyridine adsorption for the generation of protonic acid sites. Zn/HZSM-5 solid acid catalyst was prepared by ion exchange method. The structure of catalysts was determined by X-ray Diffraction (XRD) technique, while the specific surface area of catalyst was measured with BET surface area analyzer. The functional group of catalysts was considered by Fourier Transform Infra Red (FTIR) spectroscopy. Ammonia Temperature-Programmed Desorption (TPD) was used to determine the distribution of acid sites on the catalyst. The activity of catalysts was tested on a Continuous Flow Reactor (CFR) in the presence and absence of hydrogen. The generation of protonic acid sites over solid acid catalysts was studied by pyridine pre-adsorbed FTIR spectroscopy.