FORENSIC ENGINEERING TESTING TECHNIQUES FOR STRUCTURAL ASSESMENT: A CASE STUDY ON PRE-STRESSED REINFORCED CONCRETE BRIDGE AT KLANG VALLEY

GOPINATH MUNIANDY

A project report submitted in partial fulfillment of requirement for the award of the degree of Master of Science (Construction Management)

Faculty of Civil Engineering

Universiti Teknologi Malaysia

APRIL 2010

ABSTRACT

Integrity test on existing concrete structures is often being carried out to determine the assessment for the structure through several aspects such as to determine the whether the structure is suitable for its designed use, for proposed change of usage or extension of a structure, to ensure the acceptability of structure following to any deterioration or structural damage. The evaluation of integrity of existing concrete structures has been carried out through several testing methods and procedures such as non destructive test (NDT) and partially destructive test using sophisticated testing techniques. However, the criteria of selection for suitable testing method and techniques is still are being unclear depending types of structure that need to be tested. The criteria determination of most suitable codes and standards specification for Malaysia perspective is also unclear. Therefore, it is vital to study the reality in selecting most suitable testing method incorporated with most suitable codes and standardizations to carry out integrity test on existing concrete structures in Malaysia.

This case study consisting testing on existing concrete structures using concrete core method, rebound hammer test and ultra sonic pulse velocity (UPV) on existing prestressed T-beam and concrete structures of an unnamed bridge in Klang Valley. Results obtained from testing tabulated for comparison between BS 1881& BS 6089 cube characteristic strength and BSEN 13791, 2007 cube characteristic strength. Selected civil and structural consulting engineers was interviewed using prepared questionnaire to identify the selection criteria and views in selecting appropriate testing method to evaluate integrity of existing concrete structures. Finally, the factors influencing selecting the most suitable testing method and comparison of selected standard code and practice identified.

ABSTRAK

Konkrit merupakan di antara bahan bina yang sering digunakan di dalam projek kejuruteraan awam di Malaysia. Di antara alasan penggunaanya adalah faktor ekonomi dan keperluan pembaik pulihan yang rendah sepanjang tempoh keboleh khidmatannya. Walau bagaimanapun, konkrit mengalami beberapa kerosakan dan kemerosotan sepanjang hayatnya kerana kekurangan pengetahuan pada sifat dan kelakuannya. Dengan mengunakan teknik-teknik untuk pemeriksaan kualiti konkrit bagi struktur yang sedia ada ama ada ujian separa musnah ataupun tak musnah, kualiti konkrit yang hendak diuji boleh dikenalpasti. Namun, dalam persepti Negara kita, criteria untuk mengenalpasti ujian konkrit bagi tujuan kajian tertentu masih tidak ada definasi dengan mengambil kira kod-kod specifikasi yang tertentu. Maka, adalah pentingnya untuk membuat kajian untuk mengenalpasti criteria untuk pilihan ujian konkrit mengikut kodkod specifikasi tertentu untuk mengenalpasti ujian yang terbaik untuk pemeriksaan kualiti struktur konkrit yang sedia ada.

Kajian ini termasuk membuan ujian konkrit yang dipilih iaitu "Schmidt rebound hammer", "Ultrasonicpulse velocity" dan "core test". Kajian in telah dilalukan atas jambatan yang sedia ada di Pelabuhan Klang. Segala keputusan akan ditafsirkan mengunakan bentuk jadual dan graf untuk analysis. Data kajian juga telah dibezakan mengunakan kod-kod specifikasi yang dipilih untuk mendapatkan perbezaan dalam penerimaan data untuk tujuan analisis. Kajian juga dilalukan dalam bentuk temurah dengan pakar jurutera yang berpengalaman dalam bidang kajian konkrit mengunakan boring soal selidik. Segala keputusan temuramah di pamerkan dalam bentuk jadaul dan graf. Melalui kajian ini, mendapat tahu bahawa, ujian "concrete core" memberikan data keputusan yang lebik relevan berbanding dengan keputusan ujian yang lain. Ujian "concrete core" juga disetujui oleh pakar-pakar jurutera yang terlibat dalam bidang kajian konkrit.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	LECTURER'S DECLARATION	i
	TITLE	ii
	STUDENT'S DECLARATION	iii
	DEDICATIONS	iv
	ACKNOWLEDMENT	v
	ABSTRCT	vi
	ABSTRAK	vii
	CONTENTS	viii
	LIST OF TABLES	xii
	FIGURES	xiv

CHAPTER I INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	2
1.3	Research Objectives	3
1.4	Research Scope	4
1.5	Research Methodology	4

CHAPTER II

LITERATURE REVIEW

2.1 Introduction	6
2.2 Non-Destructive Test (NDT)	7
2.2.1Basic Method for NDT of Concrete Structures	8
2.2.1.1 Schmidt Rebound Hammer Test	9
2.2.1.2 Equipment for Schmidt Rebound Hammer Te	st 10
2.2.1.3 General Procedure for Schmidt Rebound	
Hammer Test	11
2.2.1.4 Applications of Schmidt Rebound Hammer	
Test	12
2.2.1.5 Range and Limitations of Schmidt	
Rebound Hammer Test	14
2.2.2 Ultra Sonic Pulse Velocity Test	18
2.2.2.1 Fundamental Principle	18
2.2.2.2 Equipment for the Pulse Velocity Test	19
2.2.2.3 Applications	20

	2.2.2.4 Determination of Pulse Velocity	21
	2.2.2.4.1 Transducer Arrangement	21
	2.2.2.4.2 Determination of Pulse Velocity by Direct	
	Transmission	23
	2.2.2.4.3 Determination of Pulse Velocity by	
	Semi-Direct Transmission	23
	2.2.2.4.4 Determination of Pulse Velocity by Indirect	
	or Surface Transmission	24
	2.2.2.4.5 Coupling the Transducer onto the Concrete	25
	2.2.2.4.6 Factor Influencing Pulse Velocity	
	Measurements	27
	2.2.2.5 Determination of Concrete Uniformity	31
	2.2.2.6 Detection of Defects	32
	2.2.2.7 Examples of Relationships between Pulse	
	Velocity and Compressive Strength	33
2.3	Partially Destructive Test	34
	2.3.1 Concrete Core Test	35

2.3.1	Concrete Core Test	35
2.3.2	Cores vs. Cylinders	36
2.3.3	Coring Direction	37
2.3.4	Top-to-Bottom Strength Variation	38
2.3.5	Consolidation	39
2.3.6	Effects of Curing	40

Codes, Standards and Specifications	41
2.4.1 General Considerations	42
2.4.2 Different Categories of Standards	43
2.4.2.1 Standards	43
2.4.2.2 Codes and Specifications	43
2.4.2.3 Other Types of National Documents	44
2.4.2.4 Standardisation Organisations and Some o	f
the Standards Relating to Testing of Concrete	44
2.4.2.4.1 American Society for Testing and Mater	ials
(ASTM)	44
2.4.2.4.2 British Standards Institution (BSI)	46
	 2.4.1 General Considerations 2.4.2 Different Categories of Standards 2.4.2.1 Standards 2.4.2.2 Codes and Specifications 2.4.2.3 Other Types of National Documents 2.4.2.4 Standardisation Organisations and Some of the Standards Relating to Testing of Concrete 2.4.2.4.1 American Society for Testing and Mater (ASTM)

CHAPTER III

METHODOLOGY

3.1 Introduction		
3.2 Document Study	49	
3.2.1 Concrete Core Test	49	
3.2.2 Schmidt Rebound Hammer Test	51	
3.2.3 Ultrasonic Pulse Velocity Test	52	
3.3 Interview with Civil and Structural Consulting Engineers		
Using Questionnaire	53	
3.3.1 Contents of the Questionnaire	53	
3.4 Comparison of Cube characteristic Strength using		
BS 1881& BS 6089 and BSEN 13791:2007 Euro Codes	56	

CHAPTER IV DATA ANALYSIS AND RESULTS

4.1 Document Study	57
4.1.1 Rebound Hammer Test	58
4.1.2 Ultrasonic Pulse Velocity	60
4.1.3 Core Compression Test	61
4.2 Interview	64
4.3 Comparison	68
4.4 Results Obtained form Structural Assessment	
Case Study	70
4.5 Results and Findings from Interview	
4.6 Comparison between BS 1881 and BS EN 13791	
Euro Codes	72

CHAPTER V CONCLUSION AND SUGESSTIONS

5.1 Factor Influencing in Selecting Most Suitable Testing	
Method for Structural Assessment	73
5.2 Comparison of Concrete Core Results Using	
BS 1881&BS6089 and BSEN 13791:2007 Euro codes	74
5.3 Suggestions	74

REFERENCES

76

APPENDIX A

LIST OF TABLES

TABLE NOTITLE

PAGE

2.0	Effect of temperature on pulse transmission	28
2.1	Effect of specimen dimensions on pulse transmission	30
2.2	Classification of the quality of concrete on the basis of	
	pulse velocity 30	33
4.1	Rebound Hammer Test Results	58
4.2	Measurement for Rebound Hammer UPV Test locations on	
	the T-Beam	59
4.3	Ultrasonic Pulse Velocity Test Results	60
4.4	Concrete Core Compression Test Results	61
4.5	Estimated In-Situ Strength throughout Interpolation from	
	Correlation Curve	62
4.6	Estimated In-Situ Cube Strength for all three types of test	63
4.7	Comparison of Cube characteristic Strength using BS 1881&	
	BS 6089 and BSEN 13791:2007 Euro Codes	69
4.8	Variance between there types of test conducted	70
4.9	Variance between BS 1881 and BSEN 13791	72

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1	Research Methodology Flow Chart	5
2.0	Schmidt Rebound Hammer	10
2.1	A cutaway schematic view of the Schmidt rebound hammer	11
2.2	Relationship between 28 day compressive strength and	
	rebound number for limestone aggregate concrete obtained	
	with Type N-2 Hammer	13
2.3	Correlation curves produced by different researchers.	
	(Greene curve used Type N hammer; others used Type N-2).	15
2.4	Effect of gravel from different sources on correlation curves.	16
2.5	Comparison between correlation curves for crushed	
	limestone and siliceous	17
2.6(a)	Direct Transmission	22
2.6(b)	Semi-direct Transmission	22
2.6(c)	Indirect or surface transmission	22
2.7	Pulse velocity determinations by indirect (surface) transmission	26
2.8	Relation between ultrasonic pulse velocity and compressive	
	strength for concretes of different mix proportions	34
2.9	Planes of weakness under coarse aggregate particles due to	
	bleeding	38
2.10	Estimated within-member strength variations	39
2.11	Longitudinal resonance frequency of concrete cores	41
3.1	Photographs showing the process of concrete core sample testing	50

3.2	Photographs showing the process of Schmidt rebound	
	hammer testing	51
3.3	Photographs showing the process of UPV testing	52
4.1	Top View of T-Beam L=PB/PC-S2-EX-01	59
4.2	Side View of T-Beam L=PB/PC-S2-EX-01	59
4.3	Correlation Curve of UPV against Estimated In-situ Cube Strength	62
4.4	Factors Influencing in Selecting Method of Testing	64
4.5	Proportions of nature of test by respondents	65
4.6	Responses on Partially Destructive Test Preference	65
4.7	Responses on Partially Destructive Test Preference	66
4.8	Responses on selection of standard codes and practice for	
	structural assessment	67

CHAPTER I

INTRODUCTION

1.1 Introduction

Integrity test on existing concrete structures is often being carried out to determine the assessment for the structure through several aspects such as to determine the whether the structure is suitable for its designed use, for proposed change of usage or extension of a structure, to ensure the acceptability of structure following to any deterioration or structural damage such as caused by fire, blast, fatigue or overload and to ensure the serviceability or adequacy of member known or suspected to contain material which does not meet specifications or with design faults.

The fundamental of structural integrity and durability is to develop continuous monitoring concepts for structural concepts for structural components and for the global behavior. A structure is said to have general structural integrity if localized damage does not lead to widespread collapse. Structural integrity has to be guaranteed by the structural safety under ultimate and serviceability conditions and by ductility as well as redundancy of load path.

The integrity of concrete structures can justify by using several tests available for testing concrete range from completely non-destructive, where there is no damage to the concrete, through those where the concrete surface is slightly damaged, to partially destructive test, such as core test, and pullout and pull off test, where the surface has to be repaired after the test. The range of properties that can be assessed using nondestructive test and partially destructive test quite large and includes such fundamental parameters as density, elastic modules, and strength as well as surface hardness and surface absorbtionand reinforcement location, size and distance from the surface. At times, it is also possible to check the quality of workmanship and structural integrity by the ability of detects void, cracking and delamination.

The assessment of integrity of existing concrete structures should also taken into consideration of requirements of several codes, standards, specification and procedures established by most countries national bodies and relevant organizations. Standards can play important role in international co-operation when they are used in contracts. The growth in international trade has resulted in a growth in the need for International Standards which can be acceptable compromise between different national standards.

1.2 Problem Statement

Integrity test on existing concrete structures is being implemented widely in Malaysian concrete structures that deteriorate as the effects of structural and environments loading take place over time. The evaluation of integrity of existing concrete structures has been carried out through several testing methods and procedures such as Non Destructive Test (NDT) and partially destructive test using sophisticated testing techniques. However, the criteria of selection for suitable testing method and techniques is still are being unclear depending types of structure that need to be tested. The criteria determination of most suitable codes and standards specification for Malaysia perspective is also unclear. Therefore, it is vital to study the reality in selecting most suitable testing method incorporated with most suitable codes and standardisation to carry out integrity test on existing concrete structures in Malaysia.

1.3 Research Objectives

The main objectives of this study are as per listed below:-

- i. To identify the factors that influences in selecting the most suitable testing method and procedures to conduct integrity test on existing concrete structures.
- ii. To analyse and compare on selected codes of practice and standardization for integrity test on existing concrete structures

1.4 Research Scope

This case study scope will be focusing on testing methods and techniques on existing concrete structures incorporated with comparison of codes of practice and standardisation established by BS 1881, BS 6089 and BSEN 13791. This case study is based on several concrete core results obtained from testing carried on existing bridge concrete structures and pre-stressed concrete beams located in Klang Valley. The details of the project will not be illustrated because the project contains certain confidential statements.

1.5 Research Methodology

This case study will be consisting testing on existing concrete structures using concrete core method, re-bound hammer test and Ultra sonic Pulse Velocity (UPV) on existing concrete structures of an unnamed bridge in Klang Valley. Results will be tabulated for comparison between BS 1881, BS 6089 and BSEN 13791. Results will be analyzed using calculation for cube characteristic strength and design requirement and acceptability of the results obtain from the tabulation and wrapped out with conclusion and recommendations. Recommendations will be an overview on options for strengthening the affected structures. The methodology flow chart are shown as below as in Figure 1.1.

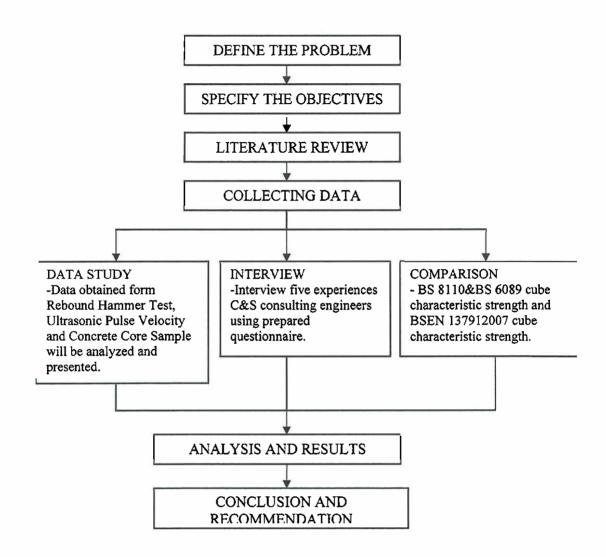


Figure 1.1: Research Methodology Flow Chart

REFERENCES

British Standard Institution, Non-destructive methods of test for concrete-Electromagnetic cover measuring devices, British Standard 4408, London, 1.

BS EN 12504:1:2000 Part 1. Testing concrete in structures. European Committee for Standardisation.

BS 1881: Part 5 Methods of determine concrete core strength. British Standards Institution, London.

BS 1881-120: (1983). Testing concrete in structures. British Standards Institution, London.

Bungey, J.H and Millard, V.S. (1982). The testing of concrete for structural assessment.

Christ, A.K. (1992). Standard test for repair materials and coating-Part 1.CIRIA.

Facaoaru, I. (1984). Romania achievements in non-destructive strength of concrete. American Concrete Institute, special publishes Vol. SP 93-16.

Fleischer, C.C. and Chapman-Andrew. (1993). Guide for evaluation of concrete structures. American Concrete Institute Material Journals, special publish Vol. SP 93-45.

Gallan, A. (1976). Estimate of concrete strength by ultrasonic pulse velocity and damping constant. American Concrete Institute Journal, special publish Vol 76-34.

Leshchinsky, A.M. (1990). Variability of non-destructive methods for determination of strength of concrete. Magazine of Concrete Research, British Structural Engineers Counsel. Vol 65b

Malhotra, V.M (1984). The influence of reinforcement on ultrasonic pulse velocity testing. American Convrete Institute, special publish Vol 84-78.

Morey, T.F and Kovacs-John, L.L. (1977). Determination of concrete core strength for structural assessment. American Concrete Institute Journal, special publish Vol 77-21.

Peterson, C.G and Poulsen, E. (1996). In-situ partially destructive methods to determine concrete strength.

Reynolds, W.N. (1984). Measuring concrete quality non-destructively. British Journal of NDT. Vol 665

Russell Fling, S. (1977). Pull-out test. Handbook on Non-Destructive Testing of Concrete. CRC Press, Boston, USA.

Taerwe, L.K and Lambotte, S.S. (1991). Determination of concrete strength for existing structure.