STRUCTURAL BEHAVIOR OF PRESTRESSED PRETENSIONED CONCRETE COMPOSITE SECTION

ZAID F. ABDUL ABBAS

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

Faculty of Civil Engineering

Universiti Teknologi Malaysia

JUNE 2009

То

Whom was sent mercy for all people

Prophet Muhammad "Peace be upon him and his progeny".

My late dad "God bless his soul"

Without him, this study would not have been possible

ACKNOWLEDGEMENT

First of all, I would like to thank my God for giving me faith, guidance, patience, and the strength to persevere, even when it seemed hopeless. Through him, anything is possible.

Secondly, no words can be used to express my deepest gratitude to my Dad, thanks for always being there to give me supports, encouragement and advice about anything and everything; my Mom, for her patience, endurance, love and encouragement; my loving family, Zeina, Akrm, Mohammed, Sudad, Ali, Zahraa and Noor, for their understanding, patience, encouragement and love. Thank you for being such a great family. I am so proud of all of you, and I am so happy to be a part of your lives. Without your support, this project would not have been possible.

Next, I would like to thank my supervisors Assoc. Prof. Baderul Hisham Ahmad, and Prof. Ir. Dr. Wahid Omar, for their supervision, continuing guidance, thoughtful criticism and valuable suggestions in this study. Their wisdom and guidance were fundamental in the completion of this project. I feel that I gained a world of knowledge from them in only a small amount of time.

Finally, the author is grateful to Mr. Razalee, Mr. Zaabah, Mr. Roslee, Mr. Raja, Mr. Jaafar, Mr. Zailani and all laboratory staffs of the Structure and Material Laboratory, Faculty of Civil Engineering for their assistance in the experimental works. Thanks are extended to Saif, Salem, Kamarul, Abdul Rahim, and all of my friends for their help, support and friendship.

ABSTRACT

Composite construction in prestressed concrete usually consists of precast, prestressed members acting in combination with a cast-in-situ concrete component. This study investigates the structural behavior of a JKR prestressed pretensioned precast concrete T-Beam (PRT) made composite by a cast-in-situ slab. The precast beam was scaled down by one half of the full-scale JKR PRT1 beam. The composite beam is constructed using the un-shored construction method and tested for flexural using two point loads. Load-deflection response, crack development, distribution of strain across the depth of the composite section, mode of failure and ultimate flexural strength capacity are measured and analyzed. The results show that the JKR Standard Beams (Pretensioned Concrete Composite T-Beam), and cast-in-situ slab has no significant difference in its structural behavior compared to the results from other research.

Keywords: Prestressed Pretensioned Concrete Composite Section, Scale-Down, Structural Behavior, Ultimate Flexural Strength Capacity, Load-Deflection Curve.

ABSTRAK

Pembinaan komposit bagi konkrit pra-tegasan kebiasanya terdiri daripada komponen pra-tuang, struktur pra-tegasan berfungsi sebagai kombinasi antara komponen konkrit tuang in-situ. Kajian eksperimen ini bertujuan untuk mengkaji kelakuan bagi struktur rasuk-T pra-tegasan pra-tegangan pra-tuang JKR (PRT) dibuat secara komposit dengan kaedah tuang in-situ. Skala bagi rasuk konkrit pra-tegasan adalah separuh daripada skala penuh Piawaian Rasuk JKR (Konkrit Komposit Pra-tegasan bagi Rasuk-T (PRT 1)), manakala rasuk pra-tuang dan papak tuang in-situ diperbuat daripada konkrit bertetulang biasa di uji bagi mendapatkan momen lentur, manakala kaedah bertupang (Un-Shored) digunakan bagi spesimen seksyen komposit. Reaksi beban-pesongan, serakan keretakan, taburan keregangan pada kedalaman seksyen komposit, jenis-jenis kegagalan dan kapasiti kekuatan lenturan muktamad telah diukur dan dianalisis. Hasil kajian menunjukkan bahawa Piawaian Rasuk JKR (Konkrit Komposit Pra-tegasan Rasuk-T), dan papak tuang in-situ tidak menunjukkan perbezaan yang ketara pada reaksi struktur mengikut perbandingan dengan hasil kajian yang lain.

Katakunci: Seksyen Konkrit Komposit Pra-tegasan, Scale-Down, Reaksi Struktur, Kapasiti Kekuatan Lenturan Muktamad, Lengkung Beban-Pesongan.

TABLE OF CONTENTS

Chapter	Title				
	TITEL	i			
	DECLARTION STATEMENT	ii			
	DEDICATION	iii			
	ACKNOWLEDGMENT	iv			
	ABSTRACT	V			
	ABSTRAK	vi			
	TABLE OF CONTENTS	vii			
	LIST OF TABLES				
	LIST OF FIGURES				
	LIST OF SYMBOLS				
	LIST OF APPENDICES	XX			
1	INTRODUCTION	1			
	1.1 Overview	1			
	1.2 Need for Research	3			
	1.3 Research Objective	4			
	1.4 Scope of Research	4			
	1.5 Outline of Thesis	5			
2	BACKGROUND AND LITERATURE REVIEW	6			
	2.1 Review of Prestressed Concrete	6			
	2.2 Methods of Prestressing	8			
	2.2.1 Pre-tensioned Concrete	8			
	2.2.2 Post-tensioning Concrete	9			
	2.3 Materials for Prestressed Concrete	11			

	231	Concrete	N	11
	2.3.1		Composition of Concrete	11
			Strength of Concrete	12
			Modulus of Elasticity of Concrete	12
			Creep and Shrinkage of Concrete	15
	232		ing Reinforcement	15
	2.3.2		Steel Relaxation	18
			Corrosion and Deterioration of Strands	18
	2.3.3	Non-Pres	stressed Concrete	19
2.4	Losses o	of Prestres	sed Force	20
	2.4.1	Elastic S	hortenings of Concrete	21
	2.4.2	Friction	Losses	22
	2.4.3	Anchora	ge Draw-in	22
	2.4.4	Concrete	Shrinkage	23
	2.4.5	Concrete	e Creep	24
	2.4.6	Steel Rel	laxation	24
	2.4.7	Total Pre	estress Losses	25
2.5	Camber	and Defle	ection of Prestressed Cocrete	25
2.6	Prestress	sed Concr	ete Composite Section	26
	2.6.1	Introduct	tion and Advantages of Composite Section	26
	2.6.2	Composi	ite Section Behavior	28
2.7	Flexural	Behavior		30
	2.7.1	Bruce an	d Martin (1994)	32
	2.7.2	Ahlborn,	, French and Shield (2000)	33
2.8	Shear B	ehavior		34
	2.8.1	Judice, S	Shehata and Lidia C. D. Shehata (2005)	34
SEC	CTION D	ESIGN A	AND CONSTRUCTION	39
3.1	Introduc	tion		39
3.2	Design of	of Prestres	sed Pretensioned Concrete Beam Specimen	39
3.3	Prestress	sed Preten	sioned Concrete Beam Construction	43
	3.3.1	Preparati	ion of Prestressing Bed	43
	3.3.2	Preparati	ion and Placement of Formwork	44
	3.3.3	Prestress	ing Work	45

3

			3.3.3.1	Tensioning Equipment	45
			3.3.3.2	Fixing the Strands	46
			3.3.3.3	Installation of Open Grip (Anchorage)	47
			3.3.3.4	Check the Efficiency of the Prestressing	47
				Hydraulic Jack	
			3.3.3.5	Strand Tensioning	49
			3.3.3.6	Reduction of Prestress Force Near Supports	52
			3.3.3.7	Installation of Vertical Reinforcing Steel	53
			3.3.3.8	End Zone Reinforcement	54
		3.3.4	Casting	and Curing Concrete	55
		3.3.5	Formwo	rk Removal and Cutdown	58
		3.3.6	Beam M	lovement and Storage	61
	3.4	Compos	ite Deck	Construction	62
		3.4.1	Mix Des	sign	62
		3.4.2	Formwo	rk Preparation and Installation	63
		3.4.3	Steel Re	inforcement Installation	64
		3.4.4	Casting	and Curing Work	65
4	MA	TERIAL	L TESYIN	NG AND PROPERTIES	68
	4.1	Introduc	tion		68
	4.2	Specime	en Organiz	zation	69
	4.3	Properti	es of Con	crete	70
		4.3.1	Compre	ssive Strength	70
		4.3.2	Modulus	s of Rupture	71
		4.3.3	Modulus	s of Elasticity	73
	4.4	Beam C	oncrete R	esults	75
		4.4.1	Compres	ssive Strength	76
		4.4.2	Modulus	s of Rupture	77
		4.4.3	Modulus	s of Elasticity	77
	4.5	Deck Co	oncrete Re	esults	78
				ompression Results	78
		4.5.2	Deck M	odulus of Rupture Results	80
5	STI	RUCTUR	RAL TES	TING SET-UP AND PROCEDURES	81
	5.1	Introduc	tion		81

	Instrumentation 8	32
	5.2.1 Measurement of Strain on Concrete Surface 8	33
	5.2.2 Measurement of Deflection 8	34
	5.2.3 Measurement of Load 8	35
	5.2.4 Measurement of Crack 8	36
	Two Load Point Test8	36
	Testing Procedures8	37
6	RUCTURAL BEHAVIOR 9	91
	Introduction 9	91
	Experimental Results 9	91
	6.2.1 Deflection 9	92
	6.2.2 Crack Distribution 9	96
	6.2.3 Mode of Failure 9	99
	6.2.4 Variation of Strain on Concrete 10	00
	Discussion of Results 10	02
	6.3.1 Load Deflection Response 10	03
	6.3.1.1 Actual and Predict Load-Deflection Curve for 10	04
	Specimen	
	6.3.2 Flexural Strength Moment at Cracking Initiation 10	06
	6.3.3 Moment of Resistance at Failure	07
7	MMARY, CONCLUSIONS AND RECOMMENDATIONS 10	09
	R FUTURE WORK	
	Summary 10	09
	Conclusions 1	10
	Recommendations for Future Work 1	12
	FERENCES 1	13
	PENDIX 1	16

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Beams characteristics (Judice and Shehata, 2005)	36
2.2	Main test results (Judice and Shehata, 2005)	37
3.1	Stress Limit for Class 2 (Pretensioned) according to	40
	BS 8110	
3.2	Hydraulic Prestressing Jack Properties	46
3.3	Mix Ingredients per m ³ for prestressed concrete beam	57
3.4	Transfer Strength at Detensioning Age	59
3.5	Mixture design for cast-in-situ concrete deck	63
4.1	Beam specimen schedule and number of samples	69
4.2	Deck specimen schedule and number of samples	70
4.3	Compression test results for concrete beam	76
4.4	Modulus of Rupture results for beam	77
4.5	Modulus of elasticity results for beam	78
4.6	Compression test results for concrete deck	79
4.7	Modulus of Rupture results for concrete Deck	80
6.1	The Actual and Predicted Deflection Values of mid-	95
	span specimen at a different loading stage	
6.2	Actual and Predicted Cracking load and Moment	106
6.3	Actual and Predicted Ultimate loading and Moment	108

LIST OF FIGURES

FIGURE NO.

TITEL

PAGE

1.1	(a) Typical precast beam and cast-in-place slab. (b)	3
	Non-composite action (zero interface shears). (c)	
	Composite action (full interface shear)	
2.1	A reinforced concrete beam	7
2.2	Pre-tensioning procedures	9
2.3	Post-tensioning procedures	10
2.4	Effect of strength on the compressive stress-strain	13
	curve	
2.5	Tangent and secant modulus of concrete	14
2.6	Free Body Diagram from (AASHTO Figure C5.8.4.1-	29
	1)	
2.7	Typical change in Load-Deflection Curve with an	32
	increase in the amount of reinforcement	
3.1	Cross section of Prestressed Pretensioned Concrete	41
	Composite Section specimen	
3.2	Cross-Section of Prestressed Pretensioned Concrete	41
	Beam Specimen	
3.3 (a)	The Cable Profiles along the Prestressed Pretensioned	42
	Concrete Beam	
3.3 (b)	The Debonded Tendons (1m from both ends of the	42
	Prestressed Pretensioned Concrete Beam Specimen)	
3.4	Plan view of Prestressing Bed	44
3.5	Installing one side of formwork of the prestressed	45

concrete beam

3.6	Anchorages installed onto the dead end of the	50				
	prestressing bed					
3.7	The UTM Technician used hydraulic jack to tensioning	51				
	the strands					
3.8	After all strands were marked and tensioning at	51				
	prestressing live end					
3.9	The two numbers debonding strands from one end side	52				
3.10	The researcher checking of stirrup spacing	53				
3.11	Completed Formwork	56				
3.12	Ready Mix Truck placing concrete into beam formwork	57				
3.13	The Detensioning process	60				
3.14	Cutter cutting of prestressing strands at the end of the	60				
	beam					
3.15	Lifting of prestressing pretensioned beam specimen to	61				
	storage location					
3.16	Prestressed pretensioned beam in its location	62				
3.17	Composite Deck Formwork	64				
3.18	Composite Deck Steel Reinforcement Layout	65				
3.19	Forklift Truck placing concrete into deck form 6					
3.20	Concrete Deck curing					
4.1	A cube (150 x 150 x 150 mm) compression failure	71				
4.2	Modulus of rupture test set up	72				
4.3	Modulus of rupture test failure	73				
4.4	Static modulus of elasticity test	75				
5.1	1000 kN hydraulic loading ram with load cell and steel	82				
	plates					
5.2	Load Cell, Strain Gauges and LVDT Transducers	85				
	position across the composite section					
5.3	Total test set-up for prestressed pretensioned concrete	87				
	composie section specimen					
5.4	Loading Test on the prestressed pretensioned concrete	89				
	composite section specimen					

Crack Observation on the prestressed pretensioned	89
concrete composite section specimen	
Actual and Predicted Load-Deflection Curve at mid-	92
span of the specimen	
Initial Flexural Cracks of Specimen Testing	97
Flexural-Shear Cracking at load 260.8 kN	98
The crack distribution at failure	100
Variation of Strain on Concrete at mid-span of	101
Specimen	
Typical Load-Deflection Curve for Under-Reinforced,	103
bonded Prestressed beam, given by Naaman (2004)	
Actual and Predicted Load-Deflection Curve for	105
Specimen with respect to Curve given by Naaman	
(2004)	
	concrete composite section specimen Actual and Predicted Load-Deflection Curve at mid- span of the specimen Initial Flexural Cracks of Specimen Testing Flexural-Shear Cracking at load 260.8 kN The crack distribution at failure Variation of Strain on Concrete at mid-span of Specimen Typical Load-Deflection Curve for Under-Reinforced, bonded Prestressed beam, given by Naaman (2004) Actual and Predicted Load-Deflection Curve for Specimen with respect to Curve given by Naaman

LIST OF SYMBOLS

A _c	-	Cross-sectional area of member
A _{c, slab}	-	Cross-sectional area of slab in composite section
A _{c, beam}	-	Cross-sectional area of beam in composite section
A_h	-	Area of shear reinforcement between slab and beam
A _{ps}	-	Area of prestressing steel
A _s	-	Area of reinforcing steel
A _{sv}	-	Cross-sectional area of two legs of link
b	-	Breadth of section
b _c	-	Breadth of interface of between beam and slab
d	-	Effective depth
d _n	-	Depth to centroid of compression block
e	-	Eccentricity
E _c	-	Secant modulus of elasticity of concrete
E _{ci}	-	Modulus of elasticity of concrete at transfer
E _{ct}	-	Modulus of elasticity of concrete at time t
E _{Ceff}	-	Effective modulus of elasticity of concrete
E _{c, slab}	-	Modulus of elasticity of slab concrete
Es	-	Modulus of elasticity of steel
f_{b}	-	Stress at bottom of section
fb, beam	-	Stress at bottom of composite beam

$f_{ m b,slab}$	-	Stress at bottom of composite slab
$f_{ m ci}$	-	Concrete strength at transfer
$f_{ m co}$	-	Concrete stress at level of tendons
f_{cp}	-	Prestress at level of member centroid
$f_{ m cu}$	-	Characteristic concrete cube strength
$f_{ m k}$	-	Characteristic strength
f_{\max}	-	Maximum allowable concrete stress at service load
f'_{\max}	-	Maximum allowable concrete stress at transfer
f_{\min}	-	Minimum allowable concrete stress at service load
f'_{\min}	-	Minimum allowable concrete stress at transfer
$\Delta f_{ m p}$	-	Reduction in tendon stress
$f_{ m pi}$	-	Initial stress in tendon
$f_{ m pb}$	-	Tensile stress in tendon at failure
$f_{ m pe}$	-	Effective prestress in tendons after all losses
$f_{ m prt}$	-	Allowable concrete principle tensile stress
$f_{ m pu}$	-	Characteristic strength of prestressing steel
$f_{ m r}$	-	Modulus of rupture
f_{s}	-	Shear stress
$f_{ m st}$	-	Stress in reinforcement
$f_{\mathfrak{t}}$	-	Concrete stress at top of section
$f_{ m t, beam}$	-	Stress at top beam
$f_{ m t, \ slab}$	-	Stress at top of slab
f_{y}	-	Characteristic strength of reinforcement
$f_{ m yv}$	-	Characteristic strength of shear reinforcement
F_{t}	-	Total tensile force in a section
h	-	Overall depth of section
$h_{ m eff}$	-	Effective depth of slab at drop panel

Ι	-	Second moment of area
Ib	-	Second moment of area of beam
I _{comp}	-	Second moment of area of composite section
<i>I</i> _{cr}	-	Second moment of area of cracked section
Ie	-	Effective second moment of area
Ig	-	Second moment of area of gross section
Κ	-	Wobble coefficient
Kt	-	Transmission length coefficient
L	-	Span
L _t	-	Transmission length
m	-	Modular ratio
М	-	Bending moment
$M_{ m cr}$	-	Bending moment to cause cracking
M _d	-	Dead load bending moment
$M_{ m i}$	-	Self weight bending moment
$M_{ m o}$	-	Bending moment to produce zero stress at tensile face
$M_{ m p}$	-	Prestress moment
$M_{ m per}$	-	Permanent load bending moment
$M_{ m s}$	-	Service load bending moment
$M_{ m u}$	-	Moment of resistance at failure
Р	-	Prestress force
$\Delta P_{ m A}$	-	Loss of prestress force due to anchorage draw-in
Pe	-	Effective prestress force after elastic shortening
P _i	-	Initial force in tendons
P _x	-	Prestress force in x direction
r	-	Radius of gyration
r _{ps}	-	Radius of curvature of tendons

l/r	-	Curvature
$S_{ m v}$	-	Spacing of links
Т	-	Tension
t _{eff}	-	Effective thickness of section
v	-	Vertical shear stress
vc	-	Allowable ultimate concrete shear stress
v _h	-	Horizontal shear stress
V	-	Shear force
V _c	-	Ultimate shear resistance of concrete
V _{cr}	-	Ultimate shear resistance of section cracked in flexural
$V_{ m co}$	-	Ultimate shear resistance of section un-cracked in flexural
$V_{ m eff}$	-	Effective shear force in slab
W	-	Distributed load
Wd	-	Dead load
Wi	-	Self weight
Ws	-	Service load
x	-	Neutral axis depth
X _A	-	Length of anchorage draw-in effect
у	-	Displacement
Z.	-	Lever arm
Z_{b}	-	Section modulus for bottom fiber
Z _{b, beam}	-	Section modulus for bottom of beam
$Z_{b, comp}$	-	Section modulus for bottom of composite section
Zt	-	Section modulus for top fiber
α	-	Short-term prestress loss factor
β	-	Long-term prestress loss factor
γf	-	Partial factor of safety for load

γm	-	Partial factor of safety for materials
δ_{a}	-	Long-term deflection under permanent load
$\delta_{ m ad}$	-	Anchorage draw-in
$\delta_{ m b}$	-	Short-term deflection under total load
$\delta_{ m c}$	-	Long-term deflection under permanent load
$\delta_{ m d}$	-	Dead load deflection
$\delta_{ m e}$	-	Expected elongation of tendons
$\delta_{ m i}$	-	Deflection at transfer
ε	-	Strain
ε _c	-	Concrete strain
$\boldsymbol{\varepsilon}_{\mathrm{cu}}$	-	Ultimate concrete strain
$\boldsymbol{arepsilon}_{\mathrm{p}}$	-	Strain in tendons due to flexural
$oldsymbol{arepsilon}_{ m pb}$	-	Ultimate strain in tendons
$oldsymbol{arepsilon}_{ m pe}$	-	Effective prestrain in tendons
$oldsymbol{arepsilon}_{ m sh}$	-	Shrinkage strain
$\boldsymbol{\varepsilon}_{\mathrm{st}}$	-	Strain in reinforcement
μ	-	Coefficient of friction
φ	-	Creep coefficient

LIST OF APPENDICES

APPENDIX	TITEL			
А.	Design Calculation of Prestresses Pretensioned	116		
	Concrete Beam			
	Material and Sectional Properties	117		
	Prestressing Properties	117		
	Prestressing force and Preliminary Stresses (at	120		
	transfer and service)			
	Estimating of Losses	120		
	Cable Zone	126		
	Ultimate Limit State Checking	129		
	Design Shear Resistance of Beam	131		
В.	Calculation the Sectional Properties of Pre-	136		
	stresses Pre-tensioned Concrete Beam Specimen			
	by using LUSAS Finite Element System Version			
	14.0.			
С.	Calculation of The efficiency of Fressynet	137		
	Prestressing Jack (TITAN 20) between			
	Theoretical and Experiment			
D.	Design Calculation of the Lifting Hock	140		
Ε.	Design Calculation for the End Zone	142		
	Reinforcement			
F.	The Proposed Mix Design Supplied by Perfect	144		
	Mix Portfolio SDN. BHD.			

CHAPTER 1

INTRODUCTION

1.1 Overview

Precast and prestressed concrete is the most recent major form of construction introduced in the structural engineering. It has become a well established method of construction where its technology is available in most developed and in many developing countries. Today, prestressed concrete are used in buildings, underground structures, communication towers, floating storage and offshore structures, power stations, nuclear reactor vessels, and numerous types of bridge systems including segmental and cable-stayed bridges.

In the field of bridge engineering, the introduction of prestressed concrete has aided the construction of long-span concrete bridges. These often comprise precast units, lifted into position and then tensioned against the units already in place, the process being continued until the span is complete. For smaller bridges, the use of simply supported precast pre-stressed concrete beams has proved an economical form of construction, particularly where there is restricted access beneath the bridge for construction. The introduction of ranges of standard beam section has also simplified the design and construction of bridges.

Prestressed concrete composite construction has many advantages over non composite construction. In many situations, a significant reduction in construction costs can be achieved, the concrete can be cast in the controlled environment of a pre-casting yard before construction ever begins. Reduction or total elimination of formwork and rapid execution of the construction. All of these factors offer a product of higher quality with decreased traffic interruptions.

Like ordinary reinforced concrete, prestressed concrete consists of concrete resisting compression and reinforcement resisting tension. Based on the concept that reinforced concrete's tensile strength is limited while its compressive strength is extensive, consequently, pre-stressing become essential in many applications in order to fully utilize the compressive strength of reinforced concrete and through proper design, elimination or control of cracking and deflection can be achieved.

In order to benefit from the slab contribution to the flexural strength of composite beam section, the slab-web connection should be to transmit longitudinal shear stress. When the slab is cast in place over the precast pre-tension girders, the shear stresses can be transmitted a cross the connection by shear friction at the concrete interface and the dowel action of the reinforcing bars that cross the connections.

The success of composite action depends on the shear resistance at the interface between the precast element and cast-in-place element to allow full transfer of stresses. If no shear resistance exists and a load is applied to the composite beam shown in (fig. 1.1.a), the slab would slide with respect to beam (fig. 1.1.b), and the system would act as if two separate elements were used. However, if sufficient shear resistance is provided, the slip between the two elements can be prevented and

composite action can be counted on (fig.1.1.c). Thus a good connection between the two components of the composite system is essential. (Naaman 2004)

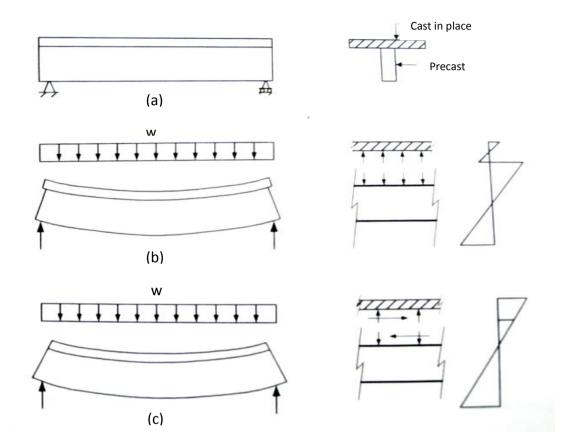


Figure 1.1: (a) Typical precast beam and cast-in-place slab. (b) Non-composite action (zero interface shears). (c) Composite action (full interface shear).

1.2 Need for Research

The need for this research is due to lack of test data on structural behavior of a composite section made of the JKR Standard Beams (PRT) and cast in-situ slab.

1.3 Research Objective

The primary objective of this study is to investigate the structural behavior of prestressed pretensioned concrete composite section made of JKR Standard Beams (PRT) and cast-in-situ slab, the structural behavior that are observed are:

- 1. Load-deflection response.
- 2. Crack propagation and distribution.
- 3. Variation of strain on concrete over the depth of the specimen.
- 4. Mode of failure.
- 5. The ultimate flexural strength capacity.

1.4 Scope of Research

This study will be concentrated on the beam with T-shaped cross section (JKR Standard Beams (PRT)) and the dimensions were scaled down from the fullscale JKR Standard Beams (Pretensioned Concrete Composite T-Beam (PRT 1)), with ratio basis of 1:2, and in-situ slab was tested under bending moment, to investigate the structural behavior. The specimen span 8 meter in length was designed and constructed by using un-shored construction method in accordance with the BS 8110.

The possible parameters that may affect the structural performance of pretensioned composite section such as strength of concrete, modulus of elasticity and modulus of rapture of concrete will be carried out. In-situ concrete specimens such as concrete cubes and concrete cylinders will be collected and laboratory testing will also carried out.

1.5 Outline of thesis

Chapter 2 gives a background on prestressed concrete composite section. Chapter 2 also covers composite section behavior. Chapter 3 discusses the design and construction process for the specimen, including its composite deck. Chapter 4 discusses all of the concrete material specimen testing and results. Chapter 5 discusses the structural test set-up and procedures, followed by a presentation and discussion of the results in Chapter 6. Finally, Chapter 7 presents conclusions and recommendations drawn from this study.