DEVELOPMENT OF COMPUTER-AIDED MATERIALS AND MANUFACTURING PROCESS SELECTION SOFTWARE USING BOOTHROYD-DEWHURST METHODOLOGY

ZAEIME BIN SULONG @ ZAKARIA

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical – Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2010

To my beloved parent, Sulong @ Zakaria B. Sulaiman, Rukiah Bt. Abdullah. My siblings, Zaidi, Zaiham, Siti Zamilah, Siti Zaeidah, Siti Zaiton, Mohd Zaharuddin, Siti Zaila, Zaffi, Zahir, Siti Zahira, Mohd Zaeim, Mohd Fitri. And especially to my wife Haryanti, my daughters Zulaeiqa Ayume and Zunnur Aizayurie. Thank for all your support.

ACKNOWLEDGEMENT

First of all, I would like to thank to Allah S.W.T for giving me strength and guidance to complete this project. I would like to express my sincere thanks to my supervisor Dr. Ariffin Bin Haji Abdul Razak for the constant guidance, invaluable knowledge, and constructive ideas in leading me to accomplish this project.

I am indebted to Majlis Amanah Rakyat (MARA) for grating me the scholarship to pursue my study at the Universiti Teknologi Malaysia. Finally, I would like to extend my heartful thank you to all my lecturers in Department of Manufacturing and Industrial Engineering of the Universiti Teknologi Malaysia, friends and family members who have given me moral support during my studies.

ABSTRACT

The interest of this thesis is about the application system developed by selection in engineering materials and manufacturing process using the Boothroyd Dewhurst methodology as a main guidance. The implementation of this application gives opportunity to the designer to improve the best materials by using the best process during the early steps of product design. A prototype application system called CAM-MaPS and the uses of Visual Basic software had implemented the proposed methodology. By selecting the parts on knowing the common materials and process, in which to produce will be compared to the future result by using the CAM-MaPS for optimization.

ABSTRAK

Tujuan menghasilkan tesis ini adalah untuk membangunkan satu sistem aplikasi di dalam melakukan pemilihan bahan kejuruteraan dan juga proses pembuatan yang menggunakan kaedah Boothroyd Dewhurst sebagai rujukan. Pada peringkat awal reka bentuk sesuatu pengeluaran, penggunaan sistem aplikasi ini juga memberikan peluang kepada pereka bentuk untuk meningkatkan lagi penggunaan bahan yang dikira terbaik malahan juga bagi proses pembuatan. Maka terhasilah satu prototaip aplikasi sistem yang menggunakan keadah Boothroyd Dewhurst dan perisian Visual Basic dan dikenalli sebagai CAM-MaPS. Perbandingan keputusan hasil daripada aplikasi sistem akan dibandingkan dengan bahagian produk yang telah dipilih di mana bahan dan juga proses di dalam menghasilkannya adalah diketahui dan perbandingan ini dilakukan bagi mengoptimumkan sistem aplikasi tersebut.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE		
	DE	CLARATION	ii		
	DEDICATION				
	ACKNOWLEDGEMENTS				
	AB	STRACT	V		
	AB	STRAK	vi		
	ТА	BLE OF CONTENTS	vii		
	LIS	ST OF TABLES	xi		
	LIS	ST OF FIGURES	xii		
	LIS	xvi			
	LIS	ST OF APPENDICES	xvii		
1	INTI	RODUCTION			
	1.1	Project Introduction	1		
	1.2	Project Objective	2		
	1.3	Scope	2		
	1.4	Problem Statement	3		
	1.5	Selected Parts	4		
	1.6	Thesis Structure	6		
	1.7	Summary	7		

-	
2	
-	

LITERATURE VIEW ON MATERIAL AND MANUFACTURING PROCESSES

2.1	Introdu	iction	8	
2.2	Manufa	Manufacturing processes		
	2.2.1	Sand Casting	12	
	2.2.2	Investment Casting	13	
	2.2.3	Die Casting	14	
	2.2.4	Extrusion	16	
		2.2.4.1 Impact Extrusion	17	
		2.2.4.2 Hot Extrusion	18	
	2.2.5	Cold Heading	20	
	2.2.6	Closed Die Forging	21	
	2.2.7	Powder Metallurgy	22	
	2.2.8	Rotary Swaging	23	
	2.2.9	Machining Process	24	
	2.2.10	Electrochemical Machining (ECM)	25	
	2.2.11	Electric Discharge Machining (EDM)	26	
	2.2.12	Wire EDM	27	
	2.2.13	Sheet Metal Process	28	
	2.2.14	Metal Spinning	29	
2.3	Engine	ering Materials	30	
	2.3.1	Metals	31	
2.4	Study M	Material	35	
	2.4.1	Cast Iron	36	
	2.4.2	Carbon Steel	37	
	2.4.3	Alloy Steel	37	
	2.4.4	Stainless Steel	38	
	2.4.5	Aluminium and Alloys	40	
	2.4.6	Copper and Alloys	42	
	2.4.7	Zinc and Alloys	44	
	2.4.8	Magnesium and Alloys	45	
	2.4.9	Titanium and Alloys	46	

	2.4.10	Nickel and Alloys	47
	2.4.11	Refractory Metals	48
2.5	Materi	als Properties	49
2.6	Review	w on previous study	53
	2.6.1	Simultaneous Design for	
		Manufacturing Process Selection of	
		Engineering Plastics	53
	2.6.2	Computer Aided Design for	
		Manufacturing Process Selection	60
	2.6.3	Computer-aided manufacturing	
		planning for mass	
		customization:part1,framework	67
2.7	Summ	ary	70

3

BOOTHROYD DEWHURST METHODOLOGY

3.1	Introduction	71
3.2	General Shape Attributes	73
3.3	Selection of Manufacturing Process	78
3.4	Selection of Material	80
3.5	Final Eliminating Process	81
3.6	Reason of Eliminating	82
3.7	Summary	83

TOOL FOR SOFTWARE DEVELOPMENT 4 4.1 84 Introduction Visual Basic 4.2 85 4.3 Summary 88 5 **DEVELOPMENT OF PROTOTYPE SOFTWARE** 5.1 Introduction 89

5.2	Structure of Prototype Software	90
5.3	Graphic User Interface (GUI)	95

		5.3.1	Main Interface	97
		5.3.2	Credit Interface	98
		5.3.3	Input Data Graphic User Interface	99
		5.3.4	Result Graphic User Interface	101
		5.3.5	Info Guide Graphic User Interface	102
		5.3.6	Help Graphic User Interface	103
	5.4	Summ	ary	104
6	VER	RIFICAT	TON OF CAM-MaPS SOFTWARE	
	6.1	Introd	uction	105
	6.2	Case S	Studies	106
		6.2.1	Prismatic Part	106
		6.2.2	Rotational Part	110
	6.3	Summ	ary	114
7	DIS	CUSSIO	NS	
	7.1	Introd	uction	115
	7.2	Discus	ssion on Prismatic Part Case Study	116
	7.3	Discus	ssion on Rotational Part Case Study	117
	7.4	Summ	ary	119
8	CON	ICLUSI	ONS	
	8.1	Introd	uction	120
	8.2	Future	Work Recommendations	121
	8.3	Conclu	uding remark	122
REFEREN	CES			124
Appendices	A- E			127-148

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Hot extrusion temperature for various metals	19
3.1	The selected of part attribute	78
3.2	The selected of part material requirement	78
5.1	Example flow of process selection in manufacturing	
	processes	93
5.2	Example how to rank the process by rating system	94
6.1	Shape attributes for stapler handler	107
6.2	Requirements of production factors for the stapler	
	handler	108
6.3	Requirements of properties factors for the stapler	
	handler	108
6.4	Shape attributes for the gear	111
6.5	Requirements of production factors for the gear part	112
6.6	Requirements of properties factors for the gear	112

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Survey of designers' knowledge of manufacturing	
	process	3
1.2	Survey of designers' knowledge of polymer materials	4
1.3	The handle of stapler gun	5
1.4	The selected gear for case study	6
2.1	Schematic diagram for sand casting mold	12
2.2	Sequences to produce a metal casting in sand mold	13
2.3	Schematic sequences producing the part using	
	investment casting	14
2.4	Hot chamber die casting	15
2.5	Cold chamber die casting	16
2.6	The illustration for extrusion of a roundness bar	17
2.7	Forward extrusion open die	18
2.8	Example of hot extrusion die for Aluminium	19
2.9	The illustration for cold heading process and the	
	sample product	20
2.10	Sequences of closed die forging in produced piston	
	rod	21
2.11	Sequences in powder metallurgy process and the	
	sample of product	22
2.12	Components of rotary swaging, Sequences in rotary	
	swaging process and the sample of product	23
2.13	The turning process and milling process	24
2.14	The schematic of electrochemical machining process	25

2.15	The schematic of EDM process, the EDM milling	
	and sample of products using EDM process	26
2.16	The schematic of WEDM process in cutting the	
	workpiece	27
2.17	The schematic of stamping operation	28
2.18	Common die-bending operations, using V and wiping	
	die	29
2.19	Schematic illustration of the conventional spinning	
	process Types of parts conventionally spun. All parts	
	are antisymm	30
2.20	The schematic of DCA	56
2.21	Master input card in HyperQ/PP	58
2.22	Envelope size specification card	58
2.23	Internal geometry specification cards	59
2.24	Process ranking card	59
2.25	Detailed DCA for selected process	60
2.26	Design dependency diagram this diagram views	
	process selection	63
2.27	Master input card in DFPS	64
2.28	Surface roughness/ tolerances specification card	64
2.29	Part shape classification/ envelop sizes specification	65
2.30	Process ranking card	65
2.31	Detail DCA for selected process	66
2.32	DCA online help for process/material compatibility	66
2.33	Architecture of computer-aided manufacturing	
	planning (CAMP) system for mass customization	69
3.1	Flow chart to performed selection material and	72
	process	
3.2	Depressions in a single direction and Depressions in	
	more than one direction	73
3.3	Example of uniform wall thickness	74

3.4	Uniform cross section and Non-uniform cross section	74
3.5	Different area for cross section in non-uniform part	75
3.6	Part that can be generated by rotation of a single axis	
	and Part that cannot be generated by rotation of a	75
	single axis	
3.7	The splined shaft	76
3.8	A bottle of water with captured cavities attribute	76
3.9	The plastic ball with enclosed attribute	77
3.10	part with draft, part with draft free surfaces	77
3.11	Process Elimination by Geometric Attributes	79
3.12	Process Elimination by Part Application Information	80
3.13	Final process elimination by process/material	
	combination	81
4.1	Front page GUI of Visual Basic	85
5.1	The structure of prototype software	89
5.2	Form of part attributes	90
5.3	Example data keep in by user in production factors	
	section	90
5.4	Example the input data by user for materials	
	properties factor	94
5.5	The sequence step of software	95
5.6	Proposed graphic user interface for main page of	
	CAM-MaPS	96
5.7	Appearance GUI of credit page	97
5.8	The proposed input data graphic user interface	98
5.9	The graphic user interface for the result	99
5.10	Selection for shape attributes, processes, materials	
	and material properties	100
5.11	The interface of Helps page	103
6.1	Image of stapler gun	106
6.2	The view of input data GUI for stapler holder	108

6.3	Result generated for stapler holder	108
6.4	Example of application gears	109
6.5	The view of input data GUI after user fill the	
	requirement data for gear	112
6.6	Result generated for gear part	113

LIST OF SYMBOLS AND ABBREVIATION

Electro chemical machining
Electro discharge machining
Kilogram
Millimetre
Mega Pascal
Diameter
Titanium Oxide
Wire electro discharge machining

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	Properties of each material involved in database systems	127
A2	Descriptions for the material	128
В	Manufacturing processes and their attributes	130
С	The relation between manufacturing processes to	
	engineering materials	133
D	Shape generation capabilities of processes	134
E1	Capability of Sand Casting process	135
E2	Capability of investment casting process	136
E3	Capability of die casting process	137
E4	Capability of impact extrusion process	138
E5	Capability of cold heading process	139
E6	Capability of hot forging (closed die) process	140
E7	Capability of pressing and sintering (power metal parts)	1 4 1
	process	141
E8	Capability of rotary swaging process	142
E9	Capability of hot extrusion process	143
E10	Capability of machining (from stock) process	144
E11	Capability of electrochemical machining (ECM) process	145
E12	Capability of electrical discharge machining (EDM)	146
	process	146
E13	Capability of sheet metal stamping/ bending process	147
E14	Capability of metal spinning process	148

CHAPTER 1

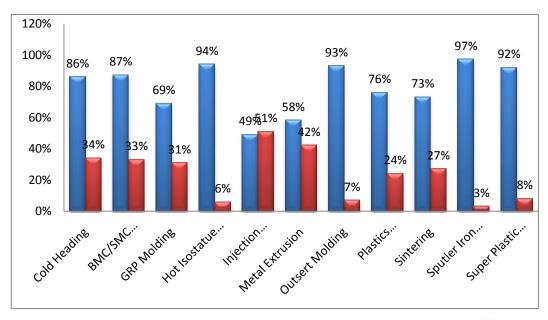
INTRODUCTION

1.1 Project Introduction

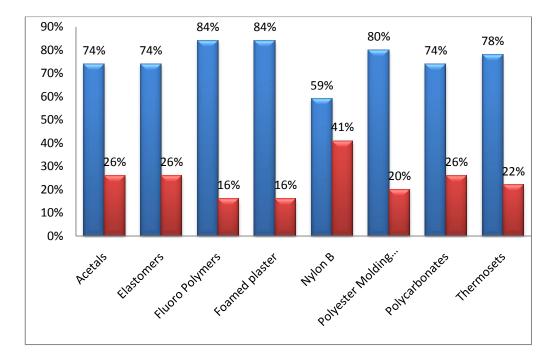
In the era of industrial of manufacturing of products or parts, the most important parts is the systematic in earlier selection of engineering materials and manufacturing processes combinations. With the right choice of selection in materials and processes it will increase the profit by reducing the manufacturing cost, time, labor and other involved activities in producing the products. At the same time it will increase the quality and the quantity of the products and parts. By those advantages in right selection of materials and processes during manufacturing activity, an application of a prototype system is developed to select processes and material that can be generated automatically. This application uses programming Visual Basic version 2005 and it is user friendly. The developed application is hope on having graphic user interface (GUI) which can intriguing user to use it. It's also should be designed with low rate entry data from user and on the other hand user could selects any appropriate prepared data from the application. Adopted time for processing data by using this application is expected speedier by using manual method which made by one design engineer or whosoever which included in selection of materials and processes. Symbols or icons also will be asserting in this application to facilitate user to choose according desirable suitability parts.

1.2 Project Objective

The objective of this project is to develop a prototype software system for selection of material and manufacturing processes based on Boothroyd-Dewhurst DfM methodology. By using this application it will help user to do selection in materials and manufacturing processes in a short time. The data or parameter key in by the user to be generated by computer to get the result and it is an intelligent method, comparing with the manual method.


1.3 Scope

To accomplish this project, there are some scopes or limitation given by the supervisor. Following are the scopes project proposed:


- 1. Review on Boothroyd-Dewhurst DfM methodology.
- 2. Use Microsoft Visual Basic programming language for prototype system development.
- 3. Develop a prototype software system for selecting the proper material and manufacturing process.
- 4. Select the mechanical products for case study.
- 5. The materials selection limit to metal only.

1.4 Problem Statement

There are many process manufacturing resides within industries nowadays. It comprise of conventional, CNC and advance processes. Similarly material resides within markets now, which are found in several kinds. Sometime a designer tends to conceive parts in terms of processes and materials which they are most familiar and exclude those which proved more economic. Then the opportunities for major manufacturing improvements may be lost through such limited selections of manufacturing processes and associated materials in the early stage of the product design. Figure 1.1 and Figure 1.2 show on survey were made on designers in Britain on their knowledge on material and processes occur in industry [1].

Figure 1.1 Survey of designers' knowledge of manufacturing process: , great deal/ fail amount: , little or nothing

By using Boothroyd-Dewhurst DFM methodology it will solve the problem in choosing appropriate material and processes. But nowadays it was done manually by referring the tables and it would be quite time-consuming to choose what kinds of material and processes suitably in producing product or part. Sometimes error also occurs during referring the tables because it has been lots items within one table. Due to this, by developing a prototype software application, it is able to solve problems easily.

1.5 Selected Parts

To ensure the different in result after generated by prototype software, two different types in shape was selected. The first is prismatic part and the second one is rotational part. The part has been selected to do the selection by using the Boothroyd Dewhurst methodology by states all the parameter of the part such as shape attributes, material properties, production factor, dimension and image of parts. After that the parameters will be key in into the prototype software application system. For the selected prismatic part, it was a handle of gun stapler. Figure 1.3 shows the actual view of the part. In actual situation, this handle made from steel where it requires strong and rustless. The main function of handle is to acting as a medium to transfer forces from hand gripping to active the knuckle system of gun stapler. Finally, the selection of material and manufacturing process of this part will do it by using the Boothroyd Dewhurst methodology.

Figure 1.3 The handle of stapler gun

For the second part with rotational shape, was a selected part which is gear. Figure 1.4 shows the actual gear to do the analysis by using Boothroyd Dewhurst methodology. The main function of this gear is to acting as medium of power transmission to ensure some system is functioning. The power sources might come from motor, human forces or nature energy like water or wind. The requirement of material properties is in high strength; resist to high temperature and other factor will be discussed in more detail in chapter 6.

Figure 1.4 The selected gear for case study

1.6 Thesis Structure

Chapter 1 explains more on introduction, objective, scope, problem statement and the selected material as a case study. Chapter 2 is more focused on the literature view to complete this project. This chapter explains more on manufacturing processes, metal materials and the previous studies of related with this field. In chapter 3, the selection material and processes by using Boothroyd-Dewhurst DFM methodology was explained. Steps of selection and related factors were described. The related factors which will discuss in this chapter is more on shape attributes, material properties and production factors .The related software as a tool develop this system will be explained in detail in chapter 4. In this case the use of software is Visual Basic version 2005. In chapter 5, the topic discusses more on about the Structure of Prototype Software. The figure of guide user interface (GUI) has been shown to give more understanding for the reader. Verification of prototype software will be done in chapter 6 by using prismatic and rotational parts. The results generated by software will be discussed in chapter 7. In chapter 8, all progress and suggestions will conclude and the chapter of sources on the materials studies will be listed at references.

1.7 Summary

The main purpose of this research carried out in developed a prototype system was to facilitated user in making selection of manufacturing processes and metal material. There were elected a few scopes and will be focused on the directions to determine the results. Most important is how to used Boothroyd and Dewhurst's method which will be core in production software application later. To ensure the result by using developed prototype software is right, comparison will be made by using selected parts which are material and process are already know.