CHEMICAL CONSTITUENTS AND BIOACTIVITY OF MALAYSIAN AND INDONESIAN *KAEMPFERIA ROTUNDA*

YAU SUI FENG

UNIVERSITI TEKNOLOGI MALAYSIA

CHEMICAL CONSTITUENTS AND BIOACTIVITY OF MALAYSIAN AND INDONESIAN KAEMPFERIA ROTUNDA

YAU SUI FENG

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science (Chemistry)

> Faculty of Science Universiti Teknologi Malaysia

> > DECEMBER 2009

Dedicated to *Buddha*, *Dharmma*, *Sangha*, my beloved father, mother, sisters, brother and friends.

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest appreciation to my supervisor, Prof. Dr. Hasnah Mohd. Sirat, for her guidance, motivation, and more crucially, precious advise to all my research. I am truly grateful for her kindness, all the time and effort she devoted to me.

I would like to extend special thanks to Assoc. Prof. Dr. Farediah Ahmad, Dr. Shajarahtunnur Jamil and Mrs. Norazah Basar for their precious help and guidance.

I would also like to express my gratitude to Universiti Teknologi Malaysia for granting me scholarship and to Department of Chemistry for allowing me to get access to the GC, GC-MS, IR, UV and NMR facility.

I would like to express greatly appreciation to Ms. Mala, Mr. Emrizal and Mr. Oh Boon Thai for their patience, support and discussions. Sincerely thanks to Mr. Farriz, Mr. Syamil, Ms. Azlin, Mrs. Ummu and Mr. Salihin for the friendship and help during the work.

Sincerely thanks to lab assistants especially Mrs. Mekzum, Mr. Azmi and Mr. Hanan who helped me throughout these years.

Special thanks to my parents, my sisters, my brother and Mr. Ting Chee Ming for their love, support and understanding.

PREFACE

This thesis is the result of my work carried out in the Department of Chemistry, Universiti Teknologi Malaysia between July 2007 and June 2009 under the supervision of Prof. Dr. Hasnah Mohd. Sirat. Parts of my work described in this thesis have been reported in the following publications:

- 1. Yau Sui Feng and Hasnah Mohd. Sirat (2009). Chemical Constituents of *Kaempferia rotunda. Mal. J. Sci.* 2009. 28 (special edition): 81-88.
- Yau Sui Feng and Hasnah Mohd. Sirat (2008). Chemical Constituents of *Kaempferia rotunda*. Paper presented at International Conference on Molecular Chemistry 2008 at University of Malaya, Kuala Lumpur. 25-26 November 2008.
- Yau Sui Feng and Hasnah Mohd. Sirat (2008). Chemical Constituents of Kaempferia rotunda. Poster presented at the 2nd Penang International Conference for Young Chemists 2008 at Universiti Sains Malaysia, Penang. 18-20 June 2008.

ABSTRACT

The essential oils and the phytochemicals of the rhizomes of Kaempferia rotunda cultivated in Malaysia and Indonesia have been studied. Hydrodistillation of the fresh rhizomes of K. rotunda gave 0.09% and 0.23% oils respectively. These oils were analyzed by GC (Kovats Indices) and GC-MS. The main constituents found in the rhizome oil of Malaysia were bornyl acetate (9.6%), benzyl benzoate (8.4%) and camphor (5.6%), while the rhizome oil from Indonesia was rich in benzyl benzoate (87.7%) and *n*-pentadecane (4.2%). Extractions by soxhlet apparatus were carried out on the dried samples to get the crude extracts. Fractionation and purification on the crude extracts resulted in the isolation of three new cyclohexane oxides and ten known compounds, comprising of cyclohexane oxides, esters, carboxylic acid, labdane diterpene, and flavonoids. Two new compounds identified as 2-(benzoyloxymethyl)phenyl (3-*O*-acetyl)-β-glucopyranoside and 3-debenzoylrotepoxide A, together with seven known compounds, crotepoxide, 4benzoyloxymethyl-3,8-dioxatricyclo[5.1.0.0^{2,4}]octane-5,6-diol 5-acetate. 1.6-2'-hydroxy-4,4',6'-trimethoxychalcone desoxypipoxide, curcumrinol C, and naringenin 4',7-dimethyl ether were isolated from the Malaysian species, while a new compound identified as 3-acetoxy-2-benzoyloxy-1-(benzoyloxymethyl)-cyclohexawith the seven known compounds namely 4.6-diene crotepoxide. 4benzoyloxymethyl-3,8-dioxatricyclo[5.1.0.0^{2,4}]octane-5,6-diol 5-acetate, 1.6desoxypipoxide, 6-acetylzeylenol, trans-docosyl ferulate, benzyl benzoate and benzoic acid were isolated from the Indonesian species. The structures of all compounds were established based on spectral studies using MS, IR, UV and NMR spectroscopies. Naringenin 4',7-dimethyl ether, curcumrinol C, trans-docosyl ferulate, and benzoic acid were found for the first time from K. rotunda and also the genus of Kaempferia. Antibacterial and antioxidant screening assays using discdiffusion method and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) method, respectively were carried out on the crude extracts and essential oils. The crude extracts and essential oils of K. rotunda from Malaysia and Indonesia did not show activities on antibacterial and antioxidant assay.

ABSTRAK

Kajian terhadap komposisi minyak pati dan fitokimia ke atas Kaempferia rotunda yang ditanam di Malaysia dan Indonesia telah dilakukan. Sebanyak 0.09% dan 0.23% hasil minyak pati masing-masing diperolehi daripada penyulingan hidro terhadap rizom segar K. rotunda. Minyak pati ini seterusnya dianalisis dengan menggunakan KG kapilari (Indeks Kovat) dan KG-SJ. Sebatian utama dalam minyak pati rizom dari Malaysia terdiri daripada bornil asetat (9.6%), benzil benzoat (8.4%), dan kamfor (5.6%), manakala minyak pati rizom dari Indonesia didapati kaya dengan benzil benzoat (87.7%) dan *n*-pentadekana (4.2%). Pengekstrakan soxhlet telah dijalankan terhadap rizom kering untuk mendapatkan ekstrak mentah. Pengasingan daripada ekstrak telah menemukan tiga sebatian baru dan sepuluh sebatian yang telah diketahui, merangkumi sebatian sikloheksana oksida, ester, asid karboksilik, diterpena labdana dan flavonoid. Dua sebatian baru yang diasingkan daripada spesies Malaysia dikenali sebagai 2-(benzoiloksimetil)fenil (3-O-asetil)-βglukopiranosida dan 3-debenzoilrotepoksida A, bersama dengan tujuh sebatian yang diketahui, iaitu krotepoksida, 4-benzoiloksimetil-3,8-dioksatrisiklo[5.1.0.0^{2,4}]oktana-5,6-diol 5-asetat, 1,6-desoksipipoksida, kurkumrinol C, 2'-hidrosi-4,4',6'trimetosikalkon and naringenin 4',7-dimetil eter. Satu sebatian baru dikenali 3asetoksi-2-benzoiloksi-1-(benzoiloksimetil)sikloheksa-4,6-diena, manakala sebatiansebatian yang telah diketahui, iaitu krotepoksida, 4-benzoiloksimetil-3,8dioksatrisiklo[5.1.0.0^{2,4}]oktana-5,6-diol 5-asetat, 1,6-desoksipipoksida, 6-asetilzeilenol, trans-dokosil ferulat, benzil benzoat dan asid benzoik telah diasingkan daripada spesies Indonesia. Struktur bagi semua sebatian telah dikenalpasti secara spektroskopi melalui MS, IR, UV dan NMR. Naringenin 4',7-dimetil eter, kurkumrinol C, trans-dokosil ferulat, dan benzoik asid telah ditemui pertama kali daripada K. rotunda khususnya daripada genus Kaempferia. Ujian antibakteria dan antioksidan melalui teknik pembauran cakera dan radikal bebas DPPH telah dijalankan ke atas ekstrak mentah dan minyak pati. Ekstrak mentah dan minyak pati K. rotunda dari Malaysia dan Indonesia didapati tidak menunjukkan perencatan aktiviti terhadap bakteria dan radikal bebas DPPH.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION OF THE STATUS OF THESIS	5
	SUPERVISOR'S DECLARATION	
	CERTIFICATION OF EXAMINATION	
	TITLE PAGE	i
	DECLARATION OF ORIGINALITY AND	ii
	EXCLUSIVENESS	
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	PREFACE	v
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xii
	LIST OF SCHEMES	xiii
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	xvi
	LIST OF APPENDICES	xviii
1	INTRODUCTION	
	1.1 General Introduction	1
	1.2 Objectives	2
	1.3 Scope of Study	3

2 LITERATURE REVIEWS

2.1	The Zingiberaceae	Family	4

viii

2.2	Botany	y and Distribution of Kaempferia	5
2.3	The U	sages of Kaempferia Species	6
2.4	Phytoc	chemicals of Kaempferia Species	7
	2.4.1	Chalcones	7
	2.4.2	Flavones	10
	2.4.3	Flavanones	11
	2.4.4	Pimarane Diterpenes	12
	2.4.5	Cyclohexane Oxides	14
	2.4.6	Cinnamates	16
	2.5.7	Phenolics	17
	2.4.8	Esters	18
	2.4.9	Monoterpene	19
2.5	Bioact	ivity Studies on Kaempferia Species	19
2.6	Essent	ial Oil Studies on Kaempferia Species	21
2.7	Bioger	netic Pathway on Cyclohexane Oxides	22

3 CHEMICAL COMPOSITIONS OF KAEMPFERIA ROTUNDA OILS

3.1	The Essential	Oils of Kaemp	oferia roti	unda	27
	0.1.1 D1:	0.1 01 4 1		<i>.</i> .	~ ~

- 3.1.1 Rhizome Oil of Malaysian *Kaempferia rotunda* 27
- 3.1.2 Rhizome Oil of Indonesian *Kaempferia rotunda* 31
- 3.1.3Comparison of the Compositions of Malaysian33and Indonesian Kaempferia rotunda

4 PHYTOCHEMICAL AND BIOACTIVITY STUDIES OF KAEMPFERIA ROTUNDA

- 4.1 Phytochemical Study of Malaysian *Kaempferia rotunda* 36
 - 4.1.1 Crotepoxide (54) 37
 - 4.1.2 2'-Hydroxy-4,4',6'-trimethoxychalcone (1) 38
 - 4.1.3 4-Benzoyloxymethyl-3,8-dioxatricyclo- $[5.1.0.0^{2,4}]$ octane-5,6-diol 5-acetate (**57**)
 - 4.1.4 1,6-Desoxypipoxide (**69**) 41
 - 4.1.5 2-(Benzoyloxymethyl)phenyl (3-*O*-acetyl)β-glucopyranoside (131)

	4.1.6	5-Hydroxy-7,4'-dimethoxyflavanone	51
		(Naringenin 4',7-dimethyl ether) (133)	
	4.1.7	12-Acetoxy-8α,13-dihydroxylab-14-en-7-one	52
		(Curcumrinol C) (134)	
	4.1.8	4-Benzoyloxymethyl-3-oxabicyclo[4.1.0]heptane-	56
		1,5,6,7-tetrol (3-Debenzoylrotepoxide A)(132)	
4.2	Phytoe	chemical Studies of Indonesian Kaempferia rotunda	64
	4.2.1	Crotepoxide (54)	65
	4.2.2	Benzyl Benzoate (82)	65
	4.2.3	<i>trans</i> -Docosyl ferulate (137)	66
	4.2.4	3-Acetoxy-2-benzoyloxy-1-(benzoyloxymethyl)-	69
		cyclohexa-4,6-diene (136)	
	4. 2.5	6-Acetylzeylenol (68)	78
	4. 2.6	Benzoic Acid (138)	80
4.3	The D	istribution of Compounds in Malaysian and	81
	Indone	esian Kaempferia rotunda	
4.4	Bioact	tivity Studies on Kaempferia rotunda	82
	4.4.1	Antibacterial Activity	83
	4.4.2	Antioxidant Activity	85
EXPF	RIME	NTAL	
5.1		al Experimental Procedures	87
5.2	Chemi	*	88
5.3		Materials	88
5.4		tial Oil Extraction and Analysis	89
5.5		tion and Isolation of Malaysian Kaempferia	90
	rotuna	la	
	5.5.1	Crotepoxide (54)	90
	5.5.2	2'-Hydroxy-4,4',6'-trimethoxychalcone (1)	91
	5.5.3	4-Benzoyloxymethyl-3,8-dioxatricyclo-	92
		[5.1.0.0 ^{2,4}]octane-5,6-diol 5-acetate (57)	
	5.5.4	1,6-Desoxypipoxide (69)	92
	5.5.5	2-(Benzoyloxymethyl)phenyl (3-O-acetyl)-	93
		β-glucopyranoside (131)	

	5.5.6	Naringenin 4',7-dimethyl ether (133)	94
	5.5.7	Curcumrinol C (134)	94
	5.5.8	3-Debenzoylrotepoxide A (132)	95
5.6	Extrac	ction and Isolation of Indonesian Kaempferia	96
	rotunc	la	
	5.6.1	Crotepoxide (54)	96
	5.6.2	Benzyl benzoate (82)	96
	5.6.3	trans-Docosyl ferulate (137)	97
	5.6.4	3-Acetoxy-2-benzoyloxy-1-(benzoyloxymethyl)-	97
		cyclohexa-4,6-diene (136)	
	5.6.5	6-Acetylzeylenol (68)	98
	5.6.6	Benzoic Acid (138)	98
5.7	Bioact	tivity Studies	99
	5.7.1	Chemicals	99
	5.7.2	Microorganisms	99
	5.7.3	Antimicrobial Assay	99
		5.7.3.1 Microorganisms and Culture Media	99
		5.7.3.2 Disc Diffusion Method	100
	5.7.4	Antioxidant Screening (Free Radical	101
		Scavenging Activity (DPPH))	
CON	CLUSI	ON AND RECOMMENDATION	103

6	CONCLUSION AND RECOMMENDATION	103

REFERENCES	105
Appendices	117

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Biological Properties of Several Kaempferia Species	19
2.2	Biological Properties of Compounds Isolated from	20
	Kaempferia Species	
3.1	Constituents of Malaysian of Kaempferia rotunda Rhizome Oil	29
3.2	Constituents of Indonesian Kaempferia rotunda Rhizome Oil	32
3.3	Comparison of the Rhizomes Oils of Malaysian and Indonesian	33
	Kaempferia rotunda	
4.1	¹ H, ¹³ C NMR and COSY Data of Compound (69)	42
4.2	¹ H and ¹³ C NMR Data of Compound (131) and 2-(Benzoyl-	44
	oxymethyl)phenyl (3,6-di-O-acetyl)-β-glucopyranoside (135)	
4.3	¹ H, ¹³ C NMR, COSY and HMBC Data of Compound (134)	55
4.4	¹ H, ¹³ C NMR, COSY and HMBC Data of Compound (132)	64
4.5	¹ H, ¹³ C NMR, COSY and HMBC Data of Compound (137)	68
4.6	¹ H, ¹³ C NMR, COSY and HMBC Data of Compound (136)	70
4.7	¹ H, ¹³ C NMR, COSY and HMBC Data of Compound (68)	79
4.8	Compounds Isolated from Malaysian and Indonesian	82
	Kaempferia rotunda	
5.1	The Inhibition Zones of Tested Samples	101
5.2	Percentage Inhibitions of Tested Samples	102

LIST OF SCHEMES

SCHEME NO. TITLE PAGE

4.1	The Elimination of Water Molecule from Compound (134) and	53
	the Formation of Acylium Ion	
4.2	The Suggested Mass Fragmentation Pattern of Compound (137)	68

LIST OF FIGURES

FIGURES NO.

TITLE

PAGE

2.1	Biogenetic Pathway for the Formation of Crotepoxide (54)	23
2.2	Biogenetic Pathway for the Formation of Senepoxide (95) and	24
	Pipoxide (96)	
2.3	Biogenetic Pathway for the Formation of (-)-Zeylenol (75),	25
	Senepoxide (95), Pipoxide (63), Seneol (106) and Zeylena (107)	
2.4	Biogenetic Pathway for the Formation of (+)-Zeylenol (74) and	26
	(-)-Zeylenol (75)	
4.1	IR Spectrum of 2-(Benzoyloxymethyl)phenyl (3-O-acetyl)-	45
	β-glucopyranoside (131)	
4.2	¹ H NMR Spectrum of 2-(Benzoyloxymethyl)phenyl (3- <i>O</i> -acetyl)-	46
	β-glucopyranoside (131)	
4.3	CIMS Spectrum of 2-(Benzoyloxymethyl)phenyl (3-O-acetyl)-	47
	β-glucopyranoside (131)	
4.4	¹³ C NMR Spectrum of 2-(Benzoyloxymethyl)phenyl (3-O-acetyl)-	48
	β-glucopyranoside (131)	
4.5	¹³ C NMR and DEPT Spectra of 2-(Benzoyloxymethyl)phenyl	49
	(3- <i>O</i> -acetyl)-β-glucopyranoside (131)	
4.6	HMBC Spectrum of 2-(Benzoyloxymethyl)phenyl (3-O-acetyl)-	50
	β-glucopyranoside (131)	
4.7	IR Spectrum of 3-Debenzoylrotepoxide A (132)	57
4.8	¹ H NMR Spectrum of 3-Debenzoylrotepoxide A (132)	58
4.9	¹ H- ¹ H COSY Spectrum of 3-Debenzoylrotepoxide A (132)	59
4.10	¹³ C NMR Spectrum of 3-Debenzoylrotepoxide A (132)	60
4.11	¹³ C NMR and DEPT Spectra of 3-Debenzoylrotepoxide A (132)	61

4.12	CIMS Spectrum of 3-Debenzoylrotepoxide A (132)	63
4.13	¹ H NMR Spectrum of 3-Acetoxy-2-benzoyloxy-1-	72
	(benzoyloxymethyl)cyclohexa-4,6-diene (136)	
4.14	¹ H- ¹ H COSY Spectrum of 3-Acetoxy-2-benzoyloxy-1-	73
	(benzoyloxymethyl)cyclohexa-4,6-diene (136)	
4.15	IR Spectrum of 3-Acetoxy-2-benzoyloxy-1-	74
	(benzoyloxymethyl)cyclohexa-4,6-diene (136)	
4.16	¹³ C NMR Spectrum of 3-Acetoxy-2-benzoyloxy-1-	75
	(benzoyloxymethyl)cyclohexa-4,6-diene (136)	
4.17	¹³ C NMR and DEPT Spectra of 3-Acetoxy-2-benzoyloxy-1-	76
	(benzoyloxymethyl)cyclohexa-4,6-diene (136)	
4.18	EIMS Spectrum of 3-Acetoxy-2-benzoyloxy-1-	77
	(benzoyloxymethyl)cyclohexa-4,6-diene (136)	
4.19	Graft of Percentage Scavenging Capacity of DPPH by Vitamin C,	86
	5-Deoxyquercetin, Crude Extracts and Essential Oils from	
	Kaempferia rotunda Measured by UV Spectrometric Assay	
5.1	Kaempferia rotunda cultivated in Kempas, Johor	90
5.2	Kaempferia rotunda imported from Indonesia	90
5.3	The Arrangement of the Sample Discs and Control Discs in	101
	Petri Dish	

LIST OF ABBREVIATIONS

br	broad
CC	Column Chromatography
COSY	Correlation Spectroscopy
¹³ C	Carbon-13
CDCl ₃	Deuterated chloroform
CD ₃ COCD ₃	Deuterated acetone
CHCl ₃	Chloroform
CIMS	Chemical Ionization Mass Spectrometry
DPPH	2,2-Diphenyl-1-picrylhydrazyl
d	doublet
dd	doublet of doublet
ddd	doublet of doublet of doublet
DCM	Dichloromethane
DEPT	Distortionless Enhancement by Polarization Transfer
D_2O	Deuterium oxide
EtOAc	Ethyl acetate
EIMS	Electron Impact Mass Spectrometry
Et ₂ O	Diethyl ether
GC	Gas Chromatography
GC-MS	Gas Chromatography-Mass Spectrometry
$^{1}\mathrm{H}$	Proton
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Coherence
Hz	Hertz
IR	Infrared
IC ₅₀	Inhibition Concentration at 50%
J	coupling constant

VD.	Detersione branida
KBr	Potassium bromide
KI	Kovats Index
lit.	Literature
LWT	LebensmWiss. uTechnol / Food Science and Technology
MIC	Minimum Inhibition Concentration
MS	Mass Spectrometry
mM	millimolar
m/z.	mass to charge ion
MeOH	Methanol
m.p.	melting point
$MgSO_4$	Magnesium sulphate
MHz	Megahertz
m	multiplet
NMR	Nuclear Magnetic Resonance
nm	nanometer
NaOH	Sodium hydroxide
NaCl	Sodium chloride
Ph	Phenyl
PE	Petroleum ether
ppm	parts per million
q	quartet
\mathbf{R}_{f}	retention factor
RP-VLC	Reversed Phase Vacuum Liquid Chromatography
SD	Standard Deviation
S	singlet
t	triplet
tr	trace
TLC	Thin Layer Chromatography
UV	Ultraviolet
VLC	Vacuum Liquid Chromatography
μΜ	micromolar
δ	chemical shift
С	concentration

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

1	GC Chromatogram of Malaysian Kaempheria rotunda	117
	(Rhizome) Oil	
2	GC Chromatogram of Indonesian Kaempheria rotunda	118
	(Rhizome) Oil	
3	CIMS Spectrum of Crotepoxide (54)	119
4	¹ H NMR Spectrum of Crotepoxide (54)	120
5	¹ H- ¹ H COSY Spectrum of Crotepoxide (54)	121
6	HMBC Spectrum of Crotepoxide (54)	122
7	IR Spectrum of Crotepoxide (54)	123
8	¹³ C NMR Spectrum of Crotepoxide (54)	124
9	¹³ C NMR and DEPT Spectra of Crotepoxide (54)	125
10	HMQC Spectrum of Crotepoxide (54)	126
11	UV Spectrum of 2'-Hydroxy-4,4',6'-trimethoxychalcone (1)	127
12	IR Spectrum of 2'-Hydroxy-4,4',6'-trimethoxychalcone (1)	128
13	¹ H NMR Spectrum of 2'-Hydroxy-4,4',6'-trimethoxychalcone (1)	129
14	¹³ C NMR Spectrum of 2'-Hydroxy-4,4',6'-trimethoxychalcone (1)	130
15	¹³ C NMR and DEPT Spectra of 2'-Hydroxy-4,4',6'-	131
	trimethoxychalcone (1)	
16	EIMS Spectrum of 2'-Hydroxy-4,4',6'-trimethoxychalcone (1)	132
17	HMBC Spectrum of 2'-Hydroxy-4,4',6'-trimethoxychalcone (1)	133
18	CIMS Spectrum of 4-Benzoyloxymethyl-3,8-dioxatricyclo-	134
	[5.1.0.0 ^{2,4}]octane-5,6-diol 5-acetate (57)	
19	IR Spectrum of 4-Benzoyloxymethyl-3,8-dioxatricyclo-	135
	[5.1.0.0 ^{2,4}]octane-5,6-diol 5-acetate (57)	

20	¹ H NMR Spectrum of 4-Benzoyloxymethyl-3,8-dioxatricyclo-	136
	[5.1.0.0 ^{2,4}]octane-5,6-diol 5-acetate (57)	
21	¹³ C NMR Spectrum of 4-Benzoyloxymethyl-3,8-dioxatricyclo-	137
	[5.1.0.0 ^{2,4}]octane-5,6-diol 5-acetate (57)	
22	HMBC Spectrum of Benzoyloxymethyl-3,8-dioxatricyclo-	138
	[5.1.0.0 ^{2,4}]octane-5,6-diol 5-acetate (57)	
23	HMQC Spectrum of Benzoyloxymethyl-3,8-dioxatricyclo-	139
	[5.1.0.0 ^{2,4}]octane-5,6-diol 5-acetate (57)	
24	EIMS Spectrum of 1,6-Desoxypipoxide (69)	140
25	¹³ C NMR Spectrum of 1,6-Desoxypipoxide (69)	141
26	¹³ C NMR and DEPT Spectra of 1,6-Desoxypipoxide (69)	142
27	IR Spectrum of 1,6-Desoxypipoxide (69)	143
28	¹ H NMR Spectrum of 1,6-Desoxypipoxide (69)	144
29	¹ H- ¹ H COSY Spectrum of 1,6-Desoxypipoxide (69)	145
30	IR Spectrum of Naringenin 4',7-dimethyl ether (133)	146
31	¹ H NMR Spectrum of Naringenin 4',7-dimethyl ether (133)	147
32	¹ H- ¹ H COSY Spectrum of Naringenin 4',7-dimethyl ether (133)	148
33	¹³ C NMR Spectrum of Naringenin 4',7-dimethyl ether (133)	149
34	¹³ C NMR and DEPT Spectra of Naringenin 4',7-	150
	dimethyl ether (133)	
35	EIMS Spectrum of Naringenin 4',7-dimethyl ether (133)	151
36	IR Spectrum of Curcumrinol C (134)	152
37	¹³ C NMR Spectrum of Curcumrinol C (134)	153
38	¹³ C NMR and DEPT Spectra of Curcumrinol C (134)	154
39	EIMS Spectrum of Curcumrinol C (134)	155
40	¹ H NMR Spectrum of Curcumrinol C (134)	156
41	¹ H NMR Spectrum of Curcumrinol C (134) (Expansion)	157
42	¹ H- ¹ H COSY Spectrum of Curcumrinol C (134)	158
43	¹ H- ¹ H COSY Spectrum of Curcumrinol C (134) (Expansion)	159
44	HMBC Spectrum of Curcumrinol C (134)	160
45	¹ H NMR Spectrum of Benzyl Benzoate (82)	161
46	IR Spectrum of Benzyl Benzoate (82)	162
47	¹³ C NMR Spectrum of Benzyl Benzoate (82)	163
48	¹³ C NMR and DEPT Spectra of Benzyl Benzoate (82)	164
	• • • • • • • • • • • • • • • • • • • •	

49	EIMS Spectrum of Benzyl Benzoate (82)	165
50	¹³ C NMR Spectrum of <i>trans</i> -Docosyl ferulate (137)	166
51	¹³ C NMR and DEPT Spectra of <i>trans</i> -Docosyl ferulate (137)	167
52	IR Spectrum of <i>trans</i> -Docosyl ferulate (137)	168
53	¹ H NMR Spectrum of <i>trans</i> -Docosyl ferulate (137)	169
54	¹ H- ¹ H COSY Spectrum of <i>trans</i> -Docosyl ferulate (137)	170
55	HMBC Spectrum of <i>trans</i> -Docosyl ferulate (137)	171
56	EIMS Spectrum of <i>trans</i> -Docosyl ferulate (137)	172
57	IR Spectrum of 6-Acetylzeylenol (68)	173
58	¹ H NMR Spectrum of 6-Acetylzeylenol (68)	174
59	CIMS Spectrum of 6-Acetylzeylenol (68)	175
60	¹³ C NMR Spectrum of 6-Acetylzeylenol (68)	176
61	¹³ C NMR and DEPT Spectra of 6-Acetylzeylenol (68)	177
62	¹ H- ¹ H COSY Spectrum of 6-Acetylzeylenol (68)	178
63	HMBC Spectrum of 6-Acetylzeylenol (68)	179
64	IR Spectrum of Benzoic Acid (138)	180
65	¹ H NMR Spectrum of Benzoic Acid (138)	181
66	¹³ C NMR Spectrum of Benzoic Acid (138)	182

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Malaysia with its tropical forest is blessed with high biological diversity, which enclosed over 10% of the world's total number of species, with some of them are unique only to Malaysia. Among more than 7,000 species of angiosperms and 600 species of ferns in Malaysia, about 12 to 18% of trees, shrubs and herbs are reported to have medicinal properties [1]. The usage of medicinal plant products has attracted interest since the past decade. The beneficial medicinal effects of plant materials typically result from the secondary products in the plant [2]. Many biologically active plant-derived compounds were discovered as a result of chemical studies through isolation of active compounds from traditional medicine [3]. Our Malaysian flora represents a huge, barely untapped reserve of natural resources which is believed to contain substances with therapeutic potentials that yet to be explored.

Research projects related to the natural products carried out in Malaysia included: the chemistry and technology of palm oil, natural pesticides, natural flavours and pharmalogical testing of medicinal plants [4]. Development of organic chemistry has been closely associated with the chemistry of natural products. Many techniques of extraction, separation, structure determination and synthesis have been developed to understand the structural variation among the natural products. Research in this area has certainly led to better understanding of the structural requirements for a variety of physiological activities, leading to the synthesis and modification of several lead compounds and analogues.

The study of bioactive natural products constituents is the first step in drug discovery programs, while the eventual outcomes of blockbuster drugs may not be that easily realised in view to the high cost and research effort [5]. Despite all these, natural products drug discovery programs are developed all over the world, mainly because of the high chemical diversity from natural products as compared to The potential of these natural products is largely unknown and synthetics. endangered plants have added the urgency for more vigorous screening programs. With the currently available tools of extraction, chromatographic separation and structure identification, a fresh look at the well-studied plants may also be rewarding. In Malaysia, local universities and research institutes are embarking on their own programs which involve a concerted multidisciplinary approach in the discovery of bioactive agents from plant-derived natural products. Certain novel strategies have been carried out based on the expertise and funds available. The screening programs implemented and administered are aimed to discover new compounds from the Malaysian flora for use in the pharmaceutical and related industries. This in turn, will help in the development and transfer of technology, which can be achieved through collaborative programs.

1.2 Objectives

Phytochemical studies reported in the literature review are mostly carried out on the *Kaempferia* species of Thailand. Literature search revealed only a few reports on the studies of *K. rotunda* compared to other species. Therefore, this research will focus on the chemical compositions of essential oil and chemical constituents the rhizomes of *K. rotunda* cultivated in Kempas, Johor and Indonesia. In addition, antioxidant and antimicrobe activities of the rhizomes of *K. rotunda* will also be investigated. The first objective is to extract the essential oils from the fresh rhizomes of *Kaempferia rotunda* and to analyze the chemical compositions of the essential oils. The second objective is to extract phytochemicals from the dried rhizomes, to purify and identify their structures. The third goal is to evaluate the antioxidant and antimicrobe activities of the essential oils, crude extracts and the pure isolated compounds.

1.3 Scope of Study

This research focuses on the study of the essential oils compositions of the fresh rhizomes and phytochemicals from the dried rhizomes of *Kaempferia rotunda* from Malaysia and Indonesia. The fresh rhizomes will be extracted by hydrodistillation technique to obtain the essential oil. The dried rhizomes will be extracted using soxhlet with different polarity of solvents. The crude extracts will be fractionated by using vacuum liquid chromatography (VLC), followed by purification of the fractions using gravity column chromatography (CC) or chromatotron or versa-flash column chromatography and or recystallization to obtain the pure compounds. The compositions of the essential oils will be analyzed using GC and GC-MS, while the chemical constituents from dried samples will be characterized using spectroscopic methods including MS, IR, ¹H NMR, ¹³C NMR, 2D NMR (COSY, HMQC, HMBC) and UV. The biological activities such as antioxidant and antibacterial will be carried out on the crude extracts, essential oils and the pure isolated compounds.