IMPROVING SOIL PROPERTIES TO PREVENT SURFICIAL SLOPE FAILURE

SAMAN DANESHMAND

A project report submitted in partial fulfillment of the Requirements for the award of the degree of Master of Engineering (Civil Geotechnic)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2009

IMPROVING SOIL PROPERTIES TO PREVENT SURFICIAL SLOPE FAILURE

SAMAN DANESHMAND

UNIVERSITI TEKNOLOGI MALAYSIA

To my beloved parents

ACKNOWLEDGEMENT

The author would like to extend his sincerest appreciations to all those involved directly and indirectly in helping to making this project possible. First and foremost, special thanks to Associate Professor Dr. Nurly Gofar, the thesis supervisor for leading the way with her guidance and support throughout the entire duration of this project.

Thanks also to Professor Dr. Khairul, Dr. Lee and Ir. Azman for allowing me the opportunity to carryout my project with access to their knowledge and information relating to this project.

I extend my gratitude to all the technical staffs of Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia for their assistance in laboratory works. Besides, I sincerely thank to my friend and course mate for their cooperation and sharing their information with me.

Lastly, I warmly thank my family for their love and encouragement during that stressful time.

ABSTRACT

Many hill slope areas in Malaysia are vulnerable to soil erosion and shallow slope failures due to intense and frequent rainfall events. Rainfall induced slope failure can be attributed to: seepage force and seepage erosion, the loss of shear strength of the soil, and formation of tension cracks. Lime was used to improve soil properties and resistance against failure. When mixed with in-situ soil, the lime can reduce the potential for swelling and shrinkage; therefore inhibit the formation of cracks at the surface. Lime can also reduce the soil's dispersibility, therefore reduce the erosion potential. Soil mixed with lime has lower permeability, therefore enhance of capillary barrier effect and limit the rainfall infiltration into the soil. This study focuses on the improvement of soil properties to prevent surficial slope failure. Laboratory tests have been performed on soil and soil mix with deferent percentage of lime to evaluate properties of blended soil. The results show that the optimum lime content to be used in the mix design is 7%. A two dimensional finite element model of the slope was used to evaluate the performance of the optimum lime - soil mix as capillary barrier. The analysis revealed that the optimum thickness of slope cover system as capillary barrier is 30cm.

ABSTRAK

Kebanyakan cerun bukit di Malaysia mudah terdedah kepada hakisan tanah dan kegagalan cerun di sebabkan oleh hujan yang terlalu kerap. Kegagalan cerun akibat hujan boleh menyumbang kepada daya resipan dan hakisan resipan, kehilangan kekuatan ricihan tanah dan pembentukan keretakan tegangan. Dalam kajian ini, Kapur digunakan untuk memperbaiki ciri-ciri tanah dan ketahanan terhadap kegagalan tanah. Apabila bercampur dengan tanah in-situ, Kapur berupaya mengurangkan potensi tanah daripada membengkak dan mengecut: yang mana berfungsi menghalang pembentukan rekahan pada permukaan tanah. Kapur juga berupaya mengurangkan kebolehselerakan tanah, yang seterusnya menurunkan potensi hakisan. Tanah yang bercampur dengan Kapur mempunyai kebolehtelapan yang rendah, oleh itu meningkatkan kesan perintang kapilari dan had resapan air hujan ke dalam tanah. Kajian ini tertumpu kepada pembaikan ciri-ciri tanah untuk mencegah kegagalan cerun. Ujian makmal telah dijalankan terhadap tanah dan campuran tanah dengan peratusan Kapur yang berbeza untuk menilai ciri-ciri tanah campuran. Keputusan mendapati dengan menggunakan 7% kandungan Kapur, rekabentuk campuran tanah yang optimum dapat dicapai. Satu model cerun dengan dua unsure dimensi finit digunakan untuk menilai pencapaian Kapur yang optimum – campuran tanah sebagai perintang kapilari. Kajian telah menunjukkan bahawa ketebalan optimum untuk sistem penutup cerun dalam perintang kapilari ialah 30cm pada sudut tegak.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE PAGE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	xiii
	LIST OF APPENDICES	XV
1	INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Objectives of Study	4
1.4	Scope of Study	4
2	LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Surface Slope Failure	6
2.3	Slope Repair and Stabilisation	7
2.4	Lime Stabilisation	10
	2.4.1 Introduction	11
	2.4.2 Mechanism of Lime Stabilisation	12

2.4.3	Effect of Lime on Soil Properties	14
2.4.4	Use of Lime to Stabilise Malaysian Cohesive Soil	15
2.4.5	In-Situ Stabilization by Lime	16

3		METH	IODOLOGY	19
	3.1	Introdu	action	19
	3.2	Soil Sa	ampling	21
	3.3	Labora	atory Test	22
		3.3.1	Compaction Test	22
		3.3.2	Atterberg Limits	24
		3.3.3	Permeability Test	25
		3.3.4	Free Swell Test	26
		3.3.5	Unconfined Compressive Strength	27
	3.4	Numerical Simulation		
		3.4.1	Geometry of the Slope	28
		3.4.2	Finite Element Mesh Design	29

4		RESULT AND DISCUSSION			
	4.1	Introduction	32		
		4.1.1 Clay	32		
		4.1.2 Lime	34		
	4.2	Laboratory Test Result	35		
		4.2.1 Compaction Test	35		
		4.2.2 Permeability Test	37		
		4.2.3 Unconfined Compressive Strength	39		
		4.2.4 Atterberg Limits	41		
	4.3	Determination of Optimum Mix Design	46		
	4.4	Numerical Simulation for Capillary Barrier Effect	46		
		4.4.1 Determination of Permeability Curve for Input Data	47		
		4.4.2 Finite Element Mesh and Parametric study	49		
		4.4.3 Results	50		

5	CONCLUSIONS AND RECOMMENDATION	52
5.1	Conclusions	52
5.2	Recommendation	53
REFERENCES		54-57
Append	ices A-B	58-64

LIST OF TABLES

TABLE NO.	TITLE	PAGE
4.1	Physical Properties of soil used in the study	33
4.2	Chemical Contents of Hydrated Lime	34
4.3	OMC and MDD for Different Percentages of Lime	36
4.4	Values of Hydraulic Conductivity (m/s) for Different Lime Contents	38
4.5	Values of L _L , P _L and PI with Different Lime Contents	42
4.6	Percentages of Linear Shrinkage for Different Lime Contents	s 43

LIST OF FIGURES

TITLE

FIGURE NO.

2.1	Typical Surface Failures	6
2.2	Definition of Capillary Barrier	9
3.1	Flow Chart of the Study	21
3.2	Location of the Soil Sampling	22
3.3	Compaction Test	23
3.4	Permeability Test	26
3.5	Geometry of the Infinite Seep for Numerical Simulation	28
3.6	Element Meshes and Boundary Conditions of the Numerical Model	30
4.1	Particle Size Distributions of Soil Used in the Study	33
4.2	Compaction Curve for Different Percentages of Lime	36
4.3	Permeability Test (Falling Head Method) with Different Lime Contents	37
4.4	Hydraulic Conductivity Vs Different Lime Contents	38
4.5	UCS Vs Strain for Different Lime Contents	39
4.6	UCS Vs Different Lime contents	40
4.7	UCS Test for Different Lime Contents	40
4.8	Plastic and Liquid Limits for Different Lime Contents	41
4.9	Plastic and Liquid Limits (Casagrande & Cone Penetration)	42

PAGE

4.10	Linear Shrinkages for Different Lime Contents	43
4.11	Cracks and Shrinks for Different Lime Contents	44
4.12	Free Swell Tests	45
4.13	SWCC of Soil and Blended Soil	48
4.14	Hydraulic conductivity Functions of soil and Blended Soil	48
4.15	Finite Element Mesh Design for Different Thicknesses of Slope Cover System	50
4.16	Final Outcome for Different Thicknesses of Slope Cover System	51

LIST OF SYMBOLS

k	-	Coefficient of Permeability
Са (ОН)2	-	Calcium Hydroxide
MgO	-	Magnesium Oxide
CaCo ₃	-	Calcium Ions
Ca^{2+}	-	Calcium Ions
CSH	-	Calcium Silicate Hydrates
CAH	-	Calcium Aluminates' Hydrates
Al^{3+}	-	Aluminum Ions
Si^{4+}	-	Silicate Ions
CASH	-	Calcium Aluminates Silicate Hydrate
LFC	-	Lime Fixation Capacity
ICL	-	Initial Consumption of Lime
SWCC	-	Soil Water Characteristic Curve
L_L	-	Liquid Limit
P_L	-	Plastic Limit
S_L	-	Shrinkage Limit
PI	-	Plasticity Index
h_1	-	Hydraulic Head at Beginning
h_2	-	Hydraulic Head at End
q_u	-	Confined Compressive Strength

arphi	-	Friction Angle of Soil
С	-	Cohesion of Soil
UCT	-	Unconfined Compressive Test
Q	-	Flow Boundary
q	-	Unit Flux
ОМС	-	Optimum Moisture Content
MDD	-	Maximum Dry Density

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Compaction Curve for Different Percentage of Lime by Contrasting Air Void Lines	58
В	UCS versus Strain for Different Percentage of Lime	61

CHAPTER 1

INTRODUCTION

1.1 Background

Slope failure is one of the oldest geotechnical problems. Even though it is less catastrophic as compared with other geotechnical hazards such as earthquake, the occurrence of landslide and slope failure is more frequent. Slope failures are costly to repair and can damage highway infrastructure such as guardrails, shoulders, pavement surfaces, drainage facilities, utility poles and slope landscaping. They can also create dangerous road conditions when debris flows onto highway. It is also a major problem during the construction of surface facilities.

One of the most significant components for slope failure occurrence is rainfall or rainstorm. Rainfall infiltration increases the moisture content of the soil hence raising the unit weight of soil and increasing the driving force. On the other hand, infiltration of rain water into soil alters the structure of the soil and thus reduces or eliminates frictional and cohesive strength (Reddi, 2003). It also have an effect on reducing the negative pore water pressure in unsaturated zone and increasing the positive pore water pressure that induced the seepage force in the saturated zone; thus decreasing the shear strength of the soil (Rahardjo *et.al.*, 2000).

Rainfall induced slope failure are most common in tropical region where the climatic condition is governed by wet and dry periods. Shrinkage or creep of the soil during dry periods after prolonged wet-and-dry cycles lead to the development of

tension cracks on the surface of a sloping land. During wet seasons, large amount of water infiltrated through the tension cracks and further seeped into the soil layers. The presence of tension crack also initiates a seepage pattern different from those predicted based on the original slope geometry and soil properties and this could certainly lead to slope failure (Gofar *et al.*, 2006).

In summary, the rainfall induced slope failure can be attributed to: (1) seepage force and seepage erosion, (2) the loss of shear strength of the soil, and (3) the formation of tension cracks. Which mechanisms will be dominant depend primarily on the rainfall pattern, soil properties and the relative shape of unsaturated characteristics curve of the soil (Collins and Znidarcic, 2004).

Soil properties estimate some of characteristics and features that affect soil behavior. The most essential soil properties affecting the response of soil to rainfall infiltration are the unsaturated shear strength, soil water characteristic curve and permeability function of soil (Gofar and Lee, 2008). The importance of permeability in the suction distribution was pointed out by Pradel and Raad (2003). Permeability refers to the ability of soil to transmit water or air through its pores and maximum permeability is reached when the soil becomes saturated. Soil with low permeability is preferred to limit the infiltration of rain water into the soil. However, the development of tension crack in such soil could increase the infiltration significantly. The presence of tension crack has been the reason for many slope failure presented in case studies for example by Gofar *et al.* (2006).

Apart from conventional methods of stabilization and bioengineering method to reduce erosion at slope surface, one of the possible mechanisms to improve the slope stability against rainfall induced slope failure problem is to utilize the capillary barrier effect where material with low permeability is placed on top of the natural soil. The additives such as lime can be mixed with in situ soil and decrease the permeability of the soil. Lime is a good additive to control the shrink swell behavior of soil (Kassim, 1998), thus preventing the formation of tension crack at the surface. The effect of capillary barrier on controlling the rainfall infiltration has been studied by several researchers (e.g. Ross, 1990; Parent and Cabral, 2005) for the purpose of the design of as soil covers for landfill and mining waste. The possibility of utilizing the capillary barrier effect on slope was studied through physical model and numerical analysis by Yang *et al.* (2002) and Tami *et al.* (2004). The effect of capillary barrier reaches optimum when the upper layer is designed at a specific thickness and the difference in the permeability of surface layer and the bottom layer is about 3 to 5 orders of magnitude (Rahardjo *et al*, 2006). Despite of the research done on the potential application of capillary barrier on slope, no optimum design has been presented for the mitigation failure in natural as well as cut slope.

1.2 Problem statement

Rainfall induced slope failure can be attributed to, among other factors, the loss of shear strength of the soil due to reduction of matrix suction in unsaturated soil and the formation of tension cracks on the slope surface. One method to improve the slope stability against rainfall induced failure problem is to utilize the capillary barrier effect where material with low permeability is placed on top of the natural soil. The reduction in permeability can be expected by mixing natural soil with lime. Besides reducing the permeability, the lime is known as a good additive to control the swell shrink characteristics of soil, thus preventing the formation of tension crack.

This project will evaluate the effect of improving soil properties with the optimum percentage of lime in terms of permeability and shrinkage characteristics of soil. Furthermore, optimization of capillary barrier effect in terms of permeability disparity and thickness will be evaluated through numerical analysis.

1.3 Objectives of study

The aim of this study is to find the optimum percentage of lime to be used to obtain the most eligible soil cover to enhance the capillary barrier effect. To achieve this aim, the following objectives are proposed:

- 1. To investigate the effect of lime on the swelling characteristics of the soil and reducing the possibility of the development of crack at the surface, hence reducing the possibility of the occurence of surficial slope failure.
- To enhance the capillary barrier effect by contrasting the hydraulic conductivity of the surface soil improved by lime and the original soil, thus improving the slope stability against surficial failure.

1.4 Scope of study

Soil sample for this study is collected at a location within UTM campus (across the road from Kolej 12) which frequently suffered from rainfall induced failure despite of past effort to stabilize the toe of the slope using gabions. The lime obtained from *Lime Treat*; Johor was used for the preparation of all test specimens. This study is limited to the following scope of work in order to meet the specific objectives:

- 1. Collect the existing data and information related to the study area, that is the soil properties and lime characteristics.
- 2. Perform laboratory test to obtain the effect of lime on soil and to find the optimum mix.
- Evaluate the capillary barrier effect by numerical model using Seep/W from GeoStudio.