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ABSTRACT 

 
 
 
 

A two-phase and three-phase hollow fiber-protected liquid-phase 
microextraction method (HF-LPME) has been developed and used for the 
determination of partition coefficient and analysis of selected pesticides and 
nitrophenols in water samples. For two-phase HF-LPME, the analysis was 
performed by gas chromatography-electron capture detector (GC-ECD). Extraction 
conditions of the selected pesticides were optimized. The following conditions have 
been selected as the optimum extraction conditions: toluene as organic solvent, 4 mL 
water samples, 20 min extraction time, 850 rpm stirring rate, 1.8 cm HF length, 1.5% 
(w/v) NaCl content, and pH 3. The analytes were extracted from 4 mL donor phase 
through 4 µL of an organic solvent immobilized in the pores of a porous 
polypropylene hollow fiber and then into the acceptor phase present inside the 
hollow fiber. Correlation coefficients (r2) of 0.996-0.997 and limits of detection 
(LOD) of 0.0026-0.0028 µg/L were achieved under the optimized conditions. The 
proposed method provided good average enrichment factors of up to 350-fold and 
successfully determined the partition coefficient for the selected analytes that were 
found to be directly correlated to the enrichment factor. In the three-phase HF-LPME 
technique coupled with HPLC, nitrophenols were extracted from 2.5 mL aqueous 
solution with the adjustment of pH in the range of 3.0-5.0 (donor solution) into an 
organic phase (1-hexanol) immobilized in the pores of the hollow fiber and finally 
back-extracted into 5.0 µL of the acceptor microdrop (pH 12.0) located at the end of 
the microsyringe needle. After a prescribed back-extraction time, the acceptor 
microdrop was withdrawn into the microsyringe and directly injected into the HPLC 
system under the optimum conditions (donor solution: 1.0 M H3PO4, pH 3.0-5.0; 
organic solvent: 1-hexanol; acceptor solution: 5 µL of 0.1 M NaOH, pH 8.0-12.0; 
agitation rate: 1050 rpm; extraction time: 15 min). The calibration curve for these 
analytes was linear in the range of 0.6-200 µg/L with r2 > 0.9994 was achieved under 
the optimized conditions. The enrichment factors of up to 500-fold were obtained. In 
this work, determination of analytes partition coefficients in three-phase HF-LPME 
has been successfully achieved. This study found that the partition coefficient (Ka/d) 
values were high for 2-nitrophenol and 3-nitrophenol and the individual partition 
coefficients (Korg/d and Ka/org) promoted efficient simultaneous extraction from the 
donor through the organic phase and further into the acceptor phase. Both methods 
were successfully applied for the analysis of water samples. 
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ABSTRAK 

 
 
 
 

Kaedah pengekstrakan mikro fasa cecair menggunakan gentian berongga 
(HF-LPME) yang terdiri daripada 2-fasa dan 3–fasa telah dibangunkan dan 
digunakan untuk menentukan pemalar partisi bagi pestisid dan nitrofenol di dalam 
sampel air. Bagi HF-LPME 2-fasa, analisis dijalankan menggunakan gas 
kromatografi-pengesan penangkapan elektron (GC-ECD). Parameter-parameter 
penting yang mempengaruhi pengekstrakan pestisid telah dioptimumkan: pelarut 
organik (toluena), isipadu sampel air (4 mL), masa pengekstrakan (20 min), 
kandungan NaCl (1.5% (w/v), dan pH (3). Analit yang diekstrak daripada 4 mL fasa 
penderma akan melalui 4 µL pelarut organik yang terserap pada liang-liang rongga 
gentian ke dalam fasa penerima yang terdapat di dalam rongga gentian tersebut. 
Nilai pekali kolerasi (r2) dan had pengesanan terendah (LOD) masing-masing ialah 
0.996-0.997 dan 0.0026-0.0028 µg/L. Teknik ini menghasilkan faktor pemekatan 
yang baik, iaitu melebihi 350-lipat dan dikenalpasti mempunyai hubungan dengan 
pemalar partisi bagi pestisid yang dianalisis. Bagi HF-LPME 3-fasa pula, analisis 
dijalankan menggunakan kromatografi cecair prestasi tinggi (HPLC). Nitrofenol 
diekstrak daripada 2.5 mL fasa penderma dengan mengubah pH di antara julat 3 – 5 
melalui fasa organik (1-heksanol) yang terjerap pada liang-liang gentian ke dalam 
5.0 µL fasa penerima (pH 12.0) yang terletak pada hujung penyuntik mikro. 
Kemudian, titisan mikro tadi disuntik ke dalam HPLC dengan parameter yang telah 
dioptimumkan; pelarut sampel (1.0 M H3PO4),  pH (3.0-5.0), pelarut organik (1-
heksanol), 5 µL larutan penerima (0.1 M NaOH, pH 8.0-12.0), kadar pengadukan 
(1050 rpm), dan masa pengekstrakan (15 min). Graf kalibrasi adalah linear di dalam 
julat 0.6-200 µg/L dengan r2 > 0.9994. Faktor pemekatan melebihi 500-lipat telah 
berjaya diperolehi. Penentuan pemalar partisi (Ka/d) bagi nitrofenol telah berjaya 
dikaji. Kajian mendapati nilai Korg/d bagi 2-nitrofenol and 3-nitrofenol serta nilai 
partisi individu (Korg/d dan Ka/org) yang tinggi telah menggalakkan proses 
pengekstrakan analit daripada fasa penderma ke dalam fasa organik dan seterusnya 
ke dalam fasa penerima. Kedua-dua teknik ini telah berjaya digunakan untuk 
menganalisis sampel air. 
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TCD   Thermal Conductivity Detector 

FID    Flame Ionization Detector 

HAAs    Haloacetic acids 

LLLME   Liquid-liquid-liquid microextraction 

PAA    Phenylacetic acid 

 PPA    Phenylpropionic acid 

AR    Androgen receptor 

TMPAH   Trimethylphenylammonium hydroxide 

TMSH   Trimethylsulfonium hydroxide 

D   Distribution coefficient 

SLM    Supported Liquid Membrane 

LOD   Limit of Detection 

RSD   Relative Standard Deviation 

EF   Enrichment factor 

Rs   Resolution 

k   Retention factor 
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tR   Retention time 

α              Separation factor  
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1.1 Research Background 

 
 
 According to the status list of all active pesticide substances on the European 

Union (EU) market more than 1100 pesticides are currently registered (Hercegová et 

al., 2007). The pesticides industry in Malaysia is made up of about 140 companies, 

both multinational and local companies that are involved in manufacturing, 

formulating or trading activities. The majority of pesticides are imported as technical 

materials, which are then blended, diluted or formulated. However, in recent years an 

increasing variety of pesticides are manufactured in Malaysia. Pesticides are widely 

used in Malaysia for agricultural activities due to their relatively low price and high 

effective ability to control pests, weeds, and diseases (Xiong and Hu, 2008). The 

increasing production of pesticides for agricultural and non-agricultural purposes has 

caused the pollution of air, soil, ground, and surface water which involves a serious 

risk to the environment and as well as human health due to either direct exposure or 

through residues in food and drinking water (Pan and Ho, 2004). The need for 

accurate determination of pesticides at the trace levels in the environmental samples 

is therefore obvious. With the improvement of self-safeguard consciousness and the 

development in analytical instruments, levels of pesticides in vegetables and fruits 

are currently regulated by international and national organizations and maximum 

residue levels (MRLs) have been established in many countries (Pan et al., 2008).  

 
 
 Phenols and substituted phenols are important pollutants in water because of 

their wide use in many industrial processes such as the manufacture of plastics, dyes, 

drugs, antioxidants, and pesticides. Nitrophenols are formed photochemically in the 

atmosphere from vehicle exhaust. They are very toxic and have a diverse effect on 

the taste and odour of drinking water at low concentrations, so they are 

environmentally of particular interest and concern. Gas chromatography (GC) and 

high-performance liquid chromatography (HPLC) are the most common analytical 

techniques used for the determination of phenols. However, in GC, derivatization is 

needed to analyze phenols in order to avoid peak tailing. 
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Sample preparation is normally required to isolate and concentrate 

compounds of interest from the sample matrix, before analysis (Xu et al., 2007). 

Ultimately, the concentration of target compounds is enhanced (enrichment) and the 

presence of matrix components is reduced (sample clean up). In order to achieve a 

low detection limit, an enrichment step should be conducted prior to analysis (Liu et 

al., 2007). 

 
 
 Liquid-liquid extraction (LLE) and solid phase extraction (SPE) are the 

classical techniques (Liu et al., 2007) for sample pre-concentration and isolation in 

analytical chemistry. However, LLE and SPE are time-consuming, generally labour-

intensive, and requires use of large amounts of expensive high-purity organic 

solvents, which are often hazardous. During the last 10 years, some interest has been 

focused on the miniaturizing of analytical LLE. The major idea behind this has been 

to facilitate automation, to speed up extractions, and to reduce the consumption of 

organic solvents.  

 
 

An attractive alternative pre-treatment method to the traditional technique is 

solid-phase microextraction (SPME). SPME was developed by Pawliszyn and 

coworkers (Gallardo et al., 2006; Lee et al., 2007). SPME is a solvent-free extraction 

technique that incorporates sample pre-treatment, concentration, and sample 

introduction into a single procedure (Lambropoulou and Albanis, 2006; Beceiro-

Gonzalez et al., 2007). But the extraction fiber is expensive, fragile, and has a 

limited lifetime. Miniaturized LLE or liquid-phase microextraction (LPME), was 

first introduced in 1996 by Jeannot and Cantwell (Xu et al., 2007), and was based on 

a droplet of organic solvent hanging at the end of a micro syringe needle. Although 

hanging drop LPME is very simple and efficient, and reduces the consumption of 

organic solvents per sample to a few µL, it is still used only in limited number of 

research laboratories. One reason for this may be the low stability of the hanging 

drop, which is easily lost into sample during extraction. 

 
 

 Alternatively, miniaturized LLE may be accomplished by hollow fiber 

protected LPME. In these systems, the small volume of extracting liquid is contained 

within the lumen of a porous hollow fiber. The major advantage of this is that the 



 
 

28

extracting liquid is mechanically protected, and it is prevented from leaking into the 

sample during extraction. This is especially important since LPME is conducted with 

strong agitation of the sample to speed up the extractions. Hollow fiber LPME can 

be accomplished both in the two- and three-phase modes. 

 
 
 Compared with LLE and SPE, LPME gives a comparable and satisfactory 

sensitivity and much better enrichment of analytes, and the consumption of solvent is 

significantly reduced by up to several hundred or several thousand times (Xiao et al., 

2007). LPME is applicable to neutral compounds with the two-phase system, and the 

acidic and basic substances utilizing either the two- or three-phase concept.  

 
 
 In the present study, the determination of the partition coefficient of selected 

analytes using double-phase and triple-phase LPME in water samples was carried 

out. Two-phase LPME was applied combined with gas chromatography-electron 

captured detection (GC-ECD) for the extraction and preconcentration of pesticides, 

while three-phase LPME was applied combined with HPLC-UV for the extraction 

and preconcentration of nitrophenols. Different aspects of the extraction procedure 

such as the kinds of organic solvent for the immobilization, compositions of the 

acceptor and donor phase, the extraction time, the agitation rate, and the volume of 

acceptor phase were investigated. The feasibility of this methodology is also 

evaluated by determining the enrichment factor, linearity, detection limit and 

recovery. 

 
 
 
 
1.2 Statement of Problem 

 
 

The present work therefore focuses on the development, validation and 

application of a HF-LPME method prior to HPLC or GC for the analysis of 

pesticides in water samples. It is expected that, the developed method will eliminate 

problems related to carry-over effects because hollow fibers utilized were used only 

once for every experiment. This single use adds high demands on the reproducibility 

of the manufacturing of the hollow fiber. Conventional extraction methods such as 
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SPE and LLE need more time-consuming operation and using specialized apparatus. 

In contrast, HF-LPME is inexpensive and there is considerable freedom in selecting 

appropriate solvents for extraction of different analytes. Since very little solvent is 

used, there is minimal exposure to toxic organic solvent for the operator. The 

optimization of several parameters influencing the efficiency of pesticides extraction 

such as extraction solvent, agitation speed, ionic strength of the aqueous sample and 

exposure time are also explored. 

 
 
 
 
1.3 Research Objectives 

 
 

The objectives of this research are: 

 
i. To study two-phase (liquid-[membrane]-liquid) liquid membrane 

extraction mechanism based on phase equilibrium and analyte 

partition distribution using non-ionizable compounds. 

ii. To study triple-phase (liquid-liquid [membrane]-liquid) liquid 

membrane extraction mechanism based on equilibrium and analyte 

partition distribution using ionizable compounds. 

iii. To apply and optimize the critical parameters for efficient extraction 

and pre-concentration of pesticides and nitrophenols.  

 
 

Figure 1.1 shows a flow chart of work involved in this research to achieve the 

objectives. 

 

 

 

 

 

 

 

 

 

PART I 
 

Preliminary 
separations and 
elucidation of 

possible 
mechanisms 

1. Separations of selected test compounds (pesticides and nitrophenols) 
by GC, and HPLC. Repeatability, reproducibility, linearity, and limit 
of detections on the separations of test compounds are carried out. 

2. Optimization: using the selected test compounds, the standard (10-
50 ug/L) is spiked into double-distilled deionized water. Optimization 
parameter: type of membrane, organic solvent as acceptor solution, 
agitation of sample, salting out effect, volume of donor and acceptor 
phase, adjustment of pH, and extraction time. 

3. Elucidation of possible mechanisms in liquid-phase microextraction 
(LPME). The extraction condition will be examined according to its 
linearity range, limits of detection, enrichment factors results, and 
extraction recovery study.  
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Figure 1.1: Flow chart of work involved in this study 

1.4 Scope of Study 

 
 
The study involves the use of hollow fiber liquid membrane in order to 

protect the extracting solvent, thus permitting extraction only on the surface of the 

solvent immobilized in the membrane pores. The research is divided into two main 

areas; to develop the HF-LPME using two-phase mode, (liquid-[membrane]-liquid) 

and three-phase mode, (liquid-liquid [membrane]-liquid). 
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For every mode of extraction, the condition of extraction will be optimized. 

The parameters of optimization consisted of type of membrane, organic solvent as 

acceptor solution, agitation of sample, salting out effect, volume of donor and 

acceptor phase, adjustment of pH, and extraction time. 

 
 
 
 
1.5 Outline of the Thesis 

 
 

This thesis consists of six chapters. Chapter 1 presents general introduction, 

research background, statement of problems, research objectives, and scope of study. 

Chapter 2 compiles the literature review and theoretical background on compounds 

studied, liquid-phase microextraction (LPME), analytical instruments for LPME, and 

application of LPME including double and triple-phase LPME. The procedures for 

LPME and chemicals used in this work are presented in Chapter 3. Chapter 4 and 

Chapter 5 report the results and discuss about the application of two-phase and three-

phase LPME in water samples respectively. The concluding Chapter 6 summarizes 

this thesis by presenting the overall conclusions and suggestions for future study. 
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