PHASE EQUILIBRIUM AND PARTITION COEFFICIENT OF SELECTED PESTICIDES AND NITROPHENOLS IN DOUBLE AND TRIPLE-PHASE LIQUID-PHASE MICROEXTRACTION

NURUL AUNI BINTI ZAINAL ABIDIN

UNIVERSITI TEKNOLOGI MALAYSIA

PHASE EQUILIBRIUM AND PARTITION COEFFICIENT OF SELECTED PESTICIDES AND NITROPHENOLS IN DOUBLE AND TRIPLE-PHASE LIQUID-PHASE MICROEXTRACTION

NURUL AUNI BINTI ZAINAL ABIDIN

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science (Chemistry)

> Faculty of Science Universiti Teknologi Malaysia

> > OCTOBER 2009

Dedicated to my wonderful mother, my beloved siblings, family, and friends....

ACKNOWLEDGEMENTS

First of all, in a humble way I wish to give all the Praise to Allah, the Almighty God for with His mercy has given me the strength, and time to complete my research.

I am deeply indebted to my supervisor, Professor Dr. Mohd Marsin Sanagi for giving me the opportunity to carry out research in the interesting area of liquid phase microextraction. I thank him for his helpful suggestion, direction, advice and scientific guidance that enabled me to approach work positively.

I also would like to thank my co-supervisor, Associate Professor Wan Aini Wan Ibrahim for her helpful comments and advices. Thanks also to the all the staff from the Department of Chemistry and Ibnu Sina Institute for Fundamental Science Studies, UTM for their prompt and timely help during my study and research. I also gratefully acknowledge to the Ministry of Science, Technology and Innovation (MOSTI) Malaysia for its financial support through National Science Fellowship (NSF).

I would like to say thanks to all the group members in the Separation Sciences Research Group (SSRG) for their supports and advices, also to everyone who has encouraged me and assisted me in completing this research.

To my sweetheart thank you for your support. Last but not least, heartfelt appreciation is given to my beloved family for their endless patient, encouragement, support and prayer for me.

PREFACE

This thesis is the result of my work carried out in the Department of Chemistry, Universiti Teknologi Malaysia between December 2006 to December 2008 under supervision of Prof. Dr. Mohd Marsin Sanagi and Assoc. Prof. Dr. Wan Aini Wan Ibrahim. Part of my work described in this thesis has been reported in the following publications or presentations:

- Nurul Auni Zainal Abidin, M. Marsin Sanagi, and Wan Aini Wan Ibrahim, "Double-phase Liquid Membrane Extraction for the Analysis of Pesticides", poster presentation at 12th Asian Chemical Congress, Putra World Trade Centre, KL, 23-25th August 2007.
- Nurul Auni Zainal Abidin, Mohd Marsin Sanagi, and Wan Aini Wan Ibrahim, "Application of Double-Phase Liquid Phase Microextraction to the Analysis of some Pesticides in Water Samples and their Partition Coefficient.", poster presented at the Regional Annual Fundamental Science Seminar 2008 (RAFSS 2008), IIS, UTM, JB Johor, 28-20th May 2008.
- 3. Nurul Auni Zainal Abidin, Mohd Marsin Sanagi, and Wan Aini Wan Ibrahim, "Determination of Nitrophenols in Water Samples using Three-Phase Liquid Phase Microextraction Coupled with High Performance Liquid Chromatography", Paper presented at the 21st Malaysian Symposium on Analytical Chemistry (SKAM-21), 25-27th November 2008, Universiti Malaysia Sabah, Kota Kinabalu, Sabah.

ABSTRACT

A two-phase and three-phase hollow fiber-protected liquid-phase microextraction method (HF-LPME) has been developed and used for the determination of partition coefficient and analysis of selected pesticides and nitrophenols in water samples. For two-phase HF-LPME, the analysis was performed by gas chromatography-electron capture detector (GC-ECD). Extraction conditions of the selected pesticides were optimized. The following conditions have been selected as the optimum extraction conditions: toluene as organic solvent, 4 mL water samples, 20 min extraction time, 850 rpm stirring rate, 1.8 cm HF length, 1.5% (w/v) NaCl content, and pH 3. The analytes were extracted from 4 mL donor phase through 4 µL of an organic solvent immobilized in the pores of a porous polypropylene hollow fiber and then into the acceptor phase present inside the hollow fiber. Correlation coefficients (r^2) of 0.996-0.997 and limits of detection (LOD) of 0.0026-0.0028 μ g/L were achieved under the optimized conditions. The proposed method provided good average enrichment factors of up to 350-fold and successfully determined the partition coefficient for the selected analytes that were found to be directly correlated to the enrichment factor. In the three-phase HF-LPME technique coupled with HPLC, nitrophenols were extracted from 2.5 mL aqueous solution with the adjustment of pH in the range of 3.0-5.0 (donor solution) into an organic phase (1-hexanol) immobilized in the pores of the hollow fiber and finally back-extracted into 5.0 µL of the acceptor microdrop (pH 12.0) located at the end of the microsyringe needle. After a prescribed back-extraction time, the acceptor microdrop was withdrawn into the microsyringe and directly injected into the HPLC system under the optimum conditions (donor solution: $1.0 \text{ M H}_3\text{PO}_4$, pH 3.0-5.0; organic solvent: 1-hexanol; acceptor solution: 5 µL of 0.1 M NaOH, pH 8.0-12.0; agitation rate: 1050 rpm; extraction time: 15 min). The calibration curve for these analytes was linear in the range of 0.6-200 μ g/L with r² > 0.9994 was achieved under the optimized conditions. The enrichment factors of up to 500-fold were obtained. In this work, determination of analytes partition coefficients in three-phase HF-LPME has been successfully achieved. This study found that the partition coefficient ($K_{a/d}$) values were high for 2-nitrophenol and 3-nitrophenol and the individual partition coefficients (K_{org/d} and K_{a/org}) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. Both methods were successfully applied for the analysis of water samples.

ABSTRAK

Kaedah pengekstrakan mikro fasa cecair menggunakan gentian berongga (HF-LPME) yang terdiri daripada 2-fasa dan 3-fasa telah dibangunkan dan digunakan untuk menentukan pemalar partisi bagi pestisid dan nitrofenol di dalam sampel air. Bagi HF-LPME 2-fasa, analisis dijalankan menggunakan gas kromatografi-pengesan penangkapan elektron (GC-ECD). Parameter-parameter penting yang mempengaruhi pengekstrakan pestisid telah dioptimumkan: pelarut organik (toluena), isipadu sampel air (4 mL), masa pengekstrakan (20 min), kandungan NaCl (1.5% (w/v), dan pH (3). Analit yang diekstrak daripada 4 mL fasa penderma akan melalui 4 µL pelarut organik yang terserap pada liang-liang rongga gentian ke dalam fasa penerima yang terdapat di dalam rongga gentian tersebut. Nilai pekali kolerasi (r^2) dan had pengesanan terendah (LOD) masing-masing ialah 0.996-0.997 dan 0.0026-0.0028 µg/L. Teknik ini menghasilkan faktor pemekatan yang baik, iaitu melebihi 350-lipat dan dikenalpasti mempunyai hubungan dengan pemalar partisi bagi pestisid yang dianalisis. Bagi HF-LPME 3-fasa pula, analisis dijalankan menggunakan kromatografi cecair prestasi tinggi (HPLC). Nitrofenol diekstrak daripada 2.5 mL fasa penderma dengan mengubah pH di antara julat 3-5melalui fasa organik (1-heksanol) yang terjerap pada liang-liang gentian ke dalam 5.0 µL fasa penerima (pH 12.0) yang terletak pada hujung penyuntik mikro. Kemudian, titisan mikro tadi disuntik ke dalam HPLC dengan parameter yang telah dioptimumkan; pelarut sampel (1.0 M H₃PO₄), pH (3.0-5.0), pelarut organik (1heksanol), 5 µL larutan penerima (0.1 M NaOH, pH 8.0-12.0), kadar pengadukan (1050 rpm), dan masa pengekstrakan (15 min). Graf kalibrasi adalah linear di dalam julat 0.6-200 μ g/L dengan r² > 0.9994. Faktor pemekatan melebihi 500-lipat telah berjaya diperolehi. Penentuan pemalar partisi (K_{a/d}) bagi nitrofenol telah berjaya dikaji. Kajian mendapati nilai Korg/d bagi 2-nitrofenol and 3-nitrofenol serta nilai partisi individu (Korg/d dan Ka/org) yang tinggi telah menggalakkan proses pengekstrakan analit daripada fasa penderma ke dalam fasa organik dan seterusnya ke dalam fasa penerima. Kedua-dua teknik ini telah berjaya digunakan untuk menganalisis sampel air.

TABLE OF CONTENT

CHAPTER

TITLE

PAGE

TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
PREFACE	V
ASTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	XX

1 INTRODUCTION

1.1	Research Background	1
1.2	Statement of Problem	4
1.3	Research Objectives	4
1.4	Scope of Study	6
1.5	Outline of the Thesis	6

2 LITERATURE REVIEW

Compo	ounds Studied	7
2.1.1	Pesticides	7
2.1.2	Nitrophenols	9
Develo	pment of Liquid-Phase Microextraction	11
Compa	rison of Liquid-Phase Microextraction with Solid-	13
Phase 1	Microextraction	
Hollow	-Fiber based Liquid-phase Microextraction	14
2.4.1	Hollow-Fiber Liquid-phase Microextraction	14
	Sampling Modes	
2.4.2	Hollow Fiber Configurations	17
	Compo 2.1.1 2.1.2 Develo Compa Phase I Hollow 2.4.1 2.4.2	Compounds Studied 2.1.1 Pesticides 2.1.2 Nitrophenols Development of Liquid-Phase Microextraction Comparison of Liquid-Phase Microextraction with Solid- Phase Microextraction Hollow-Fiber based Liquid-phase Microextraction 2.4.1 Hollow-Fiber Liquid-phase Microextraction Sampling Modes 2.4.2 Hollow Fiber Configurations

2.5	Analys	is of Liquid-phase Microextraction Extracts	19
	2.5.1	Gas Chromatography	19
	2.5.2	High Performance Liquid Chromatography	22
2.6	Applica	ation of Two-phase Hollow-Fiber Liquid-Phase	23
	Microe	xtraction	
2.7	Applica	ation of Three-Phase Hollow-Fiber Liquid-Phase	26
	Microe	xtraction	

EXPERIMENTAL

3.1	Materials and Chemicals		
3.2	Instrur	nentation	32
	3.2.1	Gas Chromatography-Electron Captured	32
		Detector	
	3.2.2	High Performance Liquid Chromatography	32
3.3	Sampl	ing and Pretreatment of Samples	33
3.4	Hollow	v-Fiber Liquid-phase Microextraction Procedure	34
	3.4.1	Extraction of Pesticides based on Two-phase	34
		Hollow-Fiber Liquid-phase Microextraction	
	3.4.2	Extraction of Nitrophenol Compounds based on	35
		Three-phase Hollow-Fiber Liquid-phase	
		Microextraction	
3.5	Metho	d Optimization: Parameters affecting Hollow-Fiber	36
	Liquid	-phase Microextraction	
	3.5.1	Organic Solvent	36
	3.5.2	Agitation Rate	37
	3.5.3	Extraction Time	37
	3.5.4	Influence of Hollow Fiber Length	37
	3.5.5	Volume of Donor and Acceptor Solutions	38
	3.5.6	Salt Addition	38
	3.5.7	Adjustment of the pH	39
3.6	Funda	mental Theory	40
	3.6.1	Determination of Partition Coefficient,	40

Recovery, and Enrichment Factor in Two-phase
Hollow-Fiber Liquid-phase Microextraction
3.6.2 Determination of Partition Coefficient,
Recovery, and Enrichment Factor in Threephase Hollow-Fiber Liquid-phase

4 APPLICATION OF DOUBLE-PHASE LIQUID PHASE MICROEXTRACTION TO THE ANALYSIS OF PESTICIDES

Microextraction

4.1	Prelimi	nary Investigation on the Separation of Pesticides	43
	Using (GC-ECD	
	4.1.1	Conformation of Individual Peaks	43
4.2	Optimiz	ation of Hollow Fiber-Liquid Phase	45
	Microex	straction in Aqueous Samples	
	4.2.1	Effect of Organic Solvent on Analytes Behavior	45
		in the Two-Phase LPME System	
	4.2.2	Effect of Agitation Rate on Analytes Behavior	46
		in the Two-Phase LPME System	
	4.2.3	Effect of Extraction Time Profile on Analytes	47
		Behavior in the Two-Phase LPME System	
	.2.4	Effect of Sample Volume on Analytes Behavior	48
	in the T	wo-Phase LPME System	
	4.2.5	Effect of Length of Hollow Fiber on Analytes	49
		Behavior in the Two-Phase LPME System	
	4.2.6	Effect of Salt Addition on Analytes Behavior in	50
		the Two-Phase LPME System	
	4.2.7	Effect of pH on Analytes Behavior in the Two-	51
		Phase LPME System	
4.3	Perform	nance of HF-LPME Procedure	53
	4.3.1	Precision	53
	4.3.2	Linearity	54

	4.3.3	Detection Limits	55
4.4	Partitio	n Coefficient and Enrichment Factor	56
4.5	Applica	ation of HF-LPME in Real Water Samples	58
A DDI	ΙΓΑΤΙΟ	N OF THREE PHASE I JOUD PHASE	

5 APPLICATION OF THREE-PHASE LIQUID PHASE MICROEXTRACTION TO THE ANALYSIS OF NITROPHENOLS

5.1	Prelimir	nary Investigation on the Separation of	63
	Nitroph	enols using HPLC-UV	
	5.1.1	Conformation of Individual Peaks	63
	5.1.2	Evaluation of Flow Rate on the Separation	64
		Efficiency of Nitrophenols	
	5.1.3	Evaluation of Mobile Phase Compositions on	66
		the Separation Efficiency of Nitrophenols	
	5.1.4	Evaluation of Concentration and pH of	68
		Phosphate Buffer on the Separation Efficiency	
		of Nitrophenols	
	5.1.5	Evaluation of Wavelength Absorbance on the	72
		Separation Efficiency of Nitrophenols	
5.2	Basic Pr	rinciple of Extraction using Three-Phase LPME	73
	System		
5.3	Optimiz	ation of Three-phase LPME in Aqueous Samples	75
			75

5.	.3.1	Effect of Organic Solvent on Analytes Behavior	
		in the Three-Phase LPME System	
5.	.3.2	Effect of Composition of Donor and Acceptor	76
		Phases on Analytes Behavior in the Three-Phase	
		LPME System	
5.	.3.3	Effect of Extraction Time on Analytes Behavior	78
		in the Three-Phase LPME System	
5.	.3.4	Effect of Salt Addition on Analytes Behavior in	79
		the Three-Phase LPME System	
5.	.3.5	Effect of Agitation Rate on Analytes Behavior	80

4	536		
		Effect of Acceptor Volume on Analytes	82
		Behavior in the Three-Phase LPME System	
5.4	Analytic	cal Performance of LPME	82
5.5 1	Determi	nation of Partition Coefficients and Verification	84
	of Expe	rimental Results	
5.6	Applica	tion of Three-Phase LPME in Sea Water Samples	84

STUDY

6

6.1	Conclusion	87
6.2	Suggestions for Further Study	90

REFERENCES 92

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Types of pesticides and functions (Fest and Schmidt,	8

1/04/

	1982)	
3.1	Properties of the target analytes	30
3.2	Properties of the nitrophenol compounds.	31
4.1	Retention times of pesticides studied	44
4.2	Summary of the performance of the developed methods	53
4.3	Analytical performance in terms of enrichment factor	57
	and partition coefficient	
4.4	Application performance of HF-LPME in farm water samples	62
4.5	Application performance of HF-LPME in drinking	62
	water samples	
5.1	Effect of different flow rates on the retention time and	65
	retention factor of the nitrophenols	
5.2	Effect of different mobile phase compositions	67
	(phosphate buffer:acetonitrile) on the resolutions and	
	separation factor of the nitrophenols	
5.3	Effect of compositions of donor and acceptor phases on	78
	the enrichment factor	
5.4	Optimization of phase volume on LLLME ^a	82
5.5	Performance of LLLME ^a	83
5.6	Experimental partition coefficients, theoretical	84
	recovery, and experimental recovery of 2-nitrophenol	
	and 3-nitrophenol for three-phase LPME	
5.7	Results of the relative recovery for determining 2-	86
	nitrophenol and 3-nitrophenol in the concentrations of	
	spiked sea water sample (1.0, 5.0, and 10.0 $\mu g/L)$ in	
	intra-day $(n = 3)$ and inter-day measurements $(n = 5)$	

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

11	Flow chart of work involved in this study	5
1.1	The ventile of work inverved in this study	5

2.1	Cross section of the hollow fiber inside the aqueous	15
	sample during (i) two-phase and (ii) three-phase LPME	
2.2	Schematic representation of the hollow-fiber	17
	configuration when two syringe needles are connected to	
	each other with a hollow fiber. Adapted from ref.	
	(Psillakis and Kalogerakis, 2003)	
2.3	Schematic representation of configuration where a	18
	microsyringe is used for supporting the hollow-fiber,	
	introducing or collecting the acceptor solution, and	
	serves as a sample introduction device for subsequent	
	analysis. (Adapted from ref. (Lee et al., 2001))	
2.4	Schematic of an ECD	20
2.5	Schematic illustration of the setup for HF-LPME.	28
	Adapted from ref. (Bårdstu et al., 2007)	
3.1	Basic setup for HF-LPME	34
4.1	GC chromatogram of pesticides studied from direct	44
	injection of 20 ppm solution. HP-5 column, 30 m \times 0.32	
	mm i.d., and 0.25 µm film thickness. Detector: Electron	
	Capture Detection (ECD). Carrier gas: Helium at flow	
	rate of 1.0 mL/min. Injector temperature: 300 °C.	
	Temperature programming: 200 °C held for 1 min, 6	
	°C/min to 225 °C, held for 1 min, 4 °C/min to 240 °C,	
	held for 1 min. Peaks identification: (1) Solvent, (2)	
	Vinclozolin (internal standard), (3) Quinalphos, (4)	
	Methidathion, and (5) Hexaconazole	
4.2	Effect of extraction solvent on LPME efficiency	46
4.3	Effect of agitation rate on LPME efficiency	47
4.4	Effect of extraction time on LPME efficiency	48
4.5	Effect of sample volume on LPME efficiency	49
4.6	Effect of hollow fiber length on LPME efficiency	50
4.7	Effect of salt on LPME efficiency	51
4.8	Effect of pH on LPME efficiency	52
4.9	Calibration graph of hexaconazole using HF-LPME	54

- 4.10 Calibration graph of methidathion using HF-LPME
 4.11 Calibration graph of quinalphos using HF-LPME
 4.12 Example of GC chromatogram of blank. GC conditions: HP-5 column, 30 m × 0.32 mm i.d., and 0.25 μm film thickness. Detector: Electron Capture Detection (ECD). Carrier gas: Helium at flow rate of 1.0 mL/min. Injector temperature: 300 °C. Temperature programming: 200 °C held for 1 min, 6 °C/min to 225 °C, held for 1 min, 4 °C/min to 240 °C, held for 1 min
- 4.13 GC chromatogram from farm water extracts using HF-LPME. HP-5 column, 30 m \times 0.32 mm i.d., and 0.25 µm film thickness. Detector: Electron Capture Detection (ECD). Carrier gas: Helium at flow rate of 1.0 mL/min. Injector temperature: 300 °C. Temperature programming: 200 °C held for 1 min, 6 °C/min to 225 °C, held for 1 min, 4 °C/min to 240 °C, held for 1 min. Peaks identification: (1) Solvent and (2) Vinclozolin (internal standard)
- 4.14 GC chromatogram from drinking water extracts using 60 HF-LPME. HP-5 column, 30 m \times 0.32 mm i.d., and 0.25 µm film thickness. Detector: Electron Capture Detection (ECD). Carrier gas: Helium at flow rate of 1.0 mL/min. Injector temperature: 300 °C. Temperature programming: 200 °C held for 1 min, 6 °C/min to 225 °C, held for 1 min, 4 °C/min to 240 °C, held for 1 min. Peaks identification: (1) Solvent and (2) Vinclozolin (internal standard)
- 4.15 GC chromatogram of spiked standard pesticides from 61 farm water sample concentration level of 20.00 μ g/L. HP-5 column, 30 m × 0.32 mm i.d., and 0.25 μ m film thickness. Detector: Electron Capture Detection (ECD). Carrier gas: Helium at flow rate of 1.0 mL/min. Injector temperature: 300 °C. Temperature programming: 200 °C

55

55

59

	held for 1 min, 6 °C/min to 225 °C, held for 1 min, 4	
	°C/min to 240 °C, held for 1 min. Peaks identification:	
	(1) Solvent, (2) Vinclozolin (internal standard), (3)	
	Quinalphos, (4) Methidathion, and (5) Hexaconazole	
4.16	GC chromatogram of spiked standard pesticides from	61
	drinking water sample concentration level of 20.00 μ g/L.	
	HP-5 column, 30 m \times 0.32 mm i.d., and 0.25 μm film	
	thickness. Detector: Electron Capture Detection (ECD).	
	Carrier gas: Helium at flow rate of 1.0 mL/min. Injector	
	temperature: 300 °C. Temperature programming: 200 °C	
	held for 1 min, 6 °C/min to 225 °C, held for 1 min, 4	
	°C/min to 240 °C, held for 1 min. Peaks identification:	
	(1) Solvent, (2) Vinclozolin (internal standard), (3)	
	Quinalphos, (4) Methidathion, and (5) Hexaconazole	
5.1	Separations of nitrophenols at 220 nm using phosphate	64
	buffer (pH 4, 50 mM)-acetonitrile 60:40 (v/v) as eluent.	
	Separation conditions: C_{18} column (100 mm × 4.6 mm I.	
	D.); flow rate: 1.0 mL/min; peaks identification: (1) 2,4-	
	dinitrophenol (IS), (2) 3-nitrophenol, (3) 2-nitrophenol;	
	injection volume:1 µL	
5.2	Separations of nitrophenols at different flow rate (a) 1.5	66
	mL/min; (b) 1.0 mL/min; (c) 0.7 mL/min without adding	
	phosphate buffer. Separation conditions: C ₁₈ column	
	(100 mm \times 4.6 mm I. D.); mobile phase: acetonitrile-	
	water 60:40 (v/v); peaks identification: (1) 2,4-	
	dinitrophenol (IS), (2) 3-nitrophenol, (3) 2-nitrophenol;	
	UV absorbance at 220 nm; injection volume:1 μ L	
5.3	Separations of nitrophenols at different mobile phase	68
	compositions (phosphate buffer:acetonitrile). Separation	
	conditions: C_{18} column (100 mm × 4.6 mm I. D.) mobile	
	phase: phosphate buffer:acetonitrile (a) 70:30; (b) 60:40;	
	(c) 50:50; (d) 40:60; and (e) 30:70 (v/v); flow rate: 1.0	
	mL/min; peaks identification: (1) 2,4-dinitrophenol (IS),	

Separations of nitrophenols at different buffer concentrations (a) 75 mM; (b) 50 mM; (c) 25 mM; (d) 0 mM using phosphate buffer-acetonitrile 60:40 (v/v) as eluent. Separation conditions: C_{18} column (100 mm × 4.6 mm I. D.); flow rate: 1.0 mL/min; peaks identification: (1) 2,4-dinitrophenol (IS), (2) 3nitrophenol, (3) 2-nitrophenol; detection: UV absorbance at 220 nm; injection volume:1 µL

5.4

5.5 Separations of nitrophenols at different pH of mobile 71 phase (a) pH 5.0; (b) pH 4.5; (c) pH 4.0; (d) pH 3.5; (e) pH 3.0 using phosphate buffer-acetonitrile 60:40 (v/v) as eluent. Separation conditions: C₁₈ column (100 mm × 4.6 mm I. D.); flow rate: 1.0 mL/min; peaks identification: (1) 2,4-dinitrophenol (IS), (2) 3-nitrophenol, (3) 2-nitrophenol; detection: UV absorbance at 220 nm; injection volume: 1 μL

5.6 Separations of nitrophenols at different wavelength absorbance (a) 254 nm; (b) 235 nm; (c) 220 nm using phosphate buffer (pH 4, 50 mM)-acetonitrile 60:40 (v/v) as eluent. Separation conditions: C₁₈ column (100 mm × 4.6 mm I.D.); flow rate: 1.0 mL/min; peaks identification: (1) 2,4-dinitrophenol (IS), (2) 3-nitrophenol, (3) 2-nitrophenol; injection volume:1 μL
5.7 Effect of the organic solvent on the autraction of

5.7 Effect of the organic solvent on the extraction of analytes. Extraction conditions: 50 μg/L of analytes; donor phase: 2.5 mL of solution containing 0.1 M H₃PO₄ (pH 3); donor phase temperature: 25 °C; acceptor phase: 5 μL of the aqueous solution containing 0.01 M NaOH (pH 10); extraction time: 20 min
5.8 Effect of the extraction time on the extraction of

analytes. Extraction conditions: 50 µg/L of analytes;

70

72

76

79

donor phase: 2.5 mL of solution containing 1.0 M H_3PO_4 (pH 3); donor phase temperature: 25 °C; organic phase: 20 μ L of 1-hexanol; acceptor phase: 5 μ L of the aqueous solution containing 0.1 M NaOH (pH 12); extraction time: 20 min

5.9	Effect of the NaCl on the extraction of analytes.	80
	Extraction conditions: 50 μ g/L of analytes; donor phase:	
	2.5 mL of solution containing 1.0 M H ₃ PO ₄ (pH 3);	
	donor phase temperature: 25 $^{o}\text{C};$ organic phase: 20 μL of	
	1-hexanol; acceptor phase: 5 μ L of the aqueous solution	
	containing 0.1 M NaOH (pH 12); extraction time: 15 min	
5.10	Effect of the stirring rate on the extraction of analytes.	81
	Extraction conditions: 50 µg/L of analytes; donor phase:	
	2.5 mL of solution containing 1.0 M H ₃ PO ₄ (pH 3);	
	donor phase temperature: 25 °C; organic phase: 20 μ L of	
	1-hexanol; acceptor phase: 5 μ L of the aqueous solution	
	containing 0.1 M NaOH (pH 12); extraction time: 15 min	
5.11	The chromatograms of nitrophenols: (A) 5 μ g/L standard	85
	solution; (B) sea water blank sample; (C) 5 μ g/L spiked	
	sea water sample	

LIST OF ABBREVIATIONS

EU	European Union
MRLs	Maximum Residue Levels

GC	Gas Chromatography
GC-ECD	Gas Chromatography-Electron Capture Detection
GC-MS	Gas Cromatography Mass Spectrometry
HPLC	High Performance Liquid Chromatography
CE	Capillary Electrophoresis
LLE	Liquid-liquid Extraction
SPE	Solid-phase Extraction
SPME	Solid-phase Microextraction
LPME	Liquid-phase Microextraction
HF-LPME	Hollow Fiber Liquid-phase Microextraction
EPA	Environmental Protection Agency
MDL	Method Detection Limit
Korg/d	Partition ratio at equilibrium between the organic phase and the
	donor solution
K _{a/org}	Partition ratio at equilibrium between the acceptor solution and the
	organic phase
AED	Atomic Emission Detector
FT-IR	Fourier transforms infrared spectrometry
TCD	Thermal Conductivity Detector
FID	Flame Ionization Detector
HAAs	Haloacetic acids
LLLME	Liquid-liquid microextraction
PAA	Phenylacetic acid
PPA	Phenylpropionic acid
AR	Androgen receptor
TMPAH	Trimethylphenylammonium hydroxide
TMSH	Trimethylsulfonium hydroxide
D	Distribution coefficient
SLM	Supported Liquid Membrane
LOD	Limit of Detection
RSD	Relative Standard Deviation
EF	Enrichment factor
R _s	Resolution
k	Retention factor

- t_R Retention time
- α Separation factor

CHAPTER 1

INTRODUCTION

1.1 Research Background

According to the status list of all active pesticide substances on the European Union (EU) market more than 1100 pesticides are currently registered (Hercegová et al., 2007). The pesticides industry in Malaysia is made up of about 140 companies, both multinational and local companies that are involved in manufacturing, formulating or trading activities. The majority of pesticides are imported as technical materials, which are then blended, diluted or formulated. However, in recent years an increasing variety of pesticides are manufactured in Malaysia. Pesticides are widely used in Malaysia for agricultural activities due to their relatively low price and high effective ability to control pests, weeds, and diseases (Xiong and Hu, 2008). The increasing production of pesticides for agricultural and non-agricultural purposes has caused the pollution of air, soil, ground, and surface water which involves a serious risk to the environment and as well as human health due to either direct exposure or through residues in food and drinking water (Pan and Ho, 2004). The need for accurate determination of pesticides at the trace levels in the environmental samples is therefore obvious. With the improvement of self-safeguard consciousness and the development in analytical instruments, levels of pesticides in vegetables and fruits are currently regulated by international and national organizations and maximum residue levels (MRLs) have been established in many countries (Pan et al., 2008).

Phenols and substituted phenols are important pollutants in water because of their wide use in many industrial processes such as the manufacture of plastics, dyes, drugs, antioxidants, and pesticides. Nitrophenols are formed photochemically in the atmosphere from vehicle exhaust. They are very toxic and have a diverse effect on the taste and odour of drinking water at low concentrations, so they are environmentally of particular interest and concern. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) are the most common analytical techniques used for the determination of phenols. However, in GC, derivatization is needed to analyze phenols in order to avoid peak tailing.

Sample preparation is normally required to isolate and concentrate compounds of interest from the sample matrix, before analysis (Xu *et al.*, 2007). Ultimately, the concentration of target compounds is enhanced (enrichment) and the presence of matrix components is reduced (sample clean up). In order to achieve a low detection limit, an enrichment step should be conducted prior to analysis (Liu *et al.*, 2007).

Liquid-liquid extraction (LLE) and solid phase extraction (SPE) are the classical techniques (Liu *et al.*, 2007) for sample pre-concentration and isolation in analytical chemistry. However, LLE and SPE are time-consuming, generally labour-intensive, and requires use of large amounts of expensive high-purity organic solvents, which are often hazardous. During the last 10 years, some interest has been focused on the miniaturizing of analytical LLE. The major idea behind this has been to facilitate automation, to speed up extractions, and to reduce the consumption of organic solvents.

An attractive alternative pre-treatment method to the traditional technique is solid-phase microextraction (SPME). SPME was developed by Pawliszyn and coworkers (Gallardo *et al.*, 2006; Lee *et al.*, 2007). SPME is a solvent-free extraction technique that incorporates sample pre-treatment, concentration, and sample introduction into a single procedure (Lambropoulou and Albanis, 2006; Beceiro-Gonzalez *et al.*, 2007). But the extraction fiber is expensive, fragile, and has a limited lifetime. Miniaturized LLE or liquid-phase microextraction (LPME), was first introduced in 1996 by Jeannot and Cantwell (Xu *et al.*, 2007), and was based on a droplet of organic solvent hanging at the end of a micro syringe needle. Although hanging drop LPME is very simple and efficient, and reduces the consumption of organic solvents per sample to a few μ L, it is still used only in limited number of research laboratories. One reason for this may be the low stability of the hanging drop, which is easily lost into sample during extraction.

Alternatively, miniaturized LLE may be accomplished by hollow fiber protected LPME. In these systems, the small volume of extracting liquid is contained within the lumen of a porous hollow fiber. The major advantage of this is that the extracting liquid is mechanically protected, and it is prevented from leaking into the sample during extraction. This is especially important since LPME is conducted with strong agitation of the sample to speed up the extractions. Hollow fiber LPME can be accomplished both in the two- and three-phase modes.

Compared with LLE and SPE, LPME gives a comparable and satisfactory sensitivity and much better enrichment of analytes, and the consumption of solvent is significantly reduced by up to several hundred or several thousand times (Xiao *et al.*, 2007). LPME is applicable to neutral compounds with the two-phase system, and the acidic and basic substances utilizing either the two- or three-phase concept.

In the present study, the determination of the partition coefficient of selected analytes using double-phase and triple-phase LPME in water samples was carried out. Two-phase LPME was applied combined with gas chromatography-electron captured detection (GC-ECD) for the extraction and preconcentration of pesticides, while three-phase LPME was applied combined with HPLC-UV for the extraction and preconcentration of nitrophenols. Different aspects of the extraction procedure such as the kinds of organic solvent for the immobilization, compositions of the acceptor and donor phase, the extraction time, the agitation rate, and the volume of acceptor phase were investigated. The feasibility of this methodology is also evaluated by determining the enrichment factor, linearity, detection limit and recovery.

1.2 Statement of Problem

The present work therefore focuses on the development, validation and application of a HF-LPME method prior to HPLC or GC for the analysis of pesticides in water samples. It is expected that, the developed method will eliminate problems related to carry-over effects because hollow fibers utilized were used only once for every experiment. This single use adds high demands on the reproducibility of the manufacturing of the hollow fiber. Conventional extraction methods such as SPE and LLE need more time-consuming operation and using specialized apparatus. In contrast, HF-LPME is inexpensive and there is considerable freedom in selecting appropriate solvents for extraction of different analytes. Since very little solvent is used, there is minimal exposure to toxic organic solvent for the operator. The optimization of several parameters influencing the efficiency of pesticides extraction such as extraction solvent, agitation speed, ionic strength of the aqueous sample and exposure time are also explored.

1.3 Research Objectives

The objectives of this research are:

- i. To study two-phase (liquid-[membrane]-liquid) liquid membrane extraction mechanism based on phase equilibrium and analyte partition distribution using non-ionizable compounds.
- To study triple-phase (liquid-liquid [membrane]-liquid) liquid membrane extraction mechanism based on equilibrium and analyte partition distribution using ionizable compounds.
- iii. To apply and optimize the critical parameters for efficient extraction and pre-concentration of pesticides and nitrophenols.

Figure 1.1 shows a flow chart of work involved in this research to achieve the objectives.

1. Separations of selected test compounds (pesticides and nitrophenols) by GC, and HPLC. Repeatability, reproducibility, linearity, and limit of detections on the separations of test compounds are carried out.

2. Optimization: using the selected test compounds, the standard (10-50 ug/L) is spiked into double-distilled deionized water. Optimization parameter: type of membrane, organic solvent as acceptor solution, agitation of sample, salting out effect, volume of donor and acceptor phase, adjustment of pH, and extraction time.

3. Elucidation of possible mechanisms in liquid-phase microextraction (LPME). The extraction condition will be examined according to its linearity range, limits of detection, enrichment factors results, and extraction recovery study.

PART I

Preliminary separations and elucidation of possible mechanisms

Figure 1.1: Flow chart of work involved in this study

1.4 Scope of Study

The study involves the use of hollow fiber liquid membrane in order to protect the extracting solvent, thus permitting extraction only on the surface of the solvent immobilized in the membrane pores. The research is divided into two main areas; to develop the HF-LPME using two-phase mode, (liquid-[membrane]-liquid) and three-phase mode, (liquid-liquid [membrane]-liquid).

For every mode of extraction, the condition of extraction will be optimized. The parameters of optimization consisted of type of membrane, organic solvent as acceptor solution, agitation of sample, salting out effect, volume of donor and acceptor phase, adjustment of pH, and extraction time.

1.5 Outline of the Thesis

This thesis consists of six chapters. Chapter 1 presents general introduction, research background, statement of problems, research objectives, and scope of study. Chapter 2 compiles the literature review and theoretical background on compounds studied, liquid-phase microextraction (LPME), analytical instruments for LPME, and application of LPME including double and triple-phase LPME. The procedures for LPME and chemicals used in this work are presented in Chapter 3. Chapter 4 and Chapter 5 report the results and discuss about the application of two-phase and three-phase LPME in water samples respectively. The concluding Chapter 6 summarizes this thesis by presenting the overall conclusions and suggestions for future study.

CHAPTER 2

LITERATURE REVIEW