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ABSTRACT 

 

 

 

 

Encapsulation of tyrosinase enzyme into nanoporous silica aerogel via an 
alcohol-free colloidal sol-gel route using rice husk ash (RHA) as silica source was 
studied. Tyrosinase encapsulated silica aerogel (TESA) was synthesized with and 
without solvent extraction process at room temperature and neutral pH in order to 
study their effect on the enzyme activity and to minimize enzyme denaturation. The 
physicochemical properties of TESA was characterized by X-ray diffraction (XRD) 
technique, fourier transformed-infrared (FTIR) spectroscopy, field emission-
scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) analysis, 
transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). 
These characterizations confirmed tyrosinase in TESA was located inside the 
network of silica aerogel. Enzymatic activity of tyrosinase was assayed through the 
reduction of ascorbic acid using UV Visible spectrophotometer. Almost 98% of 
tyrosinase was successfully loaded into silica aerogel as determined by the leaching 
test of TESA. TESA without solvent extraction showed higher tyrosinase activity 
than TESA extracted by amyl acetate/acetone (v/v:1/1). The highest activities for 
both TESA were obtained with 10.00 mg/mL of enzyme loading that was aged for 2 
days. The stability of tyrosinase in TESA was enhanced towards extreme 
temperature as well as acidic and basic conditions. Free tyrosinase was totally 
inactivated at pH < 4 and pH > 9 and at temperature exceeding 55 °C, while TESA 
showed a significant activity at these conditions. In the application of TESA, about 
80% of phenol was removed after 3 hours contact with TESA. The reusability of 
tyrosinase in TESA was observed to be very high since TESA can be reused to 
remove phenol up to 10 times without significant loss. As a conclusion, nanoporous 
silica aerogel from RHA prepared with and without solvent extraction techniques 
can be used as suitable support for the improvement of the tyrosinase stability and it 
can be applied to remove phenol.  
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ABSTRAK 

 

 

 

 

Kajian terhadap enzim tirosinase yang dikapsulkan ke dalam aerogel 
berasaskan silika melalui kaedah koloid sol-gel tanpa melibatkan alkohol telah 
dijalankan. Pengkapsulan tirosinase ke dalam aerogel berasaskan silika (TESA) yang 
mempunyai liang bersaiz nano telah disintesis menggunakan abu sekam padi (RHA) 
sebagai sumber silika. Di dalam kaedah ini, TESA disintesis pada suhu bilik dan pH 
neutral melalui proses pengekstrakan dan tanpa pengekstrakan bagi mengkaji 
kesannya terhadap aktiviti enzim di samping mengurangkan penyahaslian enzim. 
Sifat-sifat fiziko-kimia TESA telah dicirikan dengan kaedah XRD, FTIR, FESEM, 
EDX, TEM dan TGA. Pencirian mengesahkan bahawa tirosinase telah berjaya 
dikapsulkan ke dalam silika aerogel dan ianya terletak di dalam rangkaian jaringan 
silika aerogel. Aktiviti tirosinase telah ditentukan dengan kaedah spektofotometer 
UV Tampak melalui proses penurunan asid askorbik. Hasil Ujian Larut Lesap 
terhadap TESA menunjukkan hampir 98% tirosinase berjaya dimuatkan di dalam 
silika aerogel. TESA yang disintesis tanpa melibatkan pengekstrakan mempunyai 
aktiviti yang lebih tinggi berbanding TESA yang disintesis melalui pengekstrakan 
menggunakan pelarut amil asetat/aseton (v/v:1/1). Aktiviti yang tinggi bagi kedua-
dua TESA diperolehi apabila sebanyak 10.00 mg/mL enzim dikapsulkan ke dalam 
silika aerogel pada suhu bilik selama 2 hari. Kestabilan tirosinase di dalam TESA 
terhadap asid dan alkali meningkat. Tirosinase tidak menunjukkan sebarang aktiviti 
pada pH < 4 dan pH > 9 juga pada suhu melebihi 55 °C tetapi tirosinase di dalam 
TESA menunjukkan aktiviti pada keadaan tersebut. Kajian penggunaan TESA 
terhadap penyingkiran fenol menunjukkan 80% fenol berjaya disingkirkan selepas 
bertindak balas dengan TESA selama 3 jam. Kebolehan tirosinase di dalam TESA 
untuk menyingkirkan fenol berulang-kali adalah tinggi kerana TESA boleh 
digunakan sehingga 10 kali tanpa menunjukkan sebarang penyusutan yang ketara. 
Kesimpulannya, silika aerogel daripada RHA, dengan liang bersaiz nano, yang 
disintesis sama ada melalui proses pengekstrakan atau tanpa proses pengekstrakan, 
mampu menjadi tapak kepada enzim bagi meningkatkan kestabilan tirosinase dan 
menyingkirkan fenol.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background  

 

 

Nanotechnology, the process to generate, manipulate and employ 

nanomaterials, represents an area holding significant promise for health care and 

biotechnology in many years to come [1-4]. Nanotechnology is now poised to 

revolutionize the biomedical field ranging from basic studies to disease diagnosis 

and treatment. Understanding the principle of nanotechnology may provide insight 

into critical biological system related to disease control, correction of genetic 

disorder and longevity [3].  

 

 

Biosensing is one of the most emerging sectors of nanotechnology. Such 

growth is mainly derived from the expansion of R&D where nano dimension 

research is introduced to analyze living cell constituents and for efficient drug 

screening [5]. Biosensors are devices that incorporate biologically active element in 

intimate contact with a physico-chemical signal; utilize the high sensitivity and 

selectivity of biological sensing for analytical purposes in various fields of research 

and technology [6]. Many proteins are expected to play the role as biocomponents 

used in biosensors. Enzymes are large protein molecules that significantly increase 
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rates of reaction by lowering the activation energy. Enzymes specifically accelerate a 

huge number of chemical reactions at room temperature and normal pressure [7]. 

Enzymes offer three major advantages [8]:  

 

 

• Higher reaction rates: Up to a factor of 1012 times greater than the 

uncatalyzed reactions  

• Reaction conditions: Enzymes operate at room temperatures less than 

100 oC, atmospheric pressures and near neutral pH 

• Reaction specificity: Enzyme specificity for both substrate and product 

produces fewer side reactions 

 

 

 

Immobilizations of biological compounds into inorganic support are usually 

applied in various fields such as biosensing [9-11], affinity chromatography [12-14] 

and enzyme reactors [15-17]. One of the most challenging aspects in the 

development of these matrices is the integration of biological molecules in the host 

matrix and retaining the functionality of the biomolecules [10]. In biosensing, it is 

advantageous to use immobilized enzymes rather than free enzymes [18-19]. 

Following are the reasons for immobilization of enzyme: 

 

 

• To improve the stability of enzyme in adverse reaction conditions 

• To improve the stability of enzyme in the presence of organic solvents 

• To separate the enzyme from product stream 

• To allow a continuous flow operations and repetitive usage 

 

 

 

The application of immobilized enzymes in analytical chemistry is not a new 

concept. The importance of immobilized enzymes as analytical reagents in clinical 

chemistry [20-21], food analysis [22-23] and the pharmaceutical industry [24-25] has 
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been steadily increasing. To simplify the enzymatic measurement of glucose, the 

principle of the litmus paper used for pH measurement has been implemented [6]. 

The first ‘enzyme test strip’ has been obtained by the impregnation of filter paper 

with the glucose-converting enzymes. It can be regarded as the predecessor of 

optoelectronic biosensors which initiated the development and application of ‘dry 

chemistry’ [26]. Apart from the application of complex biocatalytic system, intense 

effort are being made to broaden the spectrum of measurable substances and to 

improve the analytical parameters of biosensors by the immobilization of several 

enzymes in a silica host matrixes.  

 

 

Silica host matrixes, made by the sol-gel process have emerged as a 

promising platform for immobilization of enzymes [19, 26]. The advantages of their 

usage in enzyme immobilization include: 

 

 

• The high surface area of silica matrix provide the possibility of high 

enzyme loadings in the matrix  

• The silica matrix consists of surface hydroxyl groups that can be readily 

attached by enzyme 

• The open pore morphology of silica matrix allows substrates to quickly 

move into the interior regions of the particle 

• Solvents used in the processing of the silica materials are 

environmentally benign thus avoid the denaturation of enzyme 

 

 

 

Numerous techniques such as physical adsorption, covalent attachment, 

entrapment and encapsulation in polymer and inorganic matrixes have been explored 

over the years to achieve a high-yield, reproducible and robust immobilization 

technique that preserves the activity of the biological molecules [10, 27-29]. 

Enzymes find a more stable environment upon encapsulation in a silica host, because 

the polymeric framework grows around the biomolecules, creating a cage, thus 
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protecting the enzyme either from aggregation and unfolding or from microbial 

attack. Encapsulations also offer a protection for the enzyme against deterioration by 

the hydrophilic solvent, if the proper gel is selected [28]. Therefore, the encapsulated 

biomolecules often retain a sufficient level of activity and functionality presumably 

because of sufficient retention of their native state conformations. Moreover, the 

matrix pores allow the diffusion of reactant molecules and their reaction with the 

encapsulated biomolecules. Eventually, encapsulated enzyme can even improve the 

activity and storage stability of the enzymes and will be easier to be used because 

they can easily be recovered and washed [30].  

 

 

In this research, tyrosinase was used as model enzyme because of its wide 

application in medicine, environmental and industrial systems [8, 24]. Tyrosinase is 

also suitable for the treatment of phenolic wastes [9, 11, 17]. Tyrosinase like most 

other enzymes, is expensive and thus the use of the soluble enzyme is not practical 

[2]. Therefore, the encapsulation of tyrosinase is very attractive in order to exploit its 

catalytic properties and improve the cost effectiveness [5]. The improved stability of 

the encapsulated enzyme allows it to be highly reusable. Moreover, since enzyme 

does not dissolve in the solution, further purified process is not required and hence 

the encapsulated tyrosinase is economical to be used repetitively [8].  

 

 

 

 

1.2 Problem Statement 

 

 

In most of the reported applications, an orthosilicate such as tetramethyl 

orthosilicate (TMOS) or tetraethyl orthosilicate (TEOS) has been used as silica 

source in the synthesis of proteins encapsulated silica monoliths [30-33]. These silica 

sources present the advantages of relatively high purity sources of silica but lowering 

the enzymatic activity. 70% reduction of enzymatic activity was reported when 

lipase was encapsulated into TMOS-based silica matrix due to the presence of 5% 

volume of methanol in the reaction [27]. The usage of TMOS or TEOS as starting 
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materials lead to the generation of alcohol as a by-product and the presence of 

alcohol has been known to be detrimental to the activity of proteins by causing chain 

unfolding, aggregation, destruction of secondary and tertiary protein structures to a 

significant extent [28]. Moreover, such organic silicon precursors are usually too 

expensive. So the production of silica aerogel in an industrial scale is not 

economically practical. 

 

 

Owing to their mesoporous structure, high specific surface area and 

extremely low thermal conductivity, aerogels are considered as an efficient candidate 

as a support for protein immobilization. However, the high level of sophistication 

and the risks involved in the supercritical drying of the gels prohibit the commercial 

production of the aerogels and their wide exploitation in various potential 

applications [34-36]. Supercritical drying process is too energy intensive and 

dangerous that real practice and commercialization are difficult. Therefore, it is 

necessary to synthesize silica aerogels by an ambient pressure drying (APD) 

technique at a reasonable cost [37].  

 

 

 

 

1.3 Hypothesis 

 

 

An alcohol-free aqueous colloidal sol-gel for the synthesis of silica monoliths 

with encapsulated biological entities that uses rice husk ash as the cheap silicon 

source for production of pure silicate solution has been developed [28, 38]. This 

approach completely avoids the generation of alcohol and it allows encapsulation to 

be carried out at neutral pH and ambient pressure in order to preserve biological 

activity of proteins. Thus, denaturation of the biomolecule caused by the undesirable 

interaction with alcohol molecules can be avoided and the degree of conformational 

change can be reduced.  
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In this research, after the synthesis is complete, tyrosinase molecule is 

expected to be encapsulated in the silica aerogel network since the tyrosinase was 

added into the silica sol before the gelation stage. As shown in Figure 1.1, after the 

addition of tyrosinase, the silica sol begins to link together in three-dimensional (3D) 

network and subsequently, creates a cage around the tyrosinase molecule. It is also 

known that when enzyme molecules are mixed with colloidal particles, the 

interaction between them may result in enzyme adsorption on the particle surface. 

Furthermore, the preparation of silica aerogel using water glass precursor followed 

by an ambient pressure drying is the cheapest and safest method. 

 

 

 

6

Enzyme
Support network

 
 

Figure 1.1 The encapsulation of tyrosinase into silica aerogel network 

 

 

 

This research is proposed to develop an effective method for the 

immobilization of biomolecule into silica aerogel matrix. Unrevealing the 

interactions which take place in encapsulation of enzyme in the silica aerogel matrix 

will contribute to better understanding of various chemical and biochemical 

processes that occur when different synthesis conditions are applied. The 

fundamental understanding of the enzyme-silica support interactions can help in 

improving the fabrication of enzyme encapsulated silica aerogel as a potential 
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biosensor with enhanced thermal stability and enzymatic performance. Hence, this 

research enables new materials for biosensors to be developed.  

 

 

 

 

1.4 Objectives of Research 

 

 

The objectives of this research are to: 

 

 

i) Synthesize and characterize tyrosinase encapsulated silica aerogel 

ii) Investigate the influence of synthesis conditions on biocatalytic activities of 

tyrosinase encapsulated silica aerogel 

iii) Investigate the enzymatic activity of tyrosinase encapsulated silica aerogel 

iv) Study the application of tyrosinase encapsulated silica aerogel in the removal 

of phenol 

 

 

 

 

1.5 Scope of Research 

 

 

The project is conducted following various phases as outlined in the flow 

diagram in Figure 1.2. The tyrosinase encapsulated silica aerogel (TESA) was 

synthesized via alcohol-free aqueous colloidal sol-gel process according to the 

established method [28] but with some modification. TESA, which is synthesized 

from rice husk ash as a silica source, was synthesized with and without solvent 

extraction (SE) process in order to study their relationship with the enzyme activity. 

The products were characterized for their textural properties by using X-ray 

diffraction technique (XRD) and Fourier transformed-infrared spectroscopy (FTIR). 

The interactions of tyrosinase-silica aerogel and its surface morphology were studied 
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by using Field emission-scanning electron microscopy (FESEM), Energy dispersive 

X-ray spectroscopy (EDX), Transmission electron microscopy (TEM) and 

Thermogravimetric analysis (TGA).  

 

 

Some of the synthesis parameters in a sol-gel process were investigated for 

their influences on biocatalytic activities of encapsulated enzyme namely effect of 

solvent extraction and enzyme loading. In order to obtain information regarding the 

tyrosinase-silica aerogel interaction, wet gels containing encapsulated tyrosinase was 

submitted to different aging periods before drying phase.  

 

 

Meanwhile, biocatalytic activities of the free tyrosinase and TESA were 

assayed by examining the catecholase activity using UV-Vis spectrophotometer. The 

properties of TESA were evaluated by studying the activity of tyrosinase at different 

temperatures and pH ranges, as well as leaching test. TESA was used to remove 

phenol in aqueous solution and their efficiency in removing phenol and the stability 

of tyrosinase in TESA was determined through reusability study. 
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1.6 Outline of Research 

 

 

 Synthesis of tyrosinase encapsulated silica aerogel (TESA) 
 

 

 

 

 

 

TESA without solvent extraction (SE) TESA with solvent extraction (SE) 

 
Characterizations of TESA 

X-ray diffraction technique (XRD) 
Fourier transformed-infrared spectroscopy (FTIR) 
Field emission-scanning electron microscopy (FESEM) 
Energy dispersive X-ray spectroscopy (EDX) 
Transmission electron microscopy (TEM) 
Thermogravimetry analysis (TGA) 

 

 

 

 

 

 

Optimization of synthesis conditions 
Effect of solvent extraction 
Aging period 
Enzyme loading

 

 

 

 

 Enzyme assay: UV-Vis Spectrophotometer 
Measurement of tyrosinase activity 
Leaching test 
Influence of temperatures  
Influence of pH

 

 

 

 

Application of TESA 
Removal of phenol 
Reusability 

 

 

 

 

 

Figure 1.2 Flow diagram of research activities 

 




