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ABSTRACT 

 

 

 

 

The main objective of this project is to study and to determine the flow curve 

of necking specimen by using finite element analysis and to validate the 

approximation formulae of equivalent plastic stress and strain introduced by 

Bridgman and Davindekov-Spiridonova. This research is done for 3 tensile test 

specimens with different types of hardening which are ideal plasticity, linear 

hardening and non linear hardening. In this project, the finite element method is 

applied for high accurate simulation of tensile tests. The obtained results are 

discussed in the context of approximation formula and previously known results. 

Different numbers of element have been carried out in order to study the influence of 

meshing on the results. From the study, it was found that larger number of elements 

give stable results, thus, larger number of elements are been choose for simulation. 

Computer simulation has been done to verify the assumption of the approximation 

formula and to recognize the possible error. From the results interpretation, it was 

stated that the error connected with application of the simple formula can be 

estimated as 10 % in comparison with the numerical simulations, which was 

considered as the reference solution. The results shows that, the Davidenkov 

Spiridonova approximation formula give better compared to the Bridgman formula.   
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ABSTRAK 

 

 

 

 

Objektif kajian yang dijalankan adalah untuk mengkaji dan mendapatkan flow 

curve’bagi spesimen ujian tegangan dengan menggunakan kaedah unsur terhingga 

dan membuat perbandingan antara von-Mises equivalent stress  dan ‘equivalent 

stress’ formula yang diperkenalkan oleh Bridgman dan Davidenkov-Spiridonova. 

Kajian ini dijalankan keatas  3 jenis spesimen ujian tegangan yang mempunyai sifat 

pengerasan yang berbeza iaitu, ideal plastik, pengerasan linear, dan pengerasan tidak 

linear. Dalam projek ini, kaedah unsur terhingga digunakan untuk mendapatkan 

keputusan simulasi bagi ujian tegangan yang tepat. Beberapa model yang berbeza 

jumlah unsur dikaji untuk untuk menentukan pengaruh jumlah unsur kepada hasil 

keputusan simluasi. Dari kajian, didapati bahawa jumlah unsur yang besar 

memberikan hasil keputusan yang stabil, dengan demikian, jumlah unsur yang besar 

ini telah dipilih untuk simulasi ujian tegangan. Dari tafsiran keputusan, didapati 

bahawa ralat yang diperolehi daripada ‘approximation formula’ adalah sebanyak 

10% dibandingkan dengan simulasi numerical, yang dianggap sebagai penyelesaian 

rujukan. Keputusan menunjukkan bahawa, approximation formula Davidenkov-

Spiridonova  memberikan keputusan yang lebih baik berbanding dengan 

approximation formula Bridgman. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

The tensile test is one of the important standard engineering procedures to characterize 

some important elastic and plastic variables which are related to the mechanical 

behavior of materials.  The mechanical properties that can be determined from the tensile 

test include yield stress, ultimate tensile stress, Young’s modulus and Poisson’s ratio of the 

material. The engineering stress-strain curve does not give a true indication of the 

deformation characteristics of a metal because it is based entirely on the original dimensions 

of the specimen, and these dimensions change continuously during the test. Furthermore, 

due to the non uniform stress and strain distributions existing at the neck for high levels of 

axial deformation, it has been long recognized that significant changes in the geometric 

configuration of the specimen have to be consider in order to properly describe the material 

response during the whole deformation process up to the fracture stage. Although in many 

engineering applications the design of structural parts is restricted to the elastic response of 

the material involved, the knowledge of their behavior beyond the elastic limit is relevant 

since plastics effect usually large deformations take place in many manufacturing 

procedures such as metal forming. Other important applications of elastoplastic models for 

metal are crashworthiness, impact problems, inelastic buckling of thin-walled structures, and 
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superplastic forming. Analytically the derived formula serves in practical use to evaluate the 

complex stress and strain state in the necking region of tensile test. Among the others, the 

formula proposed by Bridgman and Davindenkov-Spirinova are well-known and considered 

in this research. This research project will analyze the flow curve behavior of ductile 

material by using the FEM to validate the approximation formula which is introduced by 

Brigdman and Davindenkov-Spirinova  

 

 

 

. 

1.1 Objective of the Project 

 

 

The main objective of this research project is to find the flow curve of a necking 

specimen which is subjected tensile load. Most of the current research is focused on the 

material behavior under tensile load which finally breaks in a ductile or brittle manner. 

The procedure of the current research includes analyzing the equivalent stress and strain 

distribution e.g by applying the von Mises equivalent stress, the surface metallography 

investigation, the critical analysis of plastic material properties and carrying the tensile 

test to compare the result with analytical and numerical solution. In this research project, 

the flow curve of tensile specimens will be analyzed by using the finite element method.  

  

The major steps of this research project for both simple plate and round cylinder 

specimen are define as below: 

• To investigate the influence of parameters (Radius of curvature and ratio of 

deformation ఙೡ
ఙ

 ) on the equivalent stress and strain for the tensile test. 

• To validate the approximation formulae of equivalent plastic stress and strain 

introduced by Bridgman and Davindekov-Spiridonova with finite element 

method analysis and estimate the involved error. 

•  Study the necking of the material 

• Analyze stress distribution after necking 



3 
 

• Analyze the stress and strain state in all points of the material 

 

 

 

 

1.2 Scopes of the project 

 

 

In this work, the main objective is to investigate the flow curve after necking of a tensile 

specimen. After necking a multiaxial stress state exits which finally results in the failure 

of the specimen. The project will be carried out by using Marc Mentat (Finite Element 

Analysis software). The FEA results will be used to validate some approximation 

formulae e.g (Bridgman 1964). A round cylinder specimen will be analyzed in this 

research project. 

 

 

 

 

1.3  Methodology of the Project 

 

 

The goals are mainly achieved by finite element method analysis which are then compared 

the results with some approximation formulae and estimate the error. This research covers 

the study of equivalent stress and strain distribution. The numerical method of analysis is 

carried out by using the finite element method Marc Mentat (MSC) software. The research 

methodology flowcharts systematically highlighting the major work of the study are shown 

in Figure 1.1.  
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Figure 1.1: Research methodology flowcharts 
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1.4 Thesis Organization 
 
 
The thesis consists of six chapters. The current chapter discusses the problem definition, 

justification for carrying out the research, objective, scopes and the research methodology of 

the project. 

 

Chapter 2 reviews some of the previous researches on the tensile analysis of equivalent 

plastic stress and strain. A brief description and discussion of the basic fundamentals of 

stress-strain relationship are introduced in Chapter 3. Besides that, the fundamental concepts 

and theories that are related to the research are reviewed in this chapter.  

 

Numerical investigations using finite element models are given in Chapter 4. The problems 

are solved by using Marc Mentat MSC finite element software. Chapter 5 will be discussing 

about the results of equivalent stress and strain evaluate by using some of approximation 

formulae and the results will be compare with the finite element analysis. The results and 

discussion in details will be state in this chapter.   

 

The conclusions are stated in Chapter 6 together with the summary of the findings of the 

research and suggestions for other areas of additional research. 
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