TABLE OF CONTENTS

CHAPTER	TITLE
---------	-------

1

2

PAGE

1

1

THESIS TITLE	i
DECLARATION	ii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii
LIST OF APPENDICES	xxii

INTRODUCTION1.1Introduction

1.2	Objectives of the study		4
-----	-------------------------	--	---

LITERATURE REVIEW 5 Dye classification 5 2.1 2.2 Azo dye model 6 2.3 9 Colour measurement in coloured wastewaters 2.4 Dyeing Processes and Wastewater Characteristics 10 Mechanism of colour removal 2.5 13

2.6	Factors affecting colour removal		
	2.6.1	Oxygen	21
	2.6.2	Temperature	23
	2.6.3	pH	23
	2.6.4	Dye concentration	24
	2.6.5	Dye structure	25
	2.6.6	Electron donor	27
	2.6.7	Redox potential	28
	2.6.8	Redox mediator	29

GENI	ERAL I	MATERIALS AND METHODS	30
3.1	Mater	ials and Methods	30
	3.1.1	Sampling and storage of Textile Wastewater	30
	3.1.2	In Situ and Laboratory Water Quality Analysis.	31
3.2	Grow	th Medium Preparation	31
	3.2.1	Filter Sterilized Textile Wastewater Agar	
		(FSTWA)	31
	3.2.2	Nutrient Agar (NA)	32
	3.2.3	Nutrient Broth (NB)	32
	3.2.4	Modified wastewater medium	32
	3.2.5	Synthetic wastewater medium:	
		Chemically Defined Media (CDM)	33
	3.2.6	Chemicals and DNA kits	34
3.3	Cultur	re preparation	34
	3.3.1	Single Culture Preparation	34
	3.3.2	Mix Culture Preparation	35
	3.3.3	Preparation of inoculum and	
		maintenance of bacteria	35
3.4	Grow	th curve of Paenibacillus sp. R2	36
3.5	Decol	ourization of Azo Dye	36

ISOL	ATION	, SCREENING AND CHARACTERIZATION	37
OF D	YE DE	GRADERS FROM TEXTILE WASTEWATER	
4.1	Introd	uction	37
4.2	Mater	ials and Methods	38
	4.2.1	Isolation of microorganisms	38
	4.2.2	Screening of bacteria for colour removal	39
4.3	Optim	ization of Azo dye decolourization	39
4.4	Chara	cterization of the Bacteria and	
	Phylog	genetic Analysis	40
	4.4.1	Morphological characterization	42
		4.4.1.1 Colony Morphology	40
		4.4.1.2 Cellular morphology: Gram Staining 42	
4.5	16S rF	RNA Analysis	41
	4.5.1	Genomic DNA Isolation	41
	4.5.2	Gel electrophoresis	43
	4.5.3	TAE buffer	44
	4.5.4	Polymerase chain reaction (PCR)	44
	4.5.5	PCR product purification	47
	4.5.6	Sequencing of the 16S rRNA Gene	48
	4.5.7	Obtaining full sequence of bacteria	48
	4.5.8	Homology Search	49
	4.5.9	Construction of phylogenetic tree	49
4.6	Result	s and Discussion	50
	4.6.1	Textile Wastewater Characterization	50
		4.6.1.1 In situ watewater analysis	50
		4.6.1.2 Laboratory wastewater analysis	52
4.7	Isolati	on and screening of microorganism	
	from r	aw textile wastewater.	54
4.8	Chara	cterization and optimization of	
	Sfred	decolourization	58
	4.8.1	Optimization of Carbon source	58

	4.8.2	Optimization of carbon source concentration	60
	4.8.3	Optimization of inoculum sizes	61
	4.8.4	Optimization of pH	62
	4.8.5	Optimization of Nitrogen source	63
	4.8.6	Optimization of Nitrogen source Concentration	64
	4.8.7	Optimization of temperatures	65
	4.8.8	Optimization of agitation	66
	4.8.9	Optimization of dye concentration	67
4.9	Identi	fication of selected strains (R2).	68
	4.9.1	Sequencing of the 16S rRNA gene	69
	4.9.2	Sequence analyses of gene encoding for the	
		16S rRNA from bacterium R2	70
4.10	Paeni	bacillus sp.R2	71
4.11	Concl	usion	74

LOCALIZATION OF AZOREDUCTASE AND ANALYSIS OF REACTIVE RED 195 (RR195) BIODEGRADATION

BY Pa	aenibac	illus sp. R2	75	
5.1	Introd	Introduction		
5.2	Materi	als and methods 7		
	5.2.1	Localization and Detection of enzymatic activity	77	
		5.2.1.1 Preparation of Bacterial Cell Fractions	77	
	5.2.1.2Azoreductase Assay 77			
	5.2.1.3Effects of pH and temperature on the			
		azoreductase activity and stability	78	
	5.2.2	Preparation of inoculum and biodegradation		
		of Reactive Red 195	79	
	5.2.3	Determination of CDW, ORP, pH and TOC	79	
	5.2.4	Product Detection and Determination using HPLC	80	
		5.2.4.1 Sample Preparation	80	

xi

5.3	Result	s and Discussion	81
	5.3.1	Localization of Azoreductase Enzyme.	81
		5.3.1.1 Effect of pH on Azoreductase activity	83
		5.3.1.2 Effect of Temperature on	
		Azoreductase activity	84
5.4	Azo d	yes Decolourization of SFred by Paenibacillus sp.R2	85
	5.4.1	Kinetic study on Reactive Red 195 decolourization	
		by Paenibacillus sp.	87
	5.4.2	Correlation between specific decolorization	
		rate and cell dry weight	88
	5.4.3	Correlation between colour removal and	
		oxidation-reduction potential (ORP)	89
	5.4.4	Correlation between colour removal and pH	91
	5.4.5	Correlation between colour and total organic	
		carbon removal	93
5.5	Detect	tion and identification of RR195degradation products	94
	5.5.1	Product degradation detection using	
		Reversed-phase-HPLC	94
5.6	Conclu	usion	102

6	CON	CLUSIONS AND SUGGESTIONS	10	13
	6.1	Conclusions	10	13
	6.2	Suggestions for Future Work	10)5

REFERENCES

APPENDICES

LIST OF TABLES

TABLE NO	TITLE	PAGE
2.1	Different classes of dye and their characteristic	7
2.2	Characterization of the cotton wet processing wastewaters	12
2.3	List of organisms intensively decolorizing synthetic dyes	20
3.1	Component of CDM	33
4.1	Component mixes for electrophoresis	43
4.2	50X TAE buffer compositions	44
4.3	2X PCR Master Mix compositions	45
4.4	The universal primers that are used for the amplification of 16S rRNA gene	45
4.5	Components for PCR reaction	46
4.6	Thermal Profile for PCR Reaction	46

4.7	In situ analysis of raw textile wastewater	50
4.8	Laboratory analysis of textile wastewater	52
4.9	Colony Morphology and Gram's reaction for each single colony	55

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Chemical structure of C.I. Reactive Red 195 used in biodegradation experiments	9
2.2	Proposed mechanism for reduction of azo dyes by whole bacterial cells	15
2.3	Schematic representation of the different mechanisms of anaerobic azo dye reduction	18
2.4	Electron flow preference as a function of the different electron couples	28
4.1	Percentage of colour removal by bacterial cultures	56
4.2	Percentage of colour removal by mixed bacterial culture	57
4.3	Effect of carbon source on dye decolourization by bacteria	59
4.4	Effect of glucose concentration on dye decolourization	60
4.5	Effect of inoculum sizes (%v/v) on dye decolourization	61

4.6	Effects of pH on dye decolourization	62
4.7	Effects of nitrogen source on dye decolourization	63
4.8	Effect of nitrogen source concentration of NH_4Cl on dye decolourization	64
4.9	Effects of temperatures of dye decolourization	65
4.10	Effects of agitation on dye decolourization	66
4.11	Effects of SFRed dye concentration on dye decolourization	67
4.12	The PCR product of 16S rRNA fragment obtained using FDI-07 and rDI-07 primer sized of 1.5kb via PCR amplification.	68
4.13	Phylogram show phylogenetic relationships of bacterium R2 and selected <i>Paenibacillus sp.</i> from 16S rRNA sequences.	71
5.1	Comparison of azoreductase activity from different fraction assayed under aerobic and anaerobic condition	81
5.2	Effect of pH on azoreductase activity	83
5.3	Effect of temperature on azoreductase activity	84
5.4	Profile of colour removal and cell dry weight during Reactive Red 195 decolourization	85

- 5.5 Kinetic study on Reactive Red 195 (RR195) dye decolourization by 87
 Paenibacillus sp. R2.
- 5.6 Profile of specific decolourization rate and cell dry weight during 88Reactive Red 195 dye decolourization
- 5.7 Profile of colour removal and redox potential during Reactive Red 90195 decolourization
- 5.8 Correlation between log of colour removal rate and redox potential
 91 during Reactive Red 195 dye decolourization
- 5.9 Profile of colour removal and pH during Reactive Red 195 dye 92 decolourization
- 5.10 Profile of colour removal and Total Organic Carbon during Reactive
 93 Red 195 dye decolourization
- 5.11 Azo dye peaks before incubation (0h) of SFRed decolourization 96 obtained from HPLC-UV analyses.
- 5.12 Azo dye peaks after 18h incubation of SFRed decolourization 96 obtained from HPLC-UV analyses.
- 5.13 Azo dye peaks after 28h incubation of SFRed decolourization 97 obtained from HPLC-UV analyses.
- 5.14 Azo dye peaks after 40h incubation of SFRed decolourization 97 obtained from HPLC-UV analyses.

- 5.15 Azo dye peaks after 52h incubation of SFRed decolourization 98 obtained from HPLC-UV analyses.
- 5.16 Azo dye peaks after 66h incubation of SFRed decolourization 99 obtained from HPLC-UV analyses.
- 5.17 Azo dye peaks after two weeks incubation of SFRed decolourization99 obtained from HPLC-UV analyses.
- 5.18 Azo dye peaks after one month incubation of SFRed decolourization 100 obtained from HPLC-UV analyses.

LIST OF ABREVIATIONS AND SYMBOLS

μ	-	specific growth rate
λ	-	wavelength
$(NH_4)_2SO_4$	-	ammonium sulphate
Abs	-	absorbance
ADMI	-	American Dye Manufacturers Institute
Al	-	aluminum
APHA	-	American Public Health Association
AWW	-	autoclaved wastewater
BOD	-	biological oxygen demand
С	-	carbon
C.I	-	Colour Index
CaCl ₂	-	calcium chloride
Cd	-	cadmium
CDM	-	chemically defined medium
CDW	-	cell dry weight
Cl	-	chloride
Co	-	cobalt
COD	-	chemical oxygen demand
Cr	-	chromium
$CrO4_2^-$	-	chromates
$\operatorname{CrO_7}^{2-}$	-	dichromates
Cu	-	copper

d ⁻¹	-	per day
DAF	-	dissolve air floatation
dATP	-	deoxyadenosine 5'-triphosphate
dCTP	-	deoxycytosine 5' triphosphate
DF	-	dilution factor
dGTP	-	deoxyguanosine 5' triphosphate
DNA	-	deoxyribonucleic acid
dNTP	-	deoxynucleotide triphosphate
DO	-	dissolve oxygen
DOE	-	Department of Environment
dTTP	-	deoxythymidine 5'-triphosphate
EDTA	-	ethylene diamine tetra acetic acid
FAD	-	flavin adenine dinucleotide(oxidized)
FADH ₂	-	flavin adenine dinucleotide(reduced)
FeCl ₃	-	ferric chloride
FMN	-	flavin adenine mononucleotide (oxidezed)
FMNH ₂	-	flavin adenine mononucleotide (reduced)
FSTW	-	filter sterilized textile wastewater
gL ⁻¹	-	gram per litre
gt	-	generation time
H^+	-	hydrogen ion
h ⁻¹	-	per hour
H_2S	-	hydrogen sulphide
H_2SO_4	-	acid sulphuric
HCl	-	hydrochloric acid
HNO ₃	-	acid nitric
HPLC	-	high performance liquid chromatography
HRT	-	hydraulic retention time
HSO ₃	-	sulphite
IR	-	infrared
K	-	potassium

K_2CrO_4	-	potassium dichromate
K ₂ HPO ₄	-	dipotassium hydrogen phosphate
kb	-	kilobase
KH ₂ PO ₄	-	potassium dihydrogen phosphate
М	-	Molarity
mgL^{-1}	-	milligram per litre
MgCl ₂	-	magnesium chloride
MgSO ₄ .7H ₂ O	-	magnesium sulphate heptahydrate
MIC	-	minimal inhibitory concentration
MWr	-	molecular weight relative
N ₂	-	nitrogen gas
Na	-	sodium
NaCl	-	sodium chloride
NAD	-	nicotinamide adenine dinucleotide
NAD^+	-	nicotinamide adenine dinucleotide(oxidized)
NADH	-	nicotinamide adenine dinucleotide(reduced)
NADP	-	nicotinamide adenine dinucleotide phosphate
NADPH	-	nicotinamide adenine dinucleotide phosphate(reduced)
NaOH	-	sodium Hydroxide
NB	-	nutrient broth
NH ₄ Cl	-	ammonium chloride
NH ₄ NO ₃	-	ammonium nitrate
Ni	-	nikel
nm	-	nanometer
NMR	-	nuclear magnetic resonans
NO ₃	-	nitrate
O_2	-	oxygen gas
OD _{600nm}	-	optical density at 600nm
Pb	-	plumbum
PCR	-	polymerase chain reaction
РНВ	-	polyhydroxybutyrate

PO ₄ ³⁻	-	phosphate
ppm	-	part per million
Pt-Co	-	platinum cobalt
PVC	-	polyvinylchloride
RB15	-	reactive blue 15
RM	-	redox mediator
RNase	-	ribonuclease
rpm	-	rotation per minute
RR195	-	reactive red 195
rRNA	-	ribosomal RNA
S	-	sulphur
SBR	-	sequencing batch reactor
SDS	-	sodium dodecyl sulphate
SEM	-	scanning electron microscope
SFRed	-	sufimix supra red
SO4 ²⁻	-	sulphate
TAE	-	tris-acetate buffer
TCA	-	tricarboxylic acid cycle
td	-	doubling time
T _m	-	melting point
TOC	-	total organic carbon
TON	-	total organic nitrogen
Tris	-	2-hydroxymethyl-2-methyl-1,3-propanediol
TSS	-	total suspended solid
U	-	enzyme unit
UV	-	ultraviolet
UV-vis	-	ultraviolet-visible
<i>v/v</i>	-	volume per volume
w/v	-	weight per volume
Zn	-	zink

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Wastewater treatment system and sampling points (raw wastewater) at a textile company located in Batu Pahat, Johor.	120
В	Process description for textile wastewater treatment at Ramatex	121
С	Spectrum of raw Textile wastewater (C1) and SFRed azo dye (C2) using UV-Vis Shimadzu Spectrophotometer	123
D	DOE parameter limits of effluent of Standard A & B	124
E	Homology search of bacterial R2 using BLASTn from GenBank database of NCBI	125
F	Chromatogram for HPLC standard	126
G	Colony morphology and Gram's reaction for each single colony	128
Н	Correlation between OD _{600nm} and cell dry weight of <i>Paenibacillus sp.</i> R2	129
Ι	Standard curve of SFRed (Reactive Red 195) concentration at λ_{max} =517nm	130

xxiii

J	Highest alignment score full sequence of bacteria R2 using BLASTn from GeneBank database of NCBI	131
K	Full sequence of 16S rRNA of bacteria R2	132
L	Reverse phase-HPLC analytical parameters	134
М	Standard methods for the examination of water and wastewater	135
Ν	Preparation of buffers stock solution	140
0	Profile of <i>Paenibacillus sp.</i> R2 cell growth at the exponential/log phase.	143
Р	Experimental design of isolation, screening and characterization of dye degrading bacteria from textile wastewater.	144
Q	Stoichonometry calculation	145
R	Preparation of protein fraction from <i>Paenibacillus sp.</i> for azoreductase activity detection	147
S	Structure formulas of several dyes	148

TABLE OF CONTENTS

CHAPTER	TITLE
---------	-------

1

2

PAGE

1

1

THESIS TITLE	i
DECLARATION	ii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii
LIST OF APPENDICES	xxii

INTRODUCTION1.1Introduction

1.2	Objectives of the study		4
-----	-------------------------	--	---

LITERATURE REVIEW 5 Dye classification 5 2.1 2.2 Azo dye model 6 2.3 9 Colour measurement in coloured wastewaters 2.4 Dyeing Processes and Wastewater Characteristics 10 Mechanism of colour removal 2.5 13

2.6	Factors affecting colour removal			
	2.6.1	Oxygen	21	
	2.6.2	Temperature	23	
	2.6.3	pH	23	
	2.6.4	Dye concentration	24	
	2.6.5	Dye structure	25	
	2.6.6	Electron donor	27	
	2.6.7	Redox potential	28	
	2.6.8	Redox mediator	29	

GENERAL MATERIALS AND METHODS 30			30	
3.1	Mater	ials and Methods	30	
	3.1.1	Sampling and storage of Textile Wastewater	30	
	3.1.2	In Situ and Laboratory Water Quality Analysis.	31	
3.2	Grow	th Medium Preparation	31	
	3.2.1	Filter Sterilized Textile Wastewater Agar		
		(FSTWA)	31	
	3.2.2	Nutrient Agar (NA)	32	
	3.2.3	Nutrient Broth (NB)	32	
	3.2.4	Modified wastewater medium	32	
	3.2.5	Synthetic wastewater medium:		
		Chemically Defined Media (CDM)	33	
	3.2.6	Chemicals and DNA kits	34	
3.3	Cultur	re preparation	34	
	3.3.1	Single Culture Preparation	34	
	3.3.2	Mix Culture Preparation	35	
	3.3.3	Preparation of inoculum and		
		maintenance of bacteria	35	
3.4	Grow	th curve of Paenibacillus sp. R2	36	
3.5	3.5 Decolourization of Azo Dye			

ISOL	ATION	, SCREENING AND CHARACTERIZATION	37
OF D	YE DE	GRADERS FROM TEXTILE WASTEWATER	
4.1	Introd	uction	37
4.2	Mater	ials and Methods	38
	4.2.1	Isolation of microorganisms	38
	4.2.2	Screening of bacteria for colour removal	39
4.3	Optim	ization of Azo dye decolourization	39
4.4	Chara	cterization of the Bacteria and	
	Phylog	genetic Analysis	40
	4.4.1	Morphological characterization	42
		4.4.1.1 Colony Morphology	40
		4.4.1.2 Cellular morphology: Gram Staining 42	
4.5	16S rF	RNA Analysis	41
	4.5.1	Genomic DNA Isolation	41
	4.5.2	Gel electrophoresis	43
	4.5.3	TAE buffer	44
	4.5.4	Polymerase chain reaction (PCR)	44
	4.5.5	PCR product purification	47
	4.5.6	Sequencing of the 16S rRNA Gene	48
	4.5.7	Obtaining full sequence of bacteria	48
	4.5.8	Homology Search	49
	4.5.9	Construction of phylogenetic tree	49
4.6	Result	s and Discussion	50
	4.6.1	Textile Wastewater Characterization	50
		4.6.1.1 In situ watewater analysis	50
		4.6.1.2 Laboratory wastewater analysis	52
4.7	Isolati	on and screening of microorganism	
	from r	aw textile wastewater.	54
4.8	Chara	cterization and optimization of	
	Sfred	decolourization	58
	4.8.1	Optimization of Carbon source	58

	4.8.2	2 Optimization of carbon source concentration			
	4.8.3	Optimization of inoculum sizes			
	4.8.4	.8.4 Optimization of pH			
	4.8.5	Optimization of Nitrogen source			
	4.8.6	Optimization of Nitrogen source Concentration	64		
	4.8.7	Optimization of temperatures	65		
	4.8.8	Optimization of agitation			
	4.8.9	Optimization of dye concentration	67		
4.9	Identi	fication of selected strains (R2).	68		
	4.9.1	Sequencing of the 16S rRNA gene	69		
	4.9.2	Sequence analyses of gene encoding for the			
		16S rRNA from bacterium R2	70		
4.10	Paeni	bacillus sp.R2	71		
4.11	Conclusion 74				

LOCALIZATION OF AZOREDUCTASE AND ANALYSIS OF REACTIVE RED 195 (RR195) BIODEGRADATION

BY Paenibacillus sp. R2 75				
5.1	Introduction 7			
5.2	Materi	ials and methods 77		
	5.2.1	Localization and Detection of enzymatic activity	77	
		5.2.1.1 Preparation of Bacterial Cell Fractions	77	
		5.2.1.2Azoreductase Assay	77	
		5.2.1.3Effects of pH and temperature on the		
		azoreductase activity and stability	78	
	5.2.2	Preparation of inoculum and biodegradation		
		of Reactive Red 195	79	
	5.2.3	Determination of CDW, ORP, pH and TOC	79	
	5.2.4	Product Detection and Determination using HPLC	80	
		5.2.4.1 Sample Preparation	80	

xi

5.3	Results and Discussion 81			
	5.3.1	Localization of Azoreductase Enzyme.	81	
		5.3.1.1 Effect of pH on Azoreductase activity	83	
		5.3.1.2 Effect of Temperature on		
		Azoreductase activity	84	
5.4	Azo d	yes Decolourization of SFred by Paenibacillus sp.R2	85	
	5.4.1	Kinetic study on Reactive Red 195 decolourization		
		by Paenibacillus sp.	87	
	5.4.2	Correlation between specific decolorization		
		rate and cell dry weight	88	
	5.4.3	Correlation between colour removal and		
		oxidation-reduction potential (ORP)	89	
	5.4.4	Correlation between colour removal and pH	91	
	5.4.5	Correlation between colour and total organic		
		carbon removal	93	
5.5	Detect	tion and identification of RR195degradation products	94	
	5.5.1	Product degradation detection using		
		Reversed-phase-HPLC	94	
5.6	Conclu	usion	102	

6	CON	DNCLUSIONS AND SUGGESTIONS			
	6.1	Conclusions	10	13	
	6.2	Suggestions for Future Work	10)5	

REFERENCES

APPENDICES

LIST OF TABLES

TABLE NO	TITLE	PAGE
2.1	Different classes of dye and their characteristic	7
2.2	Characterization of the cotton wet processing wastewaters	12
2.3	List of organisms intensively decolorizing synthetic dyes	20
3.1	Component of CDM	33
4.1	Component mixes for electrophoresis	43
4.2	50X TAE buffer compositions	44
4.3	2X PCR Master Mix compositions	45
4.4	The universal primers that are used for the amplification of 16S rRNA gene	45
4.5	Components for PCR reaction	46
4.6	Thermal Profile for PCR Reaction	46

4.7	In situ analysis of raw textile wastewater	50
4.8	Laboratory analysis of textile wastewater	52
4.9	Colony Morphology and Gram's reaction for each single colony	55

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Chemical structure of C.I. Reactive Red 195 used in biodegradation experiments	9
2.2	Proposed mechanism for reduction of azo dyes by whole bacterial cells	15
2.3	Schematic representation of the different mechanisms of anaerobic azo dye reduction	18
2.4	Electron flow preference as a function of the different electron couples	28
4.1	Percentage of colour removal by bacterial cultures	56
4.2	Percentage of colour removal by mixed bacterial culture	57
4.3	Effect of carbon source on dye decolourization by bacteria	59
4.4	Effect of glucose concentration on dye decolourization	60
4.5	Effect of inoculum sizes (%v/v) on dye decolourization	61

4.6	Effects of pH on dye decolourization	62
4.7	Effects of nitrogen source on dye decolourization	63
4.8	Effect of nitrogen source concentration of NH_4Cl on dye decolourization	64
4.9	Effects of temperatures of dye decolourization	65
4.10	Effects of agitation on dye decolourization	66
4.11	Effects of SFRed dye concentration on dye decolourization	67
4.12	The PCR product of 16S rRNA fragment obtained using FDI-07 and rDI-07 primer sized of 1.5kb via PCR amplification.	68
4.13	Phylogram show phylogenetic relationships of bacterium R2 and selected <i>Paenibacillus sp.</i> from 16S rRNA sequences.	71
5.1	Comparison of azoreductase activity from different fraction assayed under aerobic and anaerobic condition	81
5.2	Effect of pH on azoreductase activity	83
5.3	Effect of temperature on azoreductase activity	84
5.4	Profile of colour removal and cell dry weight during Reactive Red 195 decolourization	85

- 5.5 Kinetic study on Reactive Red 195 (RR195) dye decolourization by 87
 Paenibacillus sp. R2.
- 5.6 Profile of specific decolourization rate and cell dry weight during 88Reactive Red 195 dye decolourization
- 5.7 Profile of colour removal and redox potential during Reactive Red 90195 decolourization
- 5.8 Correlation between log of colour removal rate and redox potential
 91 during Reactive Red 195 dye decolourization
- 5.9 Profile of colour removal and pH during Reactive Red 195 dye 92 decolourization
- 5.10 Profile of colour removal and Total Organic Carbon during Reactive
 93 Red 195 dye decolourization
- 5.11 Azo dye peaks before incubation (0h) of SFRed decolourization 96 obtained from HPLC-UV analyses.
- 5.12 Azo dye peaks after 18h incubation of SFRed decolourization 96 obtained from HPLC-UV analyses.
- 5.13 Azo dye peaks after 28h incubation of SFRed decolourization 97 obtained from HPLC-UV analyses.
- 5.14 Azo dye peaks after 40h incubation of SFRed decolourization 97 obtained from HPLC-UV analyses.

- 5.15 Azo dye peaks after 52h incubation of SFRed decolourization 98 obtained from HPLC-UV analyses.
- 5.16 Azo dye peaks after 66h incubation of SFRed decolourization 99 obtained from HPLC-UV analyses.
- 5.17 Azo dye peaks after two weeks incubation of SFRed decolourization99 obtained from HPLC-UV analyses.
- 5.18 Azo dye peaks after one month incubation of SFRed decolourization 100 obtained from HPLC-UV analyses.

LIST OF ABREVIATIONS AND SYMBOLS

μ	-	specific growth rate
λ	-	wavelength
$(NH_4)_2SO_4$	-	ammonium sulphate
Abs	-	absorbance
ADMI	-	American Dye Manufacturers Institute
Al	-	aluminum
APHA	-	American Public Health Association
AWW	-	autoclaved wastewater
BOD	-	biological oxygen demand
С	-	carbon
C.I	-	Colour Index
CaCl ₂	-	calcium chloride
Cd	-	cadmium
CDM	-	chemically defined medium
CDW	-	cell dry weight
Cl	-	chloride
Co	-	cobalt
COD	-	chemical oxygen demand
Cr	-	chromium
$CrO4_2^-$	-	chromates
$\operatorname{CrO_7}^{2-}$	-	dichromates
Cu	-	copper

d ⁻¹	-	per day
DAF	-	dissolve air floatation
dATP	-	deoxyadenosine 5'-triphosphate
dCTP	-	deoxycytosine 5' triphosphate
DF	-	dilution factor
dGTP	-	deoxyguanosine 5' triphosphate
DNA	-	deoxyribonucleic acid
dNTP	-	deoxynucleotide triphosphate
DO	-	dissolve oxygen
DOE	-	Department of Environment
dTTP	-	deoxythymidine 5'-triphosphate
EDTA	-	ethylene diamine tetra acetic acid
FAD	-	flavin adenine dinucleotide(oxidized)
FADH ₂	-	flavin adenine dinucleotide(reduced)
FeCl ₃	-	ferric chloride
FMN	-	flavin adenine mononucleotide (oxidezed)
FMNH ₂	-	flavin adenine mononucleotide (reduced)
FSTW	-	filter sterilized textile wastewater
gL ⁻¹	-	gram per litre
gt	-	generation time
H^+	-	hydrogen ion
h ⁻¹	-	per hour
H_2S	-	hydrogen sulphide
H_2SO_4	-	acid sulphuric
HCl	-	hydrochloric acid
HNO ₃	-	acid nitric
HPLC	-	high performance liquid chromatography
HRT	-	hydraulic retention time
HSO ₃	-	sulphite
IR	-	infrared
K	-	potassium

K_2CrO_4	-	potassium dichromate
K ₂ HPO ₄	-	dipotassium hydrogen phosphate
kb	-	kilobase
KH ₂ PO ₄	-	potassium dihydrogen phosphate
М	-	Molarity
mgL^{-1}	-	milligram per litre
MgCl ₂	-	magnesium chloride
$MgSO_4.7H_2O$	-	magnesium sulphate heptahydrate
MIC	-	minimal inhibitory concentration
MWr	-	molecular weight relative
N ₂	-	nitrogen gas
Na	-	sodium
NaCl	-	sodium chloride
NAD	-	nicotinamide adenine dinucleotide
NAD^+	-	nicotinamide adenine dinucleotide(oxidized)
NADH	-	nicotinamide adenine dinucleotide(reduced)
NADP	-	nicotinamide adenine dinucleotide phosphate
NADPH	-	nicotinamide adenine dinucleotide phosphate(reduced)
NaOH	-	sodium Hydroxide
NB	-	nutrient broth
NH ₄ Cl	-	ammonium chloride
NH ₄ NO ₃	-	ammonium nitrate
Ni	-	nikel
nm	-	nanometer
NMR	-	nuclear magnetic resonans
NO ₃	-	nitrate
O ₂	-	oxygen gas
OD _{600nm}	-	optical density at 600nm
Pb	-	plumbum
PCR	-	polymerase chain reaction
РНВ	-	polyhydroxybutyrate

PO ₄ ³⁻	-	phosphate
ppm	-	part per million
Pt-Co	-	platinum cobalt
PVC	-	polyvinylchloride
RB15	-	reactive blue 15
RM	-	redox mediator
RNase	-	ribonuclease
rpm	-	rotation per minute
RR195	-	reactive red 195
rRNA	-	ribosomal RNA
S	-	sulphur
SBR	-	sequencing batch reactor
SDS	-	sodium dodecyl sulphate
SEM	-	scanning electron microscope
SFRed	-	sufimix supra red
SO_4^{2-}	-	sulphate
TAE	-	tris-acetate buffer
TCA	-	tricarboxylic acid cycle
td	-	doubling time
T _m	-	melting point
TOC	-	total organic carbon
TON	-	total organic nitrogen
Tris	-	2-hydroxymethyl-2-methyl-1,3-propanediol
TSS	-	total suspended solid
U	-	enzyme unit
UV	-	ultraviolet
UV-vis	-	ultraviolet-visible
<i>v/v</i>	-	volume per volume
w/v	-	weight per volume
Zn	-	zink

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Wastewater treatment system and sampling points (raw wastewater) at a textile company located in Batu Pahat, Johor.	120
В	Process description for textile wastewater treatment at Ramatex	121
С	Spectrum of raw Textile wastewater (C1) and SFRed azo dye (C2) using UV-Vis Shimadzu Spectrophotometer	123
D	DOE parameter limits of effluent of Standard A & B	124
Е	Homology search of bacterial R2 using BLASTn from GenBank database of NCBI	125
F	Chromatogram for HPLC standard	126
G	Colony morphology and Gram's reaction for each single colony	128
Н	Correlation between OD _{600nm} and cell dry weight of <i>Paenibacillus sp.</i> R2	129
Ι	Standard curve of SFRed (Reactive Red 195) concentration at λ_{max} =517nm	130

xxiii

J	Highest alignment score full sequence of bacteria R2 using BLASTn from GeneBank database of NCBI	131
K	Full sequence of 16S rRNA of bacteria R2	132
L	Reverse phase-HPLC analytical parameters	134
М	Standard methods for the examination of water and wastewater	135
Ν	Preparation of buffers stock solution	140
0	Profile of <i>Paenibacillus sp.</i> R2 cell growth at the exponential/log phase.	143
Р	Experimental design of isolation, screening and characterization of dye degrading bacteria from textile wastewater.	144
Q	Stoichonometry calculation	145
R	Preparation of protein fraction from <i>Paenibacillus sp.</i> for azoreductase activity detection	147
S	Structure formulas of several dyes	148

CHAPTER 1

INTRODUCTION

1.1 Background studies

Dyes are classified according to their application and chemical structure. They are composed of a group of atoms responsible for the dye colour, called chromophores, as well as an electron withdrawing or donating substituents that cause or intensify the colour of the chromophores, called auxochromes (Christie, 2001). It is estimated that almost 10^9 kg of dyes are produced annually in the world, of which azo dyes represent about 70% by weight (Zollinger, 1987). Therefore, azo dyes can be considered as the most important group of synthetic colourants. They are generally considered as xenobiotic compounds that are very recalcitrant against biodegradative processes. Many dyes are visible in water at concentrations as low as 1 mgL⁻¹. Textile-processing wastewaters, typically with dye content in the range 10-200 mgL⁻¹ (O'Neill *et al.*, 1999), are usually highly coloured and when discharged in open waters presents an aesthetic problem. As dyes are designed to be chemically and photolytically stable, they are highly persistent in natural environments. The release of dyes may therefore present an ecotoxic hazard and introduces the potential danger of bioaccumulation that may eventually affect man by transport through the food chain.

Coloured wastewater is a consequence of batch processes both in the dye manufacturing and dye-consuming industries such as printing, cosmetics, plastics, food, drugs and biological stain. The annual market for dyes is more than 7 X 10^5 tonnes per year (Robinson, 2001). Two per cent of dyes that are produced are discharged directly in aqueous effluent, and 10% are subsequently lost during the textile colouration process (Easton, 1995). The main reason for dye loss is the incomplete exhaustion of dyes onto the fibre. Coloured wastewater is particularly associated with those reactive azo dyes that are used for dyeing cellulose fibres. These dyes make up approximately 30% of the total dye market (Kamilaki, 2000).

Azo dyes are generally persistent under aerobic conditions. However, under anaerobic conditions, they undergo relatively easy reductive fission, yielding aromatic amines. The latter compounds, in turn, generally require aerobic conditions for their degradation. Therefore, without adequate treatment, these dyes are stable and can remain in the environment for an extended period of time. For instance, the half-life of hydrolysed Reactive Blue 19 (RB19) is about 46 years at pH 7 and 25°C (Hao *et al.*, 2000). In addition to the environmental problem, the textile industry consumes large amounts of potable water. In many countries where potable water is scarce, this large water consumption has become intolerable and wastewater recycling has been recommended in order to decrease the water requirements. Therefore, because of their commercial importance and usage in many industries, the impact (Guaratini and Zanoni, 2000) and toxicity (Walthall and Stark, 1999; Tsuda *et al.*, 2001) of dyes that are released in the environment have been extensively studied.

In Malaysia, the textile industry is a major source of wastewater since there are more than 200 textile factories in this country (Rakmi, 1993). Textile wastewater accounts for 22% of the total volume of industrial wastewater produced in the country. It has a strong colour in the form of persistent organics and also variety of the other pollutants including chloride, ammonia, organic nitrogen, nitrate, phosphate and heavy metals such as Fe, Zn, Cu, Cr and Pb. Depletion of dissolved oxygen content in water bodies can have a serious effect on aquatic life. Hence, various wastewater treatment methods such as physico-chemical and biological methods, usually in a combination are applied to treat the effluent to the discharge limits (Zee, 2002)

Removal of dyes is a major concern when treating textile-processing wastewater. The vast majority (60-70%) of the more than 10,000 dyes applied in textile-processing industries are azo compounds, i.e. molecules with one or several azo (N=N) bridges linking substituted aromatic structures (Carliell *et al.*, 1995). Their discharge is undesirable, not only for aesthetic reasons, but also because many azo dyes and their breakdown products such as aromatic amines have been proven toxic to aquatic life and mutagenic to humans (Chung and Cerniglia, 1992).

Thus, a wide range of methods has been developed for the removal of synthetic dyes from waters and wastewaters to decrease their impact on the environment. Various physicochemical techniques include membrane filtration, coagulation/flocculation, precipitation, flotation, adsorption on inorganic or organic matrices, ion exchange, ion pair extraction, ultrasonic mineralisation, electrolysis, advanced oxidation (chlorination, bleaching, ozonation, Fenton oxidation and photocatalytic oxidation) and chemical reduction. In addition, biological pre-treatment, main treatment and post treatment techniques include bacterial and fungal (microbiological or enzymatic decomposition) biosorption and biodegradation in aerobic, anaerobic, anoxic or combined anaerobic/aerobic treatment processes can be employed to remove colour from dye containing wastewaters (Hao *et al.*, 2000). Enzymatic biodegradation involved an enzyme produced by the microorganisms called azoreductases, which can reductively cleavage the azo bond, -N=N- (Stolz, 2001).

In general, each technique has its limitations. The efficacy of the various methods of dye removal, such as chemical precipitation, chemical oxidation, and adsorption along with their effects on subsequent biological treatment was compared in an earlier paper (Tunay *et al.*, 1996). Currently, microbial biodegradation has become a promising approach for dye treatment because it is cheaper, effective and more environmentally friendly. The ability of microorganisms to carry out dye decolourization has received much attention. Microbial decolourization and degradation of dyes is seen as a cost-effective method for removing these pollutants from the environment. Therefore, in this thesis, pure bacterial culture was successfully isolated and used for the transformation of azo dyes to non-coloured intermediates and/or even to partially mineralize them, which are safe and less toxic to the environment. The summary of the experimental design carried out in this study is shown in Appendix P.

1.2 Objectives of the study

The present study was aimed at investigating the ability of potential bacteria to degrade dyes with the specific objectives: -

- 1. To isolate, screen and characterize potential dye degrading bacteria from raw textile wastewater.
- 2. To optimize physical and chemical condition for azo dye decolorization by selected bacteria in synthetic medium.
- To determine enzyme localization and azoreductase activity for Reactive Red 195 colour removal using selected bacteria.
- 4. To analyze biodegradation products of Reactive Red 195 and its intermediate in synthetic medium using selected bacteria.