BEACH RESPONSE DUE TO THE PRESSURE EQUALIZATION MODULES (PEM) SYSTEM

MOHD SHAHRIZAL BIN AB RAZAK

A project report submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Hydraulics and Hydrology)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2009

Especially dedicated to my beloved family, fellow friends and to everyone who involves in my life, you will always be in my heart.....

ACKNOWLEDGEMENT

I would like to convey my sincerest thanks to my supervisor Professor Hadibah Binti Ismail for her dedicated guidance, valuable assistance and endless encouragement throughout the accomplishment of this project.

I am grateful to the staff of Department of Irrigation and Drainage Malaysia who had been very helpful in providing assistance throughout the work. Special thanks are also extended to Director of Department of Irrigation and Drainage, Malaysia for his permission to allow the accessibility of data for this project. My thanks are also extended to other lecturers for their advice whether directly or indirectly in improving my Master Project. Also not forgetting my friends especially Mr. Bahman Esfandiar Jahromi, Miss Hasmida Hamza, and Mr. Abdul Haslim Shukor Lim for their guidance in helping me to clarify any problems related to this study.

I am indebted to my employer Universiti Putra Malaysia and Ministry of Higher Education for providing me the opportunity and the financial means to pursue this study. Last but not least, my deepest and eternal gratitude to all those who had helped directly or indirectly in my project.

ABSTRACT

Coastal erosion is a significant problem with dramatic effects on the coastline. There is an urgent need to introduce new and cost-effective measures that can mitigate the impacts on the shoreline. This study has been initiated to investigate the response of the beach at Teluk Cempedak due to the beach nourishment and Pressure Equalization Modules (PEM) system. The objectives of this study are the determination of closure depth and effectiveness of the system in treating the erosion process. The depth of closure was examined using both data from a series of beach profile surveys and from empirical formulae. The widely accepted Fixed Depth Change (FDC) method was explored and the h_c before and after the installation of PEM system was investigated. The research found that multiple closure points can occur along the profile lines. The closure depth after the installation of PEM system was found to be deeper and the closure point is further seaward at the southern part of the beach. The Hellemeier's equation over predict h_c by 76 %, however it reveals that the equation is still robust in determining an upper limit of h_c. The simplified equation was developed at Teluk Cempedak beach in predicting closure depth and can be equated to 0.98 times $H_{0.137}$. From the survey data, it is found that after three years, the total sand volume and beach elevation are significantly higher in PEM areas. Generally, the result presented indicates the decreasing value of rate of erosion. Thus it revealed that PEM system is able to stimulate accretion of sand and yet slow down the erosion process. However, based on the sand volume distribution pattern, after three years, it is obviously seen that the accretion of sand occurring at the northern part while erosion process is taking place in the southern part of the beach. Based on the distribution pattern of bed elevation over the chainage, overall, the upper part of the beach is convex unlike earlier *i.e* before the installation of PEM system, where the beach was low and concave. This phenomena indicates that the system contribute to a significant accretion of sand and thus created a higher beach level at about 10 m to 55 m towards the sea. However, this trend only can be seen at a certain chainage. The PEM efficiency in terms of increment in bed elevation can only be observed at CH 400 till CH 800 while at CH 900 towards the south, the efficiency is decreasing. This shows that the accretion of sand is only occurring at the northern part and the beach is eroding at the southern part. Therefore, based on the available four years record of data, there is a certain part of the beach benefiting from the PEM system. However, some parts are still experiencing the erosion process.

ABSTRAK

Hakisan pantai merupakan masalah ketara yang memberi kesan kepada perairan pantai. Oleh itu, terdapat tindakan segera untuk memperkenalkan kaedah baru dan lebih menjimatkan yang mana dapat mengatasi masalah hakisan pantai ini. Kajian ini telah dijalankan untuk menyiasat tindak balas pantai terhadap penambakan pantai (beach nourishment) dan sistem Pressure Equalization Modules (PEM). Objektif utama kajian ini adalah penentuan kedalaman tertutup (closure depth) dan keberkesanan sistem dalam merawat hakisan pantai. Kedalaman tertutup telah dikenalpasti menggunakan kedua-dua data iaitu data ukur bersiri dan formula empirikal. Kaedah Perubahan Kedalaman Tetap telah digunakan dan kedalaman tertutup sebelum dan selepas pemasangan sistem PEM telah disiasat. Kajian menunjukkan bahawa beberapa kedalaman tertutup boleh berlaku di sepanjang garis ukur. Kedalaman tertutup selepas pemasangan sistem PEM didapati lebih dalam dan lokasi titik kedalaman tertutup jauh menghala ke tengah laut khususnya di bahagian selatan pantai. Persamaan Hellemeier didapati lebih tinggi dengan lebihan purata 76 % bagaimanapun mendedahkan bahawa persamaan ini masih kukuh bagi menentukan nilai had teratas untuk h_c Persamaan ringkas telah dicipta bagi pantai Teluk Cempedak dalam menentukan kedalaman tertutup dan boleh disamakan dengan 0.98 kali ketinggian ombak H_{0.137}. Daripada data ukur juga, jumlah isipadu pasir and ketinggian pantai didapati lebih tinggi di kawasan pemasangan sistem PEM selepas tiga tahun pemantauan dijalankan. Umumnya, hasil keputusan menunjukkan bahawa kadar hakisan telah menurun. Ini menunjukkan bahawa sistem PEM berupaya mengumpul pasir sekaligus melambatkan proses hakisan. Walaubagaimanapun, berdasarkan kepada jumlah pengagihan isipadu pasir, jelas menunjukkan bahawa pengumpulan pasir hanya terjadi di bahagian utara pantai manakala proses hakisan masih berlaku di bahagian selatan pantai. Berdasarkan kepada bentuk pengagihan bagi ketinggian pantai pula, secara keseluruhannya, bahagian atas pantai lebih cembung berbanding sebelumnya yang mana ianya lebih cekung. Fenomena ini menunjukkan bahawa sistem PEM menyumbang kepada pengumpulan pasir seterusnya meningkatkan ketinggian pantai pada jarak 10 m hingga 55 m menghala ke arah laut. Bagaimanapun, keadaan ini hanya berlaku di kawasan-kawasan tertentu sahaja. Keberkesanan PEM dari segi peningkatan ketinggian pantai hanya berlaku di CH 400 hingga CH 800 sementara di CH 900 menghala ke selatan pantai pula menunjukkan penurunan peratus keberkesanan. Ini menunjukkan bahawa pengumpulan pasir terjadi di bahagian utara pantai manakala proses hakisan masih berlaku di bahagian selatan pantai. Oleh yang demikian, berdasarkan kepada data ukur bagi 4 tahun kerja pemantauan, terdapat sebahagian kawasan pantai yang mendatangkan manfaat daripada sistem PEM manakala sebahagiannya lagi masih mengalami proses hakisan.

TABLE OF CONTENTS

TITLE	i
CONFESSION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	XV
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	XX
LIST OF SYMBOLS	xxii
LIST OF APPENDIX	xxiv

CHAPTER TITLE

PAGE

Ι	INTRODUCTION		
	1.1	Introduction	1
	1.2	Statement of Problem	4
	1.3	Objectives of Study	6

1.4	Scope of Study				
	1.4.1	Study Area	7		
	1.4.2	Data Collection and Analysis	8		
	1.4.3	Determination of Closure Depth	9		
1.5	Termi	erminology Used in This Study			
	1.5.1	Beach Nourishment	9		
	1.5.2	Closure Depth	10		
	1.5.3	Equilibrium Profile	10		
	1.5.4	Pressure Equalization Modules System	11		
1.6	Impor	tance of Study	11		

II	LITERATURE REVIEW		
	2.1	Introduction	13

PART A: BEACH NOURISHMENT/ DEPTH OF CLOSURE/ BEACH EQUILIBRIUM PROFILE

2.2	Beach Nourishment			
	2.2.1	Definition(s) of Beach Nourishment from		
		Different Perspectives	15	
	2.2.2	Advantages and Disadvantages of Beach		
		Nourishment Activities	16	
2.3	Identi	fication of the Depth of Closure	18	
	2.3.1	Estimation of the Depth of Closure	23	
	2.3.2	Depth of Closure and Vertical Datum	24	
2.4	Previo	ous Case Study- Determination of Depth of Closure	24	

	2.4.1 Oc	ean City, Maryland	25
	2.4.2 Pria	a de Fero, Algarve, South Portugal	25
	2.4.3 Ke	lantan Coast, Malaysia	26
2.5	Equilibriu	n Beach Profile	27

PART B: PRESSURE EQUALIZATION MODULE (PEM) SYSTEM

2.6	Pressure Equalization Module (PEM) System				
	Application Concept	30			
	2.6.1 The Advantage of PEM System	32			
2.7	Design Criteria of Pressure Equalization Module (PEM)				
	System at Teluk Cempedak Beach, Kuantan	33			
	2.7.1 System Installation	35			

III	RESI	RESEARCH METHODOLOGY		
	3.1	Introd	uction	39
	3.2 Study Area			40
	3.3	Data S	Set	43
		3.3.1	Beach Profile Survey	43
		3.3.2	Winds and Waves Data	44
		3.3.3	Tidal Data	44
		3.3.4	Bed Sediment Data	45
	3.4	Measu	rement Techniques	47
		3.4.1	Beach Profile Measurement	47
		3.4.2	Historical Shoreline Changes	48

		3.4.3	Tidal Data Measurement	49
		3.4.4	Aerial Photograph	49
3	.5	Data A	Analysis	50
		3.5.1	Determination of Depth of Closure from	
			Beach Data Profile	50
		3.5.2	Determination of Depth of Closure from	
			Empirical Formula	53
3	.6	PEM]	Effectiveness Evaluation	53

IV	DATA ANALYSIS AND RESULTS			
	4.1	Introd	uction	56
	4.2	Descr	iption of Study Area	57
	4.3	Data S	Set	58
		4.3.1	Beach Profile Survey	59
		4.3.2	Wave Data Analysis	62
		4.3.3	Tidal Height Information	64
		4.3.4	Sediment Properties	65
	4.4	Deter	mination of Depth of Closure from Beach Profile	
		Surve	у	69
	4.5	Depth	of Closure for Pre-Project Condition (2003)	69
		4.5.1	Closure Depth at CH 700 and CH 1400	69
		4.5.2	Closure Depth at CH 100	70
		4.5.3	Closure Depth at CH 200	71
		4.5.4	Closure Depth at CH 300	72
		4.5.5	Closure Depth at CH 400	73
		4.5.6	Closure Depth at CH 500	74

	4.5.7	Closure Depth at CH 600	75
	4.5.8	Closure Depth at CH 800	76
	4.5.9	Closure Depth at CH 900	77
	4.5.10	Closure Depth at CH 1000	78
	4.5.11	Closure Depth at CH 1100	79
	4.5.12	Closure Depth at CH 1200	80
	4.5.13	Closure Depth at CH 1300	81
4.6	Summ	ary of Depth of Closure for Pre-Project Condition	82
4.7	Depth	of Closure for Post-Project Condition	83
4.8	2005 E	Beach Profile	83
	4.8.1	Closure Depth at CH 100	84
	4.8.2	Closure Depth at CH 200	85
	4.8.3	Closure Depth at CH 300	86
	4.8.4	Closure Depth at CH 400	87
	4.8.5	Closure Depth at CH 500	88
	4.8.6	Closure Depth at CH 600	89
	4.8.7	Closure Depth at CH 700	90
	4.8.8	Closure Depth at CH 800	91
	4.8.9	Closure Depth at CH 900	92
	4.8.10	Closure Depth at CH 1000	93
	4.8.11	Closure Depth at CH 1100	94
	4.8.12	Closure Depth at CH 1200	95
	4.8.13	Closure Depth at CH 1300	96
	4.8.14	Closure Depth at CH 1400	97
4.9	Summ	ary of Depth of Closure for	
	2005 F	Post-Project Condition	98
4.10	2006 F	Beach Profile	99

	4.10.1 Closure Depth at CH 100	99
	4.10.2 Closure Depth at CH 200	100
	4.10.3 Closure Depth at CH 300	101
	4.10.4 Closure Depth at CH 400	102
	4.10.5 Closure Depth at CH 500 until CH 800	103
	4.10.6 Closure Depth at CH 900	105
	4.10.7 Closure Depth at CH 1000	106
	4.10.8 Closure Depth at CH 1100 and CH 1200	107
	4.10.9 Closure Depth at CH 1300	109
	4.10.10Closure Depth at CH 1400	110
4.11	Summary of Depth of Closure for	
	2006 Post-Project Condition	111
4.12	2007 Beach Profile	112
	4.12.1 Closure Depth at CH 100	112
	4.12.2 Closure Depth at CH 200	113
	4.12.3 Closure Depth at CH 300	114
	4.12.4 Closure Depth at CH 500	115
	4.12.5 Closure Depth at CH 600	116
	4.12.6 Closure Depth at CH 700	117
	4.12.7 Closure Depth at CH 800	118
	4.12.8 Closure Depth at CH 900	119
	4.12.9 Closure Depth at CH 1000	120
	4.12.10Closure Depth at CH 1100	121
	4.12.11Closure Depth at CH 1200	122
	4.12.12Closure Depth at CH 1300	123
	4.12.13Closure Depth at CH 1400	124
4.10		

4.13 Summary of Depth of Closure for

	2007 Post-Project Condition	125
4.14	Comparison of h_c between Pre-Project Condition and	
	Post-Project Condition	126
4.15	Estimation of Predictive Closure Depth by	
	Hallemeier's Equation	128
4.16	PEM Effectiveness Evaluation	130
	4.16.1 Total Sand Volume Changes	130
	4.16.2 Beach Level Changes	136
	4.16.3 Distribution Pattern of Beach Level Changes	137
	4.16.4 PEM Efficiency	139

V	CON	CLUSI	ONS AND RECOMMENDATIONS	143
	5.1	Introd	uction	143
	5.2	Recon	nmendation	147
		5.2.1	Criteria of Limit Line	147
		5.2.2	Standard Deviation Depth Change (SDDC)	
			Method	148
		5.2.3	Profile Survey	148
		5.2.4	Predictive Formula for Each Chainage	149
REFERENC	ES			150

APPENDICES	
------------	--

xiv

154

LIST OF TABLES

NO.	TITLE	PAGE
1.1	List of Coastal Erosion Areas in Malaysia	5
4.1	Data Available for This Study	58
4.2(a)	Centerline Coordinates of Selected Survey Data Set and	
	Its Correspondence Depth (Before Installation of	
	PEM System)	61
4.2(b)	Centerline Coordinates of Selected Survey Data Set and	
	Its Correspondence Depth (After Installation of	
	PEM System)	61
4.3	Tidal Level Along Study Shoreline (meter, LSD)	65
4.4	Summary of Design Size Ranges for Borrow Sand	67
4.5(a)	Sand Size Analysis (upper beach face for pre-project condition)	68
4.5(b)	Sand Size Analysis (lower beach face for pre-project condition)	68
4.6	Closure Depth for 2003 Pre-Project Profile	82
4.7	Closure Depth for 2005 Post-Project Profile	98
4.8	Closure Depth for 2006 Post-Project Profile	111
4.9	Closure Depth for 2007 Post-Project Profile	125
4.10	h_c Simplified Equation Compared with Effective $h_{c \ 2007}$	128
4.11	Total Sand Volume and Sand Gain or Loss at the Study Area	132
4.12	PEM Efficiency	140

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	The Location of Study Area at Teluk Cempedak Beach, Kuanta	in 7
2.1	Schematic Diagram of the Depth of Beach Profile Closure	19
2.2	Definition Sketch of the Closure Depth	20
2.3	Pressure Equalization Module – schematization	30
2.4	PEM Function Dewatering the Beach	32
2.5	Design of Pressure Equalization Module Pipes	34
2.6	Preparation for PEM Installation on 9 th July 2004	37
2.7	Preparation of borehole for PEM Installation on 9 th July 2004	37
2.8	Placement of PEM Pipe	38
2.9	Exposed PEM Pipe at Chainage 800	38
3.1	Site Study Area	40
3.2	The Beach Slope is Steeper Due to Erosion Problem	41
3.3	The Beach is Narrower and Recreational Activities are Limited	
	for Beach Visitor	41
3.4(a)	Beach Condition Before the Installation of PEM System	42
3.4(b)	Beach Condition After the Installation of PEM System	42
3.5	Location of Sediment Samples and Sand Source	46
3.6	The Algorithm of Closure Depth Determination	52

3.7	Research Methodology Chart	55
4.1	Profile Line at Study Area	60
4.2	Histogram of Design Wave Height	62
4.3	$H_{0.137}$ Wave from SSMO Wave Data (1949-1983)	63
4.4	Relationship between Wave Height and Wave Period	64
4.5	Plan View for Distribution of Design Sand Size	67
4.6	Closure Depth (h _c) at CH 100 for 2003 Pre- Project Profile	70
4.7	Closure Depth (h _c) at CH 200 for 2003 Pre- Project Profile	71
4.8	Closure Depth (h _c) at CH 300 for 2003 Pre- Project Profile	72
4.9	Closure Depth (h _c) at CH 400 for 2003 Pre- Project Profile	73
4.10	Closure Depth (h _c) at CH 500 for 2003 Pre- Project Profile	74
4.11	Closure Depth (h _c) at CH 600 for 2003 Pre- Project Profile	75
4.12	Closure Depth (h _c) at CH 800 for 2003 Pre- Project Profile	76
4.13	Closure Depth (h _c) at CH 900 for 2003 Pre- Project Profile	77
4.14	Closure Depth (h _c) at CH 1000 for 2003 Pre- Project Profile	78
4.15	Closure Depth (h_c) at CH 1100 for 2003 Pre- Project Profile	79
4.16	Closure Depth (h _c) at CH 1200 for 2003 Pre- Project Profile	80
4.17	Closure Depth (h _c) at CH 1300 for 2003 Pre- Project Profile	81
4.18	Closure Depth (h _c) at CH 100 for 2005 Post- Project Profile	82
4.19	Closure Depth (h_c) at CH 200 for 2005 Post - Project Profile	83
4.20	Closure Depth (h_c) at CH 300 for 2005 Post - Project Profile	86
4.21	Closure Depth (h_c) at CH 400 for 2005 Post - Project Profile	87
4.22	Closure Depth (h_c) at CH 500 for 2005 Post - Project Profile	88
4.23	Closure Depth (h_c) at CH 600 for 2005 Post - Project Profile	89
4.24	Closure Depth (h_c) at CH 700 for 2005 Post - Project Profile	90
4.25	Closure Depth (h _c) at CH 800 for 2005 Post - Project Profile	91
4.26	Closure Depth (h_c) at CH 900 for 2005 Post - Project Profile	92

4.27	Closure Depth (h _c) at CH 1000 for 2005 Post - Project Profile	93
4.28	Closure Depth (h_c) at CH 1100 for 2005 Post - Project Profile	94
4.29	Closure Depth (h_c) at CH 1200 for 2005 Post - Project Profile	95
4.30	Closure Depth (h_c) at CH 1300 for 2005 Post - Project Profile	96
4.31	Closure Depth (h_c) at CH 1400 for 2005 Post - Project Profile	97
4.32	Closure Depth (h_c) at CH 100 for 2006 Post - Project Profile	99
4.33	Closure Depth (h_c) at CH 200 for 2006 Post - Project Profile	100
4.34	Closure Depth (h_c) at CH 300 for 2006 Post - Project Profile	101
4.35	Closure Depth (h_c) at CH 400 for 2006 Post - Project Profile	102
4.36	Closure Depth (h_c) at CH 500 for 2006 Post - Project Profile	103
4.37	Closure Depth (h_c) at CH 600 for 2006 Post - Project Profile	104
4.38	Closure Depth (h_c) at CH 700 for 2006 Post - Project Profile	104
4.39	Closure Depth (h_c) at CH 800 for 2006 Post - Project Profile	105
4.40	Closure Depth (h_c) at CH 900 for 2006 Post - Project Profile	106
4.41	Closure Depth (h_c) at CH 1000 for 2006 Post - Project Profile	107
4.42	Closure Depth (h_c) at CH 1100 for 2006 Post - Project Profile	108
4.43	Closure Depth (h_c) at CH 1200 for 2006 Post - Project Profile	108
4.44	Closure Depth (h_c) at CH 1300 for 2006 Post - Project Profile	109
4.45	Closure Depth (h_c) at CH 1400 for 2006 Post - Project Profile	110
4.46	Closure Depth (h_c) at CH 100 for 2007 Post - Project Profile	112
4.47	Closure Depth (h_c) at CH 200 for 2007 Post - Project Profile	113
4.48	Closure Depth (h_c) at CH 300 for 2007 Post - Project Profile	114
4.49	Closure Depth (h_c) at CH 500 for 2007 Post - Project Profile	115
4.50	Closure Depth (h_c) at CH 600 for 2007 Post - Project Profile	116
4.51	Closure Depth (h_c) at CH 700 for 2007 Post - Project Profile	117
4.52	Closure Depth (h_c) at CH 800 for 2007 Post - Project Profile	118
4.53	Closure Depth (h_c) at CH 900 for 2007 Post - Project Profile	119

4.54	Closure Depth (h_c) at CH 1000 for 2007 Post - Project Profile	120
4.55	Closure Depth (h_c) at CH 1100 for 2007 Post - Project Profile	121
4.56	Closure Depth (h_c) at CH 1200 for 2007 Post - Project Profile	122
4.57	Closure Depth (h_c) at CH 1300 for 2007 Post - Project Profile	123
4.58	Closure Depth (h_c) at CH 1400 for 2007 Post - Project Profile	124
4.59	Closure Depth at Teluk Cempedak beach, Kuantan	127
4.60	Closure Point at Teluk Cempedak beach, Kuantan	127
4.61	Total Sand Volume (m ³)	131
4.62	Sand Gain and Loss for Year 2005	134
4.63	Sand Gain and Loss for Year 2006	134
4.64	Sand Gain and Loss for Year 2007	135
4.65	Sand Volume Distribution Pattern	135
4.66	Average Beach Level 70 m wide	136
4.67	Beach Level at CH 400 and CH 500	137
4.68	Beach Level at CH 600 and CH 700	138
4.69	Beach Level at CH 800 and CH 900	138
4.70	Beach Level at CH 1000 and CH 1100	138
4.71	Beach Level at CH 1200 and CH 1300	139
4.72	PEM Efficiency at CH 400 and CH 500	141
4.73	PEM Efficiency at CH 600 and CH 700	141
4.74	PEM Efficiency at CH 800 and CH 900	141
4.75	PEM Efficiency at CH 1000 and CH 1100	142
4.76	PEM Efficiency at CH 1200 and CH 1300	142

LIST OF ABBREVIATIONS

CED	Coastal Engineering Division
CEM	Coastal Engineering Manual
СН	Chainage
cm	centimeter
DID	Department of Irrigation and Drainage Malaysia
EDM	Electronic Distance Measuring
FDC	Fixed Depth Change
h _c	Depth of Closure
HAT	Highest Astronomical Tide
LAT	Lowest Astronomical Tide
LSD	Land Survey Datum
m	meter
mm	millimeter
MSL	Mean Sea Level
MHW	Mean High Water
MHHW	Mean Higher High Water
MLHW	Mean Lower High Water
MLW	Mean Low Water
MHLW	Mean Higher Low Water

MLLW Mean Lower Low Water

MMD Malaysian Meteorological Department

MRCB Malaysia Resource Corporation Berhad

- NOS National Ocean Survey
- PEM Pressure Equalization Modules
- SDDC Standard Deviation Depth Change
- SSMO Synoptic Shipboard Meteorological Observation
- USGS U.S Geological Survey Quadrangles

LIST OF SYMBOLS

А	profile scale parameter with dimensions of length to the 1/3 power
D ₁₆	size of material of which 16% is finer
D ₅₀	size of material of which 50% is finer
D ₈₄	size of material of which 84% is finer
$D_c\!/\;h*\!/h_c$	closure depth
g	gravity
h	water depth at distance y from the shoreline
h _{Ci}	depth of closure, innershore; from profile survey
h _{cm}	depth of closure, middleshore; from profile survey
h _{co}	depth of closure, outershore; from profile survey
H _e	non breaking significant wave height that is exceeded 12 hour per t years or ($100/730t$)% of the time
H _{0.137}	significant wave height exceeded 12 hours in a year
\overline{H}/H_s	annual mean significant wave height
m	fore shore slope of the beach profile
t	time
T _e	wave period associated with H _e

- y equilibrium beach profile
- v_b amplitude of the wave induced bottom velocity
- ρ mass densities of water
- ρ_s mass densities of sediment
- σ_H standard deviation

LIST OF APPENDIX

APPENDIX TITLE

PAGE

A Profile Surveys from the Coastline of Pantai Teluk Cempedak
Kuantan 2003, 2005, 2006, and 2007
154

CHAPTER I

INTRODUCTION

1.1 Introduction

Land based activities and natural physical processes have resulted in significant modifications of the shorelines in many countries, with drastic effects on the coastal geomorphology as well as on the coastal infrastructures. There is an urgent need to introduce new and cost-effective measures that can mitigate the impacts on the shorelines. In many locations, coastal erosion is a significant problem with dramatic effects on the coastline. The impact on coast-near infrastructures and property can be massive. Until now the urgent need for coastal erosion protection, has forced society to use costly solutions with bulky constructions and beach nourishment, where the dredging part of the process is very hostile to the marine environment.

Coastal protection can generally be divided into hard engineering and soft engineering (Ghazali, 2005). Hard engineering structures such as revetments, seawalls, bulkheads and groynes are considered traditional erosion protection structures with distinct functions. These are typically constructed of quarry stones or concrete units. Seawalls and revetments are constructed parallel to the shoreline and form a barrier between waves and the coast. Whilst preventing any further loss of material landwards, waves reflected by the seawall causes scouring at the toe in front of the seawall and eventual lowering of the beach. Thus where recreational space is concerned, the use of seawalls and revetments are not beneficial in the long run as the end result is a deepening or steepening of the sea bed in front of the structure resulting in loss of beach space.

The term 'soft engineering' is normally used to describe methods that depart from hard protection structures that use quarry stones or concrete blocks as the main structural component. The use of sand either as a fill material placed directly on the eroding beach or encased within geotextiles are amongst the methods that qualify as soft engineering. In beach nourishment, loose sediments are imported and placed on the target beach to form a wider beach berm as a buffer for waves. The 'new' beach will then continue to be shaped by the natural forces i.e. wind, wave and tidal currents, to an equilibrium shape. Beach nourishment is now common and is the preferred method of protecting or rehabilitating eroding recreational beaches (Ghazali, 2004). The construction process however involves dredging, transport and placement of sand in a marine environment which causes water quality problems, habitat displacement and stress to marine life. Beach nourishment is also considered semi-permanent and requires replenishment as time progresses. Beach nourishment, also called artificial nourishment, replenishment, beach fill, and restoration, comprises the placement of large quantities of good quality sand within the near-shore system usually to address a continuing deficit of sand, manifested by shoreline recession (Dean, 2002). The term nourishment applies to both the initial placement of material and to later nourishments for the projects where multiple placements occur. The terms beach nourishment may be used to differentiate between material that is placed on the sub-aerial beach and its underwater extensions from profile nourishment or berm placement which involves the placement of material offshore with the anticipation that either the material will provide protection to the shore from erosion by reducing the effects of waves.

SIC, Skagon Innovation Centre (Jakobsen, 2007) has invented an environmentally friendly coastal protection system. The SIC system is based on Pressure Equalization Modules (PEM). A long term and comprehensive test of the efficiency has been carried out on the west coast of Denmark. Furthermore, a three year scientific research programme was performed in year 2005. The obtained result shows that the system is far more efficient than conventional methods such as groins, breakwaters, and sand nourishment. Due to the well-known lee side erosion effect, groins and breakwaters create even greater erosion in adjacent coastal areas. Furthermore, Jakobsen reported that sand nourishment by dredging is in general terms a very expensive approach (about 130,000 USD/km/year in Denmark), but unfortunately, it is an inefficient solution since usually the sand will disappear during the first spring period.

1.2 Statement of Problem

The evolution of the coast is produced by natural processes that occur on a broad time scale ranging from hours to millennia. Beach erosion is one such process that occurs when the losses of beach sediment exceed the gains. As this volume of sediment decreases, the beaches become narrower. When backed by fixed developments, beaches are unable to respond naturally to changes, resulting in a cessation of beach/dune interactions, instability of the fronting beach, and a reduction of sediment inputs into the sediment budget. In the absence of development, coastal erosion is not a hazard. The presence of large and expensive communities in the coastal zone creates the potential for major disasters resulting from erosion. Erosion is typically episodic, either with the shore recovering afterward or with the episodes being cumulative and leading to a progressive retreat of the shoreline and property losses. The erosional impact on properties depends on the width of the buffering beach and on the nature of the beach as defined by the morphodynamics model of Wright and Short (1983).

Malaysia has about 4809 km of coastline. Of the 4809 km of coastline, about 1415 km is at present subject to erosion of various degree of severity (Annual Report DID, 2007). Along the coast, sediment is continuously being moved. When the rate of sediment entering and leaving the coast equals, the coast is said to be in dynamic equilibrium. Erosion occurs when, over a period of time, the volume of sediment transported out is greater than that transported into the coast. It follows that the reverse will result in accretion. The erosion process occurs continuously and as a result, the beach slowly retreats. This is normally indicated by the formation of beach scarp along the coast.

Erosion may be amplified during monsoon period when high water levels, associated with the season, result in waves breaking directly against the scarp, causing loss of material. Though, some of this material might be returned to the shore by the swells after the monsoon, the quantity returned is normally much less; hence the nett result is erosion. Control of coastal erosion has now become an important economic and social need. Table 1.0 shows the list of coastal erosion areas in Malaysia. From this table, it can be concluded that 73.40 % or 52.1 km of the total length of coastline in Pahang area has been eroded. To this end, the government is implementing a strategy to control the erosion problem. The government has spent about RM 15,400,000.00 to invest in a new system for control of coastal erosion called the Pressure Equalization Module (PEM). The system has been successfully installed at the Teluk Cempedak beach in Pahang and is the first coastal erosion project applying this method in Malaysia and Asia (Annual Report DID, 2004).

	Length of Coastline	Length	of Coastline Havi	Total Length of Coastline			
64040		Category 1	Category 2	Category 3	Having	Having Erosion	
State		CRITICAL EROSION	SIGNIFICANT EROSION	ACCEPTABLE EROSION			
	(km)	(km)	(km)	(km)	(km)	(%)	
State		Length Critically Eroded					
Perlis	20	4.4	3.7	6.4	14.5	72.50	
Kedah	148	31.4	2.2	6.9	43.5	29.40	
Pulau Pinang	152	42.4	19.7	1.1	53.2	41.60	
Perak	230	28.3	18.8	93.1	140.2	61.00	
Selangor	213	63.5	22.3	66.1	151.9	71.30	
N.Sembilan	58	3.9	7.7	12.9	24.5	42.20	
Melaka	73	15.6	15.1	6	36.7	50.30	
Johor	492	28.9	50.3	155.6	234.8	47.70	
Pahang	271	12.4	5.2	37.6	52.1	73.4	
Terengganu	244	20	10	122.4	152.4	62.50	
Kelantan	71	5	9.5	37.6	52.1	73.40	
W.P Labuan	59	2.5	3	25.1	30.6	51.90	
Sarawak	1035	17.3	22.3	9.6	49.2	4.80	
Sabah	1743	12.8	3.5	279.2	295.5	17.00	
Total	4809	288.4	193.3	932.8	1,415	29.41 %	
		6.0 %	4.0 %	19.4 %			

Table 1.0: List of Coastal Erosion Areas in Malaysia

Source: Annual Report, Department of Irrigation and Drainage, (DID) Malaysia (2007)

Based on the Detailed Design Report 2006, Teluk Cempedak beach has a history of erosion. The beach area has undergone slow and steady erosion that has resulted in the narrowing of the beach area, which has affected adversely on the recreational and tourist activity in this area. Although the beach is classified as stable under the National Coastal Engineering Study (NCES) of 1985, at present the average retreat rate is estimated to be 0.8 m/year. If protective measures are not taken, the beach eventually will be eroded, and the ocean waves approach the land will endanger the properties located along the beachfront and in the hinterland. At present, coastal structures of various designs had been built to protect the public recreational areas occupying the northern part of the beach and the hotels on the southern part. However more efforts are needed to protect and develop the beach to be among the best tourists' attractions in Malaysia.

1.3 Objectives of Study

The main objective of this study is to investigate the response of the Teluk Cempedak beach due to installation of the Pressure Equalization Module (PEM) system. The specific objective of this study is to determine the depth of closure due to the installation of the Pressure Equalization Modules (PEM) system as well as to evaluate the PEM effectiveness based on total sand volume and beach level retained on the beach after a specific time period. A comparison of results before and after the installation of PEM system has been successfully investigated.

1.4.1 Study Area

The location of the study area is at Teluk Cempedak on the East Coast of Peninsular Malaysia near the town of Kuantan (see Figure 1.1). Teluk Cempedak is situated in a pocket bay adjacent to Hyatt- and Sheraton Hotel and has a total length of 1100 metres. The beach called Teluk Cempedak is one of the main tourist attractions in Pahang, where there are hotels and eateries occupying the northern portion of the beach, while Hyatt and Sheraton hotels are situated in the southern part. The beach is located between the headlands of Tanjung Pelindung Tengah and Tanjung Tembeling, with Sungai Cempedak draining into the northern end of the bay. This river drains Bukit Pelindung and discharges some sediment and moderately polluted water from developed areas within its catchment. The bay has been developed for public recreation as well as for local and international tourism activities.

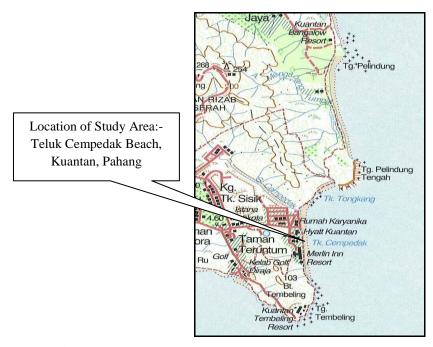


Figure 1.1: The Location of Study Area at Teluk Cempedak Beach, Kuantan

1.4.2 Data Collection and Analysis

Data collection is the most important part of this study. Data made available in this study comprise the following:-

- (i) Profile survey data.
- (ii) Bathymetric data.
- (iii) Wave data.
- (iv) Wind data.
- (v) Tidal data.
- (vi) Bed sediment data.

A detailed description of this data is discussed in the following chapter. This data had been used to determine the depth of closure by using analytical procedure. Data analysis involves the following scope of work:-

- (a) Compiling, plotting and comparing series of survey data.
- (b) Analysis of wave data to obtain the significant wave height and wave period.
- (c) Analysis of sediment data for determination of mean particle size (D_{50}) .
- (d) Determination of closure depth using Hellemeier equation (1981).

1.4.3 Determination of Closure Depth

Depth of closure is an important concept in coastal engineering that defines the seaward limit of significant net sediment transport along a wave-dominated sandy beach profile over a period of time and is used to establish shoreline and volume change relationships. The depth of closure can be observed along a specific segment of coast in a series of profiles taken over a period of years as the depth at which the profiles consistently come together within the accuracy of the survey procedures. (Robertson *et al*, 2008).

Ferreira (2003) reported that the depth of closure is the depth that separates the active cross-shore profile from a deeper zone where the sediment transport is much weaker and where morphological changes are less perceptible. He suggested that this depth should be determined by morphological comparison, existing some formulations (e.g. Hallermeier, 1981, Birkemeier, 1985) that can be used for estimating a standard annual value for each coastal region when a morphological approach cannot be used.

1.5 Terminology Used in This Study

1.5.1 Beach Nourishment

Beach nourishment involves the placement of large quantities of sand or gravel in the littoral zone to advance the shoreline seaward. Such nourishment can be used to create or to maintain a recreational beach or to build out the shore in order to improve the capacity of the beach to protect coastal properties from wave attack (Komar,1998). Beach nourishment represents a soft solution and is the only form of shore protection that attempts to maintain a naturally appearing beach.

1.5.2 Closure Depth

According to Nicholls *et al* (1998) in their *Coastal Engineering Technical Note*, they claimed the depth of closure for a given or characteristic time interval is the most landward depth seaward of which there is no significant change in bottom elevation and no significant net sediment transport between the near-shore and the offshore.

1.5.3 Equilibrium Profile

Equilibrium beach profile is conceptually the result of the balance of destructive versus constructive forces (Dean, 2002). The beach profile is the variation of water depth with distance offshore from the shoreline. In nature, the equilibrium profile is considered to be a dynamic concept, for the incident wave field and water level change continuously in nature; therefore, the profile responds continuously. By averaging these profiles over a long period, a mean equilibrium can be defined.

1.5.4 Pressure Equalization Module System

Pressure Equalization Module (PEM) system is a new innovative system originated from Denmark for beach erosion control. The system was successfully installed in many countries all over around the world including Australia, Ghana, Denmark as well as Malaysia. It is designed to stimulate accretion of sand on certain beaches and to slow down the erosion process in some other beaches. PEM system is radically different from other protection measures where hard structures like concrete walls, rock embankment and groynes are used. This system has low impact on the aesthetics of the beach area and thus represents a more environmental friendly coastal protection method. It is assumed that under PEM influence the groundwater table in the beach will be lower and the swash infiltration-exfiltration rate will decrease, that will cause decreasing of intensity of the beach erosion in the swash zone.

1.6 Importance of Study

By the end of this study, the results presented will provide some base line information for local engineers in order to suggest a better plan for beach protection in other location by using a combination of PEM system and beach nourishment. Based on the findings of this study, the following expected results can be drawn:-

(a) The depth of closure will be higher as well as the point of closure will be further seaward and the width of the beach will be wider due to the effect of the PEM system.

- (b) From this study, engineers will be able to utilize an analytical model, specific to the local conditions, to predict depths of closure for areas where the beach has been installed with a PEM system.
- (c) The Pressure Equalization Modules system is expected to effectively create a new beach by enhancing infiltration and sediment deposition.
- (d) An effective PEM in combination with beach nourishment will be able to extend the lifetime of a nourished beach considerably. This technique of using a soft engineering approach could be applied to other beaches as well.